
Institute of Phonetic Sciences,
University of Amsterdam,
Proceedings 15 (1991), 1-25.

ASPECTS OF NEURAL NETS

David Weenink

Abstract

In this paper the relation between the topology of linear supervised feedforward neural
nets and their classification possibilities is investigated. Starting with the classification
possibilities of one single node (the building block of neural nets) we will then describe
the effect of adding nodes and additional layers of nodes. It will be shown that the
classification possibilities of one-layer nets are restricted to a problem space that is
linearly separable. Two-layer nets can combine the hyperplanes, formed by the first layer,
to form cells in the input space. However, not all possible combinations of cells can be
selected by a two-layer net. Only nets with three or more layers can make all possible
combinations of cells in the input space.

Criteria are given in order to optimize the topology of neural nets for specific tasks.
In addition, some aspects of the effects of varying weights on the decision regions are
studied.

1 Introduction

1.1 Context and outline

In recent years there has been much interest in the use of neural nets in speech research.
Neural nets have been used a.o. for vowel-classification tasks (McCulloch and
Ainsworth, 1988; Hult, 1889; Kamm et al., 1989; Morin and Nusbaum, 1990;
Watrous, 1991), speaker-dependent classification of consonants (Waibel et al., 1989),
isolated-word recognition (Kammerer and Ki.ipper, 1990) and speech analysis (Elman
and Zipser, 1988). In the studies cited above no explicit motivations were given
concerning the topology of the neural nets used. Topology in this context refers to the
architecture of the net in terms of number of layers and number of nodes in each layer.
Mo�t of the time, topologies were determined by 'trial and error'. In the present study,
one of the main topics will be to give some theoretical background on the link between
the topology of a neural net and its 'classification capabilities'. One of the questions we
want to answer is the following: Given a certain classification problem, what are the
minimum bounds on the number of layers and the number of nodes in each layer, to
perform this task? When a neural net is used for classification it has to specify to which
of M classes a given input belongs. We will concentrate on the classification capabilities
of supervised auto- and hetero-associative neural nets with analog inputs, i.e. the inputs
are real-valued.

The general outline of this paper will be as follows. After a brief introduction,
explaining some of the terminology used in the field, we will start by examining the
classification possibilities of a single node, the building block of a neural net. Next we
will investigate the possibilities of one layer of these building blocks: one-layer nets.

IFA Proceedings 15, 1991 1

We will show that when we add another layer and make a two-layer net, the
classification possibilities increase significantly. Adding yet another layer gives us
three-layer nets. It will be shown that a three-layer net can meet all 'possible'
classification tasks. The last section will cope with some other aspects of neural nets
such as the function of the nonlinearity. Discussion and conclusions end the paper.

1.2 Terminology

In the literature, several other names for neural nets are commonly used: connectionist
models, parallel distributed processing models (PDP), artificial neural nets (ANN),
multi-layer perceptrons (MLP) and Boltzmann machines. We prefer the term neural net.

In a neural net, the basic building block is called a node. Other denominations are
processing element, processing unit and sometimes McCulloch-Pitts unit. In a neural
net many of these nonlinear nodes are connected together and working in parallel. The
architecture of such a net resembles the patterns that neurons make in the nervous
system, hence the name neural net. The nodes are usually organized into a sequence of
layers and connected to each other with connections of variable strength. These
connections contain the 'knowledge' or the 'memory' of the net. In general, it is not
possible to decide which specific connection is responsible for what classification
decision. 'Knowledge' is distributed in the net.

In the operation of a neural net two phases can be distinguished: the learning or
training phase and the regeneration or recall phase. During the regeneration phase the
net has to show what it has learned, it processes a given input to generate an output.
During the learning phase a node has the ability to modify its connection strengths
depending on the input signals which it receives and the associated teacher signals or
error signals; this is called supervised learning. A neural net is called hetero-associative
when teacher signal and input signal are different, and auto-associative when they are
the same. The teacher or error signal is not provided in some cases where a node
modifies its weights depending only on its state and input signal. This is the case of
unsuper v ised learning, and such a learning scheme is sometimes called self­
organization. For further details on these types of learning, we refer to the papers of
Lippmann (1987) and Amari (1990).

1.3 Topology

First some remarks concerning notation. We will write down the topology of a
network, the number of layers and the number of nodes per layer, in the following
way:

(X n 1, ... ,X n j •. . . ,X nk) ,

where X is a representation of the information at a particular layer. X is either the
symbol A or B, meaning respectively that the representation is analog or binary. ni is
the number of inputs, nk is the number of outputs and llj is the number of nodes in
hidden layer j-1 (j> 1). Hidden units are units that are neither input nor output. We do
not count the inputs as a separate layer, so the number of layers of a neural net is
always one less than the number of elements between parentheses. In the case above
the number of layers is k-1. The term 'inputs' can refer to two things: the input for the
net or the input for a particular node. It will be obvious from the context which input is
meant. Examples of some topologies:

2 IFA Proceedings 15, 1991

(A2, B4)

(A2, A2, B3)

(B4, B2, B3, B4)

one-layer net with 2 analog inputs followed by a layer
with 4 binary outputs.
two-layer net with 2 analog inputs followed by a layer
with 2 hidden analog nodes and a layer with 3 binary
outputs.
three-layer net with 4 binary inputs, followed by a layer
with 2 binary hidden nodes, followed by a layer with 3
binary hidden nodes and a layer with 4 binary outputs.

This notation is only suitable for feedforward nets. In a feedforward net there are no
feedback connections, information travels in one direction. Only during the learning
phase information flows from the output of the net to the input. We will restrict
ourselves to feedforward neural nets.

2 Capabilities of one node

The basic building block of a neural net is the node. A node is an element that receives a
number of inputs, weighs them and then calculates art output. This output, y, is defined
by:

(1)

Here, the Xi (i=l, . . . N) denote the N input values, the Wi (i= l , . . . N) are real numbers
that weigh each input Xi, the G is the threshold or bias term and f is an arbitrary
function. In (1), the inputs are linearly weighed. The argument of the function! is a
linear combination of the inputs Xi. When the argument is equated to a constant, e.g.
zero, it forms the equation of a hyperplane in a N-dimensional space.

X1 �
input /,�y

output
W?

x2
-

(a)

(0.1)

(0,0)

(1,1)

... ...

0

--t...-- (1,0)

(b)

Fig.1. (a) Example of a net with topology (A2, Bl). (b) The dotted line separates the
input space into two regions A and B.

This hyperplane separates the input space into two regions, one on either side of the
hyperplane. Essential off is that it can be chosen nonlinear in such a way that different
values on either side of the hyperplane result. Two popular forms of this function are
the sigmoid function or logistic function, and the hard limiting nonlinearity, the
Heaviside function. In the sequel, until explicitly notified, we limit the discussion to a

IFA Proceedings 15, 1991 3

nonlinearity f of the Heaviside form. This means that the value of the function/ attains
distinct values on both sides of the hyperplane: e.g. 1 whenever its argument is greater
than zero, and 0 whenever its argument is less than or equal to zero. Sometimes, a node
with the Heaviside nonlinearity is called a McCulloch-Pitts unit

We will give an example of the two-dimensional case with topology (A2, Bl). In
figure la the full topology is drawn and in figure lb, the output of the (binary) node as
a function of both inputs. The equation for the hyperplane dividing the space follows
from the argument of formula (1) and boils down to the equation of a line in the two­
dimensional case:

This line divides the plane in two parts A and B. The exact partitioning depends on the
values of the weights w1' w2 and the bias e.

linearly separable

(a)

A B 'c
NOT linearly separable @) ® ®

(c)

(e)

Z 4

A@ @ C

@B

(d)

(f)

z 2

Fig.2. Linear separability in two dimensions. The sets in figures (a) and (b) are linearly
separable with a one-layer net, the sets in figures (c) and (d) are not. In (e) and (t) the sets
{A,B,C) and {A,B,C,.D} are linearly separable. Adding a new point£, in the shaded area,
makes the new set not linearly separable.

·

4 IFA Proceedings 15, 1991

3 Capabilities of one-layer nets

In this paragraph we will discuss the classification capabilities of one-layer neural nets.
The one-layer neural net represents the most simple neural net. Its topology is (AN,
Bp), N inputs andp outputs, each input being connected top outputs. We consider the
N-dimensional input space divided into p subspaces by p hyperplanes. Classifying in
this context means that whenever the input is in subspace k, the output of node k
should give a 1 and the output of the other nodes should give a 0. A single node, as we
have seen in the previous paragraph, separates the input space into two regions by
means of a hyperplane. Each node in the layer can classify according to one distinct
hyperplane. Consequently, the classifying capabilities of a one-layer net are restricted to
problems which are linearly separable. A set S, with N elements Ai, iSlmea:riy--- --­
separable if for all Ai there exists a hyperplane that separates Ai from S-Ai .

As an example, consider a set S with three elements A, B and C. Linear separability
means that A can be separated from B u C (the union of B and C), B can be separated
from A u C and C can be separated from A u B. In figure 2 some examples are
given of sets in a twodimensional space that are linearly separable (2a and 2b) and some
sets that are not (2c and 2d).

A question related.to linearly separable sets is the.following: Given a set S of p
points uniformly distributed in N-dimensional space. What is the probability that S is
linearly separable? First we note that when p :::; N+ 1 the set is in general linearly
separable. This question can be solved in a recursive manner: the probability that p
points are linearly separable is equal to the probability that p-1 pol.nts are linearly
separable times the probability that the p-th point is situated such that it is linearly
separable from the other p-1 points. What is the probability that, given a set S' of p-1
points that is linearly separable, the p-th point, randomly chosen from a uniform
distribution, is linearly separable? We will try to make it plausible that when p/N -> 00
the probability that the set S is linearly separable tends to zero. In the one-dimensional
case it is obvious that when p > 2, S is not linearly separable. In a two-dimensional
space spanned by [0,l]x[0,1], three randomly chosen points in this space are always
linearly separable. What is the probability that a fourth, randomly chosen, point is
linearly separable? In figure 2e we have drawn three points A, B and C. We can see
from this figure that when a fourth point E is situated in the shaded region, the set of
four points is not linearly separable. When four points A, B, C and D are not linearly
separable in two-dimensional space, you always can draw a triangle with corners on
three of the four points such that the point not used to form the triangle lies in its
interior (in the figure the triangle ADB encloses point C). The probability that the four
points form a linearly separable set is equal to the ratio of the nonshaded area to the total
area. It will be approximately 0.5. The situation for p=5 in two dimensions is depicted
in figure 2f. The total probability for this set with p=5 in two dimensions is the product
of the probabilities for p=3 and p=4. Every time adding a new point decreases this �
probability. This argument makes it plausible that the probability, that a set of p
randomly chosen points is linearly separable, goes to zero when p/N goes to infinity.

We will show in the next section that whenever a set S is not linearly separable, at
least one additional layer is needed in order to be able to classify its elements.

P) --f• · AJ, "' ?/-fi ()/I /\ /D (/-p1'J)! f(1,1/J
(f,/V' I p I <

(- c

IFA Proceedings 15, 1991 5

4 Capabilities of two-layer nets

4.1 Introduction

In the preceding paragraphs we have seen that each node in the first layer is capable of
separating the input space into two regions by means of a hyperplane. Addition of a
second layer will appear to enrich the classifying potential enormously. The first layer
forms hyperplanes in the input space. The second layer makes logical combinations
with these hyperplanes from the first layer. A logical combination of hyperplanes boils
down to forming so-called cells in the input space. A cell is the smallest region in the
input space that is bounded by one or more hyperplanes. Before going into the question
about the classincation capabilities of two-layer neural nets, which is a question about
the possible combinations of cells in the input space that can be selected by a node in
the second layer, we first want to answer another question. How many nodes in the
first hidden layer do we need to be able to classify M cells in the input space?

4.2 Number of cells formed by a two-layer net

The question stated above can be translated into the following problem: Given a N­
dimensional space S. How many hyperplanes, of dimension N-1, do we need to divide
space S into M subspaces? Mirchandani et al. (1989) and Makhoul et al. (1989) have
found the answer to a related question: What is the maximum number of subspaces in
which p hyperplanes can divide a N-dimensional space?

Let C(p, N) be the number of cells, formed by p hyperplanes in N-dimensional
space. In general the following recursive relation holds (Schlafli) :

C(p, N)::::; C(p-1, N) + C(p-1, N-1) (2)

With equality if the hyperplanes are in a general position, i.e. no more than N planes
intersect at the same point and no hyperplanes are parallel to each other.
Starting with initial conditions:

C(O, N) = 1 and C(p, 0) = 1

it follows that:

N

C(p, N) =I(�) (3)
i=O

Whenever p::::; N, (3) simplifies to:

C(p, N) = 2P

Formula (3) gives the theoretical upper bound on the number of cells that can be
formed by p hyperpianes in N-dimensional space. The number of cells grows
exponentially whenever the number of hyperplanes, p, does not exceed the dimension
of the space, N. If p > N the exponential growth changes into polynomial growth,
however, the degree of the polynomial increases with the dimension N. Table 1 shows
C(p, N) for a number of values for p and N.

6 IFA Proceedings 15, 1991

Table 1. Values of C(p, N), the maximum number of cells in a N-dimensional space
formed by p hyperplanes of dimension N-1 in general position. The upper row shows the
dimension N, while the first column shows the number of hyperplanes p. The relation
C(p,N) = C(p-1,N) + C(p- l,N-1), is illustrated for p=4 andN=3.

Dimension of input space
e. 1 2 3 4 5 6 7 8 9 10

1 2 2 2 2 2 2 2 2 2 2
2 3 4 4 4 4 4 4 4 4 4
3 4 1 7

l; I
8 8 8 8 8 8 8

4 5 11 l 16 16 16 16 16 16 16
5 6 16 26 31 32 32 32 32 32 32
6 7 22 42 57 63 64 64 64 64 64
7 8 29 64 99 120 127 128 128 128 128
8 9 37 93 163 219 247 255 256 256 256
9 10 46 130 256 382 466 502 511 512 512

1 0 11 56 176 386 638 848 968 1013 1023 1024
15 16 121 576 1941 4944 9949 16384 22819 27825 30827
2 0 21 211 1351 6196 21700 60460 137980 263950 43 1910 616666
5 0 51 1276 20876 251176 2.4 106 1.8 107 1.2 108 6.5 108 3 .2 109 1.3 1010

100 101 5051 166751 4.1 106 7.9 107 1.3 109 1.7 1010 2.0 1011 2.1 1012 1.9 1013
1000 1001 500610 1.7 108 4.2 1010 8.3 1012 1.4 1015 2.0 1017 2.4 1019 2.7 1021 2.7 1023

C(p, N) serves as an indication of the minimum number of binary nodes in the first
layer necessary for classifying M sets in N-dimensional input space. We consider two
cases:

1 . M ::;; 2N

The minimum number of nodes, p, is given by:

where the number between the 'square' parentheses is rounded to the nearest higher
integer. For example when M =3 and N=2 we have p=2, because 1 < 21og 3 < 2.

2. M > 2N

The problem is to find for given M a minimal p such that for a given dimension N:

N

C(p,N) = L (�) 2 M
i=O

(4)

Equation (4) is polynomial in p of order N and hard to solve. Generally it may be
impossible to find an analytical solution for N > 5. For small p and Na table lookup
gives us the answer we need. However, when p »N we can make the following
estimation for the polynomial C(p, N):

which yields:

IFA Proceedings 15, 1991

C(p, N) 2 (�) 2
(p-��l)N

7

N�--
p � �MN! +N-1

In practice, we have to be careful what number to take for N, the dimension of the
input space. When the inputs are mutually 'orthogonal', the dimension of the input
space is simply equal to the number of inputs. However, in many occasions the
dimension of the input space can be substantially smaller than the number of input
units. This occurs when the inputs are correlated. An indication of the actual dimension
of the input space can then be given for example by a principal component analysis.
A concrete example: We want to classify the twelve Dutch vowels, each vowel
specified by sixteen band.filter values. The minimum two-layer net topology that could
perform this task is (A16, Eh, B12), sixteen analog inputs, twelve binary outputs and
h hidden binary nodes, where h depends on the real dimensionality of the vowel space.
From table 1 we observe that, in order to make twelve cells, we need h = 4 when the
dimension of the input space is greater than two. Should the real dimension of the
problem be N = 2, we look up h = 5.

4.3 Permissible logical combinations of two-layer nets

We consider two-layer nets with topology (Ai, BJ, Bk), i analog inputs, j binary
hidden nodes and k binary outputs. Each output k can form logical combinations with
its inputs, i.e. the output of the hidden nodes j that form hyperplanes in the input space.
Potentially each output k can form '2) distinct logical combinations with the outputs of j
hidden nodes. A logical combination of hyperplanes forms cells in the input space. The
question which presents itself now is: which cells, or, which combination of cells, can
be selected by a particular node in the second layer, the output? Such a combination of
cells will be called a decision region. Before we can answer this question we, first of
all, have to know what logical combinations of hyperplanes are permissible with a two
layer net. In this paragraph we will prove that of all possible logical combinations only
certain subsets of a restricted form are permissible with a two-layer net.

All possible logical combinations can be formed with the operators /\ (AND),
v (OR), -, (NOT) and EB (XOR: eXclusive OR). Table 2 shows the outputs of these
operators on two binary inputs z1 and z2.

We can interpret this table graphically by representing z1 and z2 in the two-dimensional
plane. In figure 3a we notice that one line separates the points (1, 1) from the three
points (0, 0), (0, 1) and (1, 0). This line functions as the decision boundary for the
Boolean AND. Likewise the line in figure 3b functions as the decision boundary for the
Boolean OR. However, no single line, functioning as the decision boundary for the
XOR, exists that separates the points (0, 1) and (1, 0) together from the two other
points. Therefore, a two-layer neural net cannot have decision regions selected by an
XOR. On the basis of this conclusion (and at that time, the lack of a suitable training
algorithm) it was once suggested that neural nets were not very interesting objects to
investigate (Minsky and Papert, 1969).

• l /j.f(. ' (I The only logical operators that can be used m forming logical expressions, learnable
with a two-layer net, therefore are: /\ (AND), v (OR) and-, (NOT). We will prove
that the only permissible logical combinations of a node with N binary inputs are of the
following two forms:

(Zl V ... V Zp) /\ (Zp+l /\ ... /\ Zp+k)
(Zl V . .. V Zp) V (Zp+l /\ .. . /\ Zp+k)

8

p , k � 0 and p+k s N
p , k � 0 and p+k s N

(6)
(7)

IFA Proceedings 15, 1991

Table 2. Truth table of the Boolean operators-, (NOD,/\ (AND), v (OR), en E!1 (XOR).

z1

0
0

(0,1)

(0,0)

z2 -, z1 z1 /\ z2 z1 v z2

0 1 0 0
1 1 0
0 0 0
1 0 1

(1,1) (0,1)

(1,0) (0,0)
(a) (b)

X1 X2
(c) (d)

z1 E!1 z2

0
1
1
0

(1,1)

(1,0)

Fig 3. Graphical representation of boolean functions AND (a) and OR (b) of a neural net
(c) with topology (A2, B2, B 1). The XOR function cannot be made. No straight line
separates (0,1) en (1,0) from the other two points. In (d) the XOR-decision region in the
input space is shown shaded.

In these logical expressions the Zi are either 0, 'FALSE' or 'off', or 1, 'TRUE' or 'on'.
We implicitly assume that each ZJ, is used only once in the particular expression. We
will prove these formulae by constructing an explicit decision function for each one of
them.
A general decision function of a node, with N inputs Zi, has the form:

Where the ai are the weights and c is the bias. If coefficients ai and bias c can be found
for expressions (6) and (7) then these forms are learnable.
We first note that, without loss of generality, we can choose the decision function for
these logical expressions in such a way that only two different coefficients ai are
needed:

l·(z1 + . . . + Zp) +a·(Zp+l + . . . + Zp+k) > c (8)

IFA Proceedings 15, 1991 9

The logical expression (6) imposes the following conditions on the decision function
above: First, at least one of the Zi (i $ p) must be on, together with all the ZJ (}?. p) in
order for (8) to hold. Second, all the Zi V $ p) may be on, but, whenever one of the ZJ
(}?. p) is off, (8) does not hold. These conditions can be mathematically stated as:

1 + a·k > c
p + a· (k-1) -:;,_ c

a·k -:;,_ c

k > 1
p > 1

From the first and the third expression in (9) it follows that

a·k -:;,_ c < a·k + 1

While all three combined give:

c-1 . c-n c
T< a$ mm(�,k)

Which gives rise to the following condition:

c-1 . C.:::f!_ �
k

- mm (
k-1 ' k) -:;,_ O

This gives rise to two different possibilities for c:

c > k·(p-1) + 1
c > k·p

The minimum of the two expressions is taken, which together with (10) makes:

c = k·(p-1) + 1 + e 0 < c: < 1 ?

(9)

(10)

(11)

The value for a can be taken halfway between the values on the right-hand and left­
hand side of equation (10) and it becomes:

e·(2k-1)
a=p - 1+ ----

2k·(k-1)
0 < c: < 1 (12)

Equation (11) and (12) are the values for the bias and weights of the decision function
that proves equation (6).

In an analogous manner the conditions imposed by logical expression (7) on the
decision function (8) are the following:

1 > c
0 $ c

a·k > c
a·(k-1) � c

From the equations above we deduce:

10 IFA Proceedings 15, 1991

Osc< l
C·(2k-l)

a= ----
2k·(k-l)

(13)

These expressions for a and c prove (7). We now have shown that it is possible to
form decision functions for the logical expressions (6) and (7).

To show that these expressions are the only ones permissible we further have to
prove that no decision function can be constructed for all other possible expressions.
Exactly two other 'basic' expressions exist that have a form analogous to (6) or (7): the
and-of-ors (14) and the or-of-ands (15). These forms are given by:

(Zl V ... V Zp) /\ (Zp+l V • . . V Zp+k) p , k � 2 and p+k s N (14)
p , k � 2 and p+k s N (15) (Zl /\ ... /\ Zp) V (Zp+l /\ . . . /\ Zp+k)

In these expressions the minimum values of p and k are 2 since smaller values would
reduce them to one of the forms (6) or (7). The following conditions can be imposed by
the logical and-of-ors expression on the decision function (8):

1 +a > c
2 $ c

2 as c
(16)

Combining the last two expressions in (16) and dividing by 2:

1 + as c

This expression contradicts the first expression of (9). This proves that expression (14)
is not a permissible one in our context.

The following conditions on panda lead to a contradiction for expression (15):

p > c
c;::;, I) t � C>($ f, / p <I tf/'-, < 5

k·a> c -::;?p-/
I -C p-l s c I -(c � z... f c ,.,:: p - 1 + (k- l) ·a $ C C- <::: � ..(.5h-I -;_:, C >If � 2 C �

1i f.! -t

We have now proved that expressions (6) and (7) are valid expressions and (14) and
(15) are not. To complete the proof that (6) and (7) are the only valid expressions we
still have to show that all expressions that have (14) or (15) as subexpression are not
permissible. This proof is trivial.

We can summarize the permissible logical expressions of a node in the following
way: all permissible logical expressions are composed of either a series of simple
AND's combined with possibly one series of simple OR's, or, a series of simple OR's
combined with possibly one series of simple AND's.

4.4 Decision regions of two-layer nets

Now we are ready to tackle the classifying capabilities of two-layer neural nets. We are
familiar with the number of cells formed in the input space by a logical combination of
the hyperplanes of the hidden layer, the fractions of bounded and unbounded cells and
the permissible logical combinations that a two-layer net can make.

IFA Proceedings 15, 1991 11

The decision regions of an output node in a two-layer net with topology
(AN, Bp, B l), N analog inputs, p hidden binary nodes and 1 binary output, constitute
those combinations of cells in the input space that are permissible. The number of
possible decision regions is 2C(p, N) - 1, where C(p, N) is the number of cells in the
input space. Because of the form of the permissible expressions (6) and (7), a
combination of maximally p simple terms which each can have the value 0 or 1, the
output node can maximally form 2P different combinations. The number of different
combinations at the output layer is in general much smaller than the number of possible
decision regions in the input space.

In figure 3d an example is given of a decision region that could not be formed with a
two-layer net, one that amounts to an XOR. We will show that, despite the fact that not
all possible logical combinations are permissible, very many interesting decision
regions are possible with two-layer neural nets.

Lippmann (1987, page 16) states that the decision regions of two-layer neural nets
are either bounded or unbounded convex regions in the input space. We· will
demonstrate that this statement is too conservative. Decision regions do not need to be
convex: non-convex and 'hollow' regions are possible too. The definition of a convex
region is that a straight line between any two points in the region lies totally within the
region. Figure 4a shows four possible decision lines, z1, z2, z3 and z4 from the four
hidden nodes from a net with topology (A2, B4,B 1) . We will show that the output
node can form the non-convex decision region, which is shown shaded in this figure,
by a specific combination of the four decision lines. A 1 denotes that side of the line
where the hidden node generates a 1, the other side of the line gets the 0. It is not
essential whiCh side of the line is chosen. All eleven cells are labeled with the quadruple
(21, z2, z3, z4) , giving the relative location respective to the four decision lines. We
have to prove that we can find a linear combination of 21, z2, z3 and z4 such that when
the value of this linear combination exceeds the bias, precisely the shaded area, a
combination of three cells in the input space is selected. The Boolean function
characterizing the desired decision region is:

(21 v 22) /\ z3 /\ z4 (17)

The decision function for this logical expression can easily be found with the help of
the rules we gave in the preceding paragraph. The weights and bias can be chosen
according to formulae (11) and (12) . Because (17) is a simple expression we will
deduce the decision function in yet another way. Column BJ in table 3 contains the
value of this Boolean expression, it gives a 1 for each cell in the desired region and a 0
for all others. The table as well as the figure show that the combinations of z1, z2, 23
and 24 that select the desired decision region all contain at least three 1 's. Therefore the
sum function (column Sum in the table) z1 + z2 + z3 + z4 with a bias of 3 almost
selects the region. A small modification of the sum function is needed to weigh z3 and
z4 somewhat more than z1 and z2 to deselect two unwanted regions with a sum of 3.

It appears that the following function, implemented in the output node Bl , selects
the correct region:

z1 + z2 + (1 + c:) (z3 + z4) > 3 + 1. 5 c: (18)

The exact value of c: is not important in this context, it can be any value between zero
and one. We have now shown that the function (18) can select the shaded region of
figure 4a.
A two-layer neural net is also capable of making 'hollow' decision regions illustrated in
figure 4b. It is the simplest 'hollow' decision region that can be constructed in two

12 IFA Proceedings 15, 1991

dimensions. We will prove that the output node of a neural net with topology
(A2, B6, B 1) can already generate this decision region. As before, z1, ... , Z6 are
decision lines corresponding to the six hidden nodes. The shaded area is given by the
Boolean expression:

z1 /\ z2 /\ z3 /\ --, (z4 /\ z5 /\ Z6)

which can be brought into the standard form (6) as:

(--, 24 v --, z 5 v --, z 6) /\ z 1 /\ z2 /\ z3 (19)

Disconnected decision regions are possible too with a two-layer net. We will give an
example in one dimension. Given that a< b and the decision boundaries z1 = x<a and
z2 = x>b, then z1 v z2 selects the simplest disconnected decision region possible.

Table 3. Column BJ shows values of the Boolean expression (z1 v z2) /\ z3 /\ z4 for all
possible combinations of z l • z2 , z3 and z4. Column Sum shows the value of
z1 + z2 + z3 + z4. Because of the chosen topology not all possible combinations of
z1, z2, z3 and z4 are associated with real cells in figure 4a. The combinations that are not
present in the figure are associated with virtual cells and are shown in column Present
with a minus-sign.

0 0
0
0
0
0
0
0
0

0
0
0

1
0

1 0
0
0

z3

0
0
1
1
0
0
1
1
0
0

1
0

Z4

0
1
0
1
0
1
0
1
0
1
0
1
0

BI

0
0
0
0
0
0
0
1
0
0
0
1
0

Sum

0

1
2
1
2
2
3
1
2
2
3
2

Present

+
+
+

+

+

+
+
+

1 + 0 1 0 3
1 + 0 0 3
1 + 4

5 Three-layer nets

Tirree-layer nets are capable of implementing the whole set of Boolean functions, AND,
OR, XOR and NOT. We have seen that the Boolean expressions that a two-layer net
could form were of the restricted forms (6) and (7). A three-layer net imposes no
restrictions on Boolean expressions. To prove this, we first use the fact that the
Boolean operators /\, v and--, form a complete set, i.e. every possible Boolean
expression can be constructed with only these operators. It then suffices to show that
with a three-layer net, for every possible combination of these operators, a decision
function can be constructed. Every Boolean expression can be broken down into simple
expressions that can be handled by a two-layer net, combined with/\ or v. These

IPA Proceedings 15, 1991 13

notions above conclude the 'proof'. We will just give a simple example how
combinations of expressions can be implemented. The most simple Boolean expression
that can not be implemented in a two-layer net is the XOR. We can write z1 E9 z2 in
two possible ways either as an and-of-ors or as an or-of-ands:

(-, z 1 /\ z2) v (z 1 /\ -, z2)
(z 1 v z2) /\ (-, z 1 v -, z2)

(20)
(21)

The two forms above suggest two possible implementations of EB with a net of
topology (B2, B2, B l), two binary inputs, two hidden binary units and one binary
output. (Beware: the given topology is that of a binary two-layer net and not that of a
three-layer net. However, in general, we are not interested in binary inputs but in
analog inputs, we want to combine hyperplanes in the input space.Therefore the inputs
should be considered as a layer that receives input from a preceding analog layer.)

z 1

(a)

(b)

��:-----1 z 5

�i;;;;;;;;;;;;;, __ :_l Z2

Fig 4. Two possible decision regions for two-layer nets. (a) Most simple concave
decision region of net with topology (A2, B 4, B 1). In figure (b) the most simple hollow
decision region of a net, with the topology (A2. B6, B 1) is shown. That side of the line
where output of the hidden node is 1 is marked.

14 IFA Proceedings 15, 199 1

e

(c)

Fig. 5. Implementations of the XOR-function with two different topologies. In all
figures 0 < e < 1 .

The first implementation is suggested by (20): the two expressions within
parentheses are implemented in either hidden node and the output combines them with
v. The biases and weights can be calculated with the help of the formulas of section
4.4. The second implementation can in an analogous manner be de1ived from (21).
These two possible implementations of the EB are shown in figure Sa and Sb.

A careful look at equations (20) and (21) suggests another topology which also
implements the EB: one output node with three input connections, two directly
connected to the inputs and the third to the output of a hidden node which is also
connected to these inputs. The four possible combinations of weights and biases
correspond to the four possible choices for the Boolean function of the one hidden
node : each one of the expressions between brackets in (20) and (21). Figure Sc, d, e,
and f show these combinations. Of course the possible ways to implement the EB are
not exhausted yet: with only 4 constraints on 9 parameters for a net with a topology like
the one in fig. Sa (6 weights and 3 biases) there is .a lot of freedom. Likewise there are
7 parameters to be calculated for a net with a topology as is shown in fig. Sc (S weights
and 2 biases).

6 Other aspects of neural nets

6.1 The n on linearity

The nonlinearity f guarantees that the capabilities of multi-layer neural nets are
essentially different from those of one-layer nets. Without the nonlinearity the function
of a multi-layer net could be reduced to that of an equivalent one-layer net. Different
nonlinearities have been used in the literature, depending on the problem. Up till now,
in all the derivations of the preceding paragraphs, the nonlinearity was a Heaviside

IFA Proceedings 15, 1991 15

---· · ··-·----------

function. Possible outputs of nodes were limited to either 0 or 1. Jones et al. (1990)
use locally tuned nonlinearities leading to Connectionist Normalized Linear Spline
(CNLS) networks. In the sequel, we will take the function f of equation (1) to be a
sigmoid function, a, because it is monotonous, continuous and differentiable. The
function a reads:

1
a (X) =

1 + e-X
(22)

X is a sum of weighted inputs Xk to the node (which can be either outputs of the
preceding layer or inputs) minus a bias &.

(23)

The sigmoid function (22) has domain (-oo, +oo) and range (0, 1) which
means that the output of a node can take all possible values between 0 and 1. From (22)
we can see that when X is constant, the output of the sigmoid function is constant. The
equation X = constant defines a hyperplane parallel to the hyperplane defined by

X = 0, the decision boundary of the hard limiting threshold function. Contrary to the
latter function which is discontinuous from 0 to 1, the sigmoid changes smoothly from
0 to 1. Both these extremes are approximated when the argument tends to± infinity.
As shown in figure 6, we can define a transitional area where:

8 < (j (x) < l-8 0 ::;; 8::;; 1/2

On the input side this defines a symmetrical region around X = 0. The input range t;X
that corresponds with it is:

l-8 b.X (8) = 2 In -
8

We can interpret LiX(8) as that part of the domain of X where no clear decisions are
yet made, a transitional area. 'Domain' in this context must be understood as the actual
domain i.e. the range of values of X in the problem at hand and not the domain in the
mathematical sense which is always (-oo, +00) . The ratio R between this transitional
area and the actual 'domain' of X is very important because it gives us an indication of
the relative sharpness of the decision boundary. This ratio is:

6X(8)
O<R=

d
. (X) <1 omam

This ratio R is a measure of the resolution we wish, it determines the width of a
decision boundary. If we want sharp boundaries this ratio has to be much smaller than
one. Given a certain decision boundary, the only way in which a node can 'sharpen' it
is by enlarging all the weights and the bias with the same factor.

X'=f3X= Lf3wkXk-f3 G =L Wk1Xk - G', f3 >1 (24)
k k

16 IFA Proceedings 15, 1991

1.0

0.5

0.0

(l, 1)

(10' 1)

(100, 1)

- - - I- -
I AX(b) I

- - -,• �r -
I

- 00...._ 0

1-8

___. +oo

Fig 6. The sigmoid function.

(1, 10) (1, 100)

(10' 10) (10, 100)

(100, 10) (100,100)

Fig. 7. Some of the possible decision regions of a net with topology (A2, A2, A l) . The
decision regions are given by the formula: er (A-cr(IO(x--0.5)) + B·cr(IO(y-0.5)) - 2) .
The values o f the weights A and B that were used, are indicated underneath each figure as
the pair (A, B).

IPA Proceedings 15, 1991 17

From equations (23) and (24) we deduce that the equations X' = 0 and X = 0
describe the same hyperplane. However, the ratio R which determines the sharpness of
the transitions depends only on the data used for the training. The weights and bias
should increase, when we train the net (see later) with inputs that lie close together in
the input space and far apart in output space i.e. belong to different decision regions.
This increase corresponds to an increase in f3 (note that when f3 goes to infinity the
sigmoid approximates the Heaviside function). This immediately suggests a possible
way to train a net: use data that lie close together in the input space but belong to
different decision regions: if possible, train with data near decision region boundaries.
From a theoretical point of view this may be all right but in practice it turns out to be
nearly impossible with feedforward nets. We will return to this point in the discussion.

Because the hyperplanes X = constant are parallel to the plane X = 0 (the
hyperplane for the hard limiting threshold function), we conclude that the decision
regions for a neural net with sigmoids as nonlinearities, can approximate the decision
regions limited by hyperplanes as close as is necessary by increasing f3: However, the
decision regions can substantially change when the ratio of R changes. In general when
R decreases, hypersurfaces gradually degenerate to hyperplanes. As a first example of
this matter, we have plotted in figure 7 some of the possible decision regions for the
output of a net with topology (A2, A2, Al) . For simplicity, ·we have taken the two
decision regions of the two riodes in the first layer to be the right half and the upper half
of the plane. The decision regions of the output were determined by the formula:

a (A · er (l O · (x - 0 .5)) + B · a (l O · (y - 0 . 5)) - 2) ,

where the values of the weights A and B have been taken from the set { 1 , 1 0, 1 00 } .
For each of the nine possible combinations of A and B, the output of this equation was
calculated with the input in the domain [0, l]x[0, 1] . Grey levels were used to represent
the output. Underneath each figure the particular values of A and B are indicated as (A,
B). Only positive values of A and B were considered here because different signs
merely rotate the forms in the figures in multiples of 90 degrees. We note that all
decision regions are unbounded i.e. all decision regions start and end at the borders.
No bounded decision regions are possible with the chosen topology.

In figure 8 we give an example of what happens to the form of a decision region
when the only variation is in the scale factor f3. We consider a two-layer net with
topology (A2, A4, Al) . The two inputs, x1 and x2, are confined to the interval [0 , 1] .
With four decision lines, z 1 , z2, z3 and z4 , we can construct a non-convex decision
region such as in figure 4a. The chosen parametrizations are:

z 1 : er (/3 1 · (x 1 - 0 .5))
z2 : er (/32 · (x 1 - x2 - 0. 1))
z3 : a (133 · (-0.3 x 1 + x2 - 0. 1))
z4 : er ({34 · (-1 . 14 .:q - x2 + 1 .34))

(25)

The decision region of the output node, a function of x1 and x2, can be calculated with
the help of equation (1 8) in which E = 0.5 was chosen:

zs : er (/3s · (z 1 + z2 + 1 . 5 z3 + 1 . 5 z4 - 3 . 7 5))

The f3's can help us to influence the steepness of the sigmoids because the functions
(25) are invariant under multiplication with a scale factor. We have chosen all /3i = /3
(i = l , . . . 5), and, for /3 = 1 , 10 , 1 00 and 1 000, plotted in figures 8a, b, c and d
respectively the value of z5 as a function of x1 and x2 with grey levels.

1 8 IFA Proceedings 15, 1991

(a)

•
.

.
: . .

(c)

z5

z 1 Z 4
(b)

x 1 x2

(e)

(d)

Fig. 8 . The output o f net (e), with topology (A2, A4, A l) as a function o f the steepness
of its sigmoids: (a) f3=1, (b) [3=10, (c) [3=100, (d) {3=1000. Further explanation is given in
the text.

Every figure is scaled individually, the larger 25 the darker the grey. The figures clearly
show that the decision region only possesses sharp decision boundaries when the f3's
are sufficiently large. For moderate values of {3, e.g. {3= 1 0, the transition area of the
sigmoid plays an important role and the decision boundary diverges from the one
intended. For {3=1 the decision region is nowhere near the intended one. The figures
8a, b, c, and d make clear that by varying the weights and the biases, the decision
regions of the sigmoid function can be made very diverse and that these decision
regions are not limited to ones that are bounded by hyperplanes, as was the case for the
hard limiting threshold function but by hypersurfaces. The corners of the cell can
become rounded.

6.2 Level coding

The output of the sigmoid function can take all values between zero and one . This
means that, in principle, more information than just 'on' and 'off' can be coded. When­
ever this is the case we speak of level coding.

An example of level coding is the following problem. We want to solve the input­
output relations of the table above with a multiplexer network of topology
(B2, A 1 , Ax, B4), where x should be the smallest value possible . To solve the input­
output relations of this table the net first has to represent the four possible input values
as four different output values of the first hidden node. It makes the problem a one­
dimensional one : find a separation of four classes in one dimension. This problem is
not linearly separable which means that after the first hidden node we need one extra
level of hidden nodes. Rumelhart et al. (1989, their figure 8) give a example with x=4.
We have found a solution to the multiplexer problem with x=2. The decision regions of
this net are displayed in figure 9. The inputs are taken as analog nodes for drawing
purposes. The figure demonstrates that the desired function of the net, multiplexing, is
performed correctly: each decision region encloses a separate corner of the square.

IFA Proceedings 15, 1991 19

Table 4. Inputs and outputs for a multiplexer neural net with 2 inputs and 4 outputs.

Input
00
01
10
11

(a)

(c)

Output
1000
0100
0010
0001

(b)

(d)

Fig. 9 . Decision regions for each one of the outputs o f a multiplexer net with topology
(A2, A l , A2, B4). Lower left corner of each square is (0, 0), upper right comer is (1 , 1).

We note that for two possible input combinations, (0, 0) and (1, 1), the functioning of
this multiplexer is sensitive to noise: a small deviation from 0 or 1 of the second input
activates the wrong output.

We can go further to show that x=2 solves any multiplexer problem of topology
(Bn , A l , A2, B211) : n inputs coding 211 possible outputs can be multiplexed over one
hidden node followed by a layer with two hidden nodes. It suffices to show that the
two nodes in the second layer can map the 2n different outputs of the single node in the
first layer to a curved line in two dimensions. Any point on a line with curvature in the
same 'direction' is linearly separable.

Let y be the output of the single node in the first layer and z1 and z2 the outputs of
the two nodes in the second layer. It follows from (22) and (23) that:

z 1 = (1 + e- w ly+ G l)- 1

z2 = (1 + e-w 2y+ G2)- 1
(26)

Let the weight and bias of the second node be twice those of the first, it follows that:

20 IFA Proceedings 15 , 199 1

z 1 = (1 + e-t)- 1

z2 = (1 + e-2 t)- 1

Solving for t and expressing z2 as a function of z1 yields:

2 z 1 - 1
z 2 = 2 z 1

(27)

(28)

According to (27) the value for z1 is: 0 < z1 < 1 and (28) describes a curved line. By
arranging the weights and biases in (26) the points (z 1 , z2) can always be positioned
on that part of the line described by equation (28) where the curvature has the same
direction. This concludes the 'proof' that the two are sufficient to solve the multiplexer
problem. Probably it will be very difficult to train a multiplexer like this when the
number of inputs is larger than 2 because ever smaller differences among the output
values of the singleton node must be distinguished.

6.3 Training a neural net

During the training of a neural net weights and biases are iteratively updated until the
error is smaller than some threshold. Normally during training a desired output is
compared with the actual output of the net. The size of the difference, the error, is an
indication for the amount of change necessary for the weights and biases. Training a
one-layer net is very simple since the desired output is known and the only weights are
those between the outputs and the inputs. This means that weights can be gradually
updated until the enor is sufficiently small. However, this procedure is not directly
applicable to a net with hidden nodes because most of the time one does not know what
the hidden nodes should represent, there is no desired output from the hidden nodes.
Nevertheless this objection, different training procedures for nets with hidden layers
have been developed. These minimalization procedures can roughly be divided into two
types: simulated annealing (Prager et al., 1986) and gradient descent (Rumelhart et al.,
1986). An everlasting problem with minimalization procedures is that the minimizing
procedure could get stuck into a local minimum. During simulated annealing the system
always has a chance to escape from a local minimum. This procedure is often used with
a neural net called a Boltzmann machine but it takes very long computing times to train
a net with simulated annealing. Therefore, the second method based on gradient descent
is often more attractive.

The gradient descent used in conjunction with feedforward neural nets is called the
back propagation training algorithm (Rumelhart et al. , 1986) because the enors at the
outputs are propagated back into the net and are used to update the weights and biases
of the nodes in the hidden layers. The error between the desired output and the
estimated output is minimized in a quadratic sense. It is essential that the nonlinearity is
monotonous, continuous and differentiable (the sigmoid is such a function). Nodes
adapt their weights according to what is called a generalized delta rule and this updating
is done locally.

IFA Proceedings 15 , 199 1 21

7 Discussion

7.1 Possible decision regions and topology

In paragraph 4.5 we have proven that a two-layer neural net c ould, in principle, make
non-convex decision regions : weights and biases were explicitly given for the most
simple non-convex region bounded by four lines. However, when we tried to learn this
decision region to a net with topology (A2, A4, A l) it turned out that much more
iterations were necessary than when we u sed the topology (A 2, A 4, A 2, A l) .
Investigating the weights and biases of the latter net showed that it only had to make
decisions based on A ND ' s. This should suggest that although n on-convex and
' hollow' decision regions can be formed with a two-layer net, adding an extra layer
simplifies the decision making. This would indicate that in each p articular layer
conclusions should only be based on a combination of AND ' s since this simplifies the
decision making process: all nodes make simple decisions. The benefit of adding nodes
could invo lve a decrease in training time. This is in accordance with a notion of
Rumelhart et al . (1986) in which they state that occurrences of the net getting stuck in
local minima always involved networks that had just enough connections to perform the
task and that adding a few more connections created extra dimensions in weight space
to provide paths around the barriers that create local minima in the lower dimensional
subspaces.

7.2 Coding the in puts

Input c onsists in most cases of real numbers. We note that, theoretically, it makes no
sense to scale the inputs to a certain range when the scaling algorithm is linear. In
principle, the weights and biases of the next layer could perform this scaling. In
practical situations, however, scaling the inputs beforehand to the range (0, 1) does
make sense. Whenever the abso lute value of some , or most of the inputs is
substantially larger than one, the weighted sum of the inputs, which forms the input to
the sigmoid nonlinearity, can be a relatively big number. As a consequence the training
algorithm starts when the sigmoid functions are at a position where the derivative is
extremely small, and, since the speed of updating weights is a function of this
derivative, hardly any training of the net is the effect. In order to effectively train the
net, the input to a sigmoid must not start to far of from zero. This argument can also be
applied to the training of a net with data near decision boundaries to show why such a
training is very difficult if not impossible. In any case it is better to scale the inputs to
the interval [-1, 1] or [O, 1] if one uses the tanh or the sigmoid nonlinearity (Elman and
Zipser, 1988) . As a scaling function, the sigmoid function performs well , since it
accepts input values in the range (--oo , +00) .

7.3 Coding the outputs

Two possible output units exist: analog and binary output units.
In case of an identity mapping, analog output units are used because the input and

output signals are conditioned to be the same. This mapping of a signal onto itself is
obtained through one or more hidden layers.

When the net is used for classification purposes, the outputs make binary decisions:
output unit i is trained to give a value near 1 whenever the input belongs to decision

22 IFA Proceedings 15 , 199 1

region Mi. This presupposes M output units when M different decision regions need to
be classified. More 'economical ' coding of the outputs (e.g. 2log M output units could
code M output classes) are not very efficient because part (or all) of the hidden nodes in
the layer just before the outputs are simply used as a binary decoder network instead of
being used for the task at hand. One further remark concerning output coding:
whenever the outputs need to distinguish between elements of two different input sets
at the same time, sets with K 1 and K 2 mutual orthogonal elements respectively, two
equivalent possibilities exist for the number of outputs. First we could have K 1 + K2
output units of which two units at the same time are active, one from K 1 and one from
K 2· In the second case we have K 1 · K2 outputs and only one of them is active at the
same time. Both codings are equivalent since both have K 1 · K2 different outputs. An
example: classification of twelve vowels while at the same time membership of one of
three speaker categories (Male, Female or Child) should be given. Possible codings:
1 2 + 3 = 15 outputs, with always two active, one of 1 2 and one of 3, or,
1 2· 3 = 36 outputs with only one active at the same time.

The number of outputs, M, gives us an indication for the minimum number of units
needed in the preceding hidden layer: 2log M. When the number of units in the hidden
layer is below this minimum, some units are forced to level coding. This may be what
we want for some kinds of problems where we are interested in the coding per se, like
the multiplexer problem. Whenever we want to detect 'features ' we have to stay above
this limit.

7.4 Why neural nets?

Using neural net s for classification has a number of advantages as compared to
'classical ' statistical methods. Probably the greatest advantage is that there is no need
for assumptions on the underlying distribution of the inputs. In the derivation of the
classification possibilities of neural nets, we never had to make any assumption
concerning the distribution of the input data. When input data cannot be described well
by a distribution function, neural net classifiers outperform statistical classifiers (Niles
et al. , 1 989). Another pro is that neural nets can be made adaptive. The net can be in the
learning mode permanently and adapt itself to 'new ' inputs. Since in a neural net the
'knowledge' is distributed over many connections, they can be made very robust. The
performance will not stop butTather decrease only gradually with an increasing number
of connections that become disabled. The net also shows its robustness when the input
data are not complete (or noisy), because, in many cases, it is able to give the correct
output. Neural nets can be implemented on any computer and very good learning
algorithms do exist. The topology of the net is only limited by the computing power of
the computer. Nowadays, special parallel hardware exists for the implementation of
neural nets.

Unfortunately, neural nets also have some serious drawbacks. It is not yet clear how
we can add explicit 'knowledge' to a neural net. The only influence we can exercise is
on the topology of the net. We do not know how to modify weights and biases when
only 'knowledge' and no algorithm is present, except for some trivial problems such as
the construction of a gaussian classifier with a neural net when means and variances of
the inputs are known (Lippmann, 1 987). Likewise, it can be a tedious task to extract
'rules' or 'knowledge' from a neural net. The interpretation of the weights and biases
can be difficult, especially when we are confronted with a large net. In this case it will
be favourable to design a modularized net, with each module having a specific subtask
and the output of each module being integrated afterwards.

IFA Proceedings 15, 1991 23

Although excellent training algorithms exist, they require a great deal of training data
and training time for reasonable accuracy. This can be a serious problem when many
data are not available. Special net topologies and nonlinearity functions have been
developed to speed up training time in order to reduce the amount of data needed (Jones
et al., 1990). However, once a neural net is trained, its response is very fast.

Neural nets are indeed very promising but they are not a panacea for just any
problem. In general, when an algorithmic solution exists, this algorithm constitutes the
preferred solution. Some problems that are very easy to solve with an algorithm, are
notably difficult to solve with a neural net. The outstanding example is the parity
problem: the net has to decide whether (a possible transformation of) the input has even
or odd parity. This is a difficult problem for a neural net because the larger the input
numbers, the smaller the relative differences between succeeding numbers. In order to
solve this problem, weights can become prohibitively large. Many other problems e.g.
the validation whether a decision region is connected or not, can be reduced to the
parity problem (Minsky and Papert, 1960) .

8 Conclusions

A number of aspects of neural nets have been discussed. Despite their simple topology,
the powerful combinatorial possibilities in the decision regions are impressing. In the
field of automatic speech recognition (ASR) they can potentially rival the successful
Hidden Markov Models (HMM). Bourlard and Wellekens (1989) show that compared
to HMM, neural nets have advantages: a HMM needs more decisions beforehand, like
the number of states, the distribution functions, the permitted transitions and the
transition rules. Another disadvantage of HMM is their weak discriminating power.
During training the probability of the optimum hypothesis is maximized without
minimizing alternative hypotheses. We have seen that during training of a neural net, in
conjunction with optimizing the wanted hypothesis, the incorrect ones are being
minimized. Neural nets show increasing performance in the AS R field (Waibel, 1989;
Watrous, 1991). Even hybrid systems which use a neural net as the front end and a
HMM doing the time modelling, are being developed.

Our belief is that neural nets not only are valuable as a research tool, but will find
growing application in many fields where no exact formalisms exist and decisions are
made which are based on experience, however vague this term may be.

Acknowle d ge me nts

Our thanks to Louis ten Bosch for stimulating discussions and helpful comments,
Sander Kloosterman for training the multiplexer nets and Paul Boersma for help with
plotting of figures involving grey scales.

References

Amari, S . (1 990): "Mathematical foundations o f neurocomputing", Proceedings of the IEEE 78: 1443-
1463.

B ourlard, H. and Wellekens, CJ. (1989): "Speech pattern discrimination and multilayer perceptrons",
Computer Speech and language 3: 1 - 19 .

Elman, J.L. and Zipser. D. (1 988): "Leaming the hidden structure of speech'', Journal of the Acoustical
Society of America 83: 1 615- 1626.

24 IFA Proceedings 1 5, 199 1

Hult, G. (1989): "Some vowel recognition experiments using multilayer perceptrons", STL-QPSR 1:
1 25- 1 30.

Jones, R.D., Lee, Y.C., Qian,S . , Barnes, C .W., B isset, K.R., Bruce, G.M. , Flake, G.W., Lee, K. ,
Lee, L .A. , Mead, W.C. , O'Rourke, M.K., Poli , I.J. and Thode, L .E. (1 990): "Nonlinear
adaptive networks: a little theory, a few applications", Los Alamos National Laboratory Rpt.
No. LA-UR-9 1-273.

Kamm , C .A., S treeter, L.A. Kane-Esrig, Y. and Burr, D.J. (1 989): "Comparing performance of
spectral distance measures and neural network methods for vowel recognition", Comp u ter
Speech and Language 3: 2 1 -34.

Kammerer, B .R. and Kupper, W.A. (1 990): "Experiments for isolated-word recognition with single­
and two-layer perceptrons", Neural Networks 3: 693-706.

Lippmann, R.P. (1 987): "An introduction to computing with neural nets", IEEE Magazin e, April
1 987.

Makhoul, J . , Schwartz, R. and El-Jaroudi, A. (1989): "Classification capabilities of two-layer neural
nets", Proceedings ICASSP, Glasgow: 635-638.

McCulloch. N. and Ainsworth, W.A. (1988): "Speaker independent vowel recognition using a multi­
layer perceptron'', Proceedings of Speech '88, Edinburgh: 851 -857.

Minsky, M. and Papert, S. (1969): Perceptrons: An introduction to computational geometry, MIT
Press.

Mirchandani, G., Cao. W. and Bosworth, B. (1989): "Efficient implementation of neural nets using an
optimal relationship between number of patterns. input dimension and h idden nodes",
Proceedings ICASSP , Glasgow: 2521 -2523.

Morin, T.M. and Nusbaum. H.C. (1 990): "Perceptual learning of vowels in a neuromorphic system",
Computer Speech and Language 4: 79- 126.

Niles. L . , Si lverman, H., Tajchman, G. and Bush, M. (1989): "How limited training data can allow a
neural network to outperform an 'optimal ' statistical c lassifier", Proceedin gs ICASSP ,
Glasgow: 17-20.

Prager. R.W., Harrison, T.D. and Fallside, F. (1986): "Boltzmann machines for speech recognition",
Computer Speech and Language l: 3-27.

Rosenblatt, R. (1959): Prin ciples of neurodynamics. Spartan Books. New York.
Rumelhart. D.E., Hinton, G.E. and Williams. R.J . (1986): "Leaming internal representations by error

propagation", reprint in : Neurocomputing: Foundations of research, Anderson, J .A. and
Rosenfeld. E. (eds.): MIT Press . Cambridge: 675-695.

Schlafl i , L. (1 8 14- 1 895): Gesammelte Mathematische Abhandlungen, vol. 1, Birkhauser, Basel, 1 950:
209-2 12 .

Waibel, A . Hanazawa. T . , Hinton, G . . Shikano, K . and Lang , K.J. (1 989) : "Phoneme recognition
using time-delay neural networks", IEEE Trans. on ASSP 37: 328-339.

Watrous, R.L. (1 991) : "Context-modulated vowel discrimination using connectionist networks",
Computer Speech and Language 5: 34 1 -362.

IFA Proceedings 15 , 199 1 25

