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1. INTRODUCTION

In acoustic phonetics the vocal tract 4Ys often approximated by means

of N successive cylindrical tubes of lengths Qi and cross-sectional
areas Si , 1=0,1,..,N~1 (fig 1). Each tube-section is a one-dimensional
wave transmitter. The wave is characterized by the sound pressure p(x,t)
and the volume velocity u(x,t). The N~tube is terminated by a glottal

acoustical resistance Zg and a complex radiation load Z. [ Flanagan, 1972].

p(0,t)

glottis lips

fig 1, N-tube model of the vocal tract.

The linear prediction model of the vocal tract [Markel & Gray,1976]} is a
simplified version of Flanagan's model. All section of the N-tube are of
equal length. The wave transmission in the sections is lossless and the
radiation load Zr is zero. All dissipation of energy is concentrated in
the glottal resistance Zg. The model is fully characterized by its total
length L = N.%, the glottal resistance, and the cross-sectional areas

Si’ i=0,1,..,N-1. From these parameters N characteristic frequency
parameters, being the first N/2 formant frequencies and their correspon-
ding bandwidths, can be predicted. All higher formant frequencies and
corresponding bandwidths are determined by these N characteristic

frequencies (see section 2).



Conversely we might ask whether it is possible to determine the geometry
parameters from these frequencies. This possibility is not self-evident.
The lossless twintube model [Mol,1970] ,for instance,shows that there
are at least two different twintubes with the same formant frequencies,
of € 18028500584

the same for both tubes. Symmetries in lossless tubes often result in

even if the length L and a reference area Sr } are

identical frequency responses [ Schroeder,1967].

The linear prediction model provides us with a means to calculate
a set of areas (including Zg) from the characteristic frequencies

if L and Sr are given. To carry out this calculation it is necessary

for the gloiial resistance to be finite, not .zero, i.e. the bandwidths
Bk must not be zero (k=1,2,.. ). These areas determine an N-tube that
has the above-mentioned frequency characteristics. In most of the
literature [c.f. Wakita,1973 ; Markel & Gray,1976] it is assumed that
(for fixed L and Sref) there is a one-to-one correspondence of the area
parameters (including Zg) with the frequency parameters. This

correspondence is written as follows :
(0) {Si,Zg|i=O,l,..,N-l} 2 1F,B, k=1,2,..,

In other words no two different area functions would occur from which
the model predicts the same frequency response. (0) will be provéd

in the present paper, in the sections 2 and 3. We will also show the‘
one-to-one correspondence of other parameter sets associated with

the model, like the coefficients of the transfer function (or
"prediction coefficients'), the reflection coefficients and the

zeros of the transfer function. So Wakita's method of estimating

the area function of the vocal tract from the speech wave is justified
from a theoretical point of view. Actually Wakita uses the prediction
coefficients as input for the calculation because these can directly

be obtained by linear prediction of the (preemphasized) speech signal.

In section 2 the relation between different sets of parameters is
discussed. In section 3 the one-to-one correspondence of the prediction
coefficients with the reflection coefficients is proved. In section 4
some models related to the linear prediction model, such as the
resistive radiation load model and the lossless N-tube model, are

discussed.



THE LINEAR PREDICTION MODEL

Description of the transfer function.

Acoustically the one-dimensional vocal tract model can be described with
the volume velocity function u(x,t), which is defined as the product of
S(x), the cross-sectional area of the tract, and v(x,t), the particle

velocity in the x-direction :
(n u(x,t) = v(x,t) . S(x)

For each tube section u(x,t) obeys the one-dimensional wave equation.
The general solution of this equation is a linear combination of two
waves, travelling in the positive and negative x-directions respecti-

vely. Continuity of sound pressure ans volume velocity between the

sections is assumed. The sound pressure at the lips is set equal to zero.

The pressure-velocity relation at the glottal side of the tract is
determined by the glottal resistance Zg. Under these conditions u(x,t)

can be solved.

We can look upon the vocal tract as a linear filter. The volume
velocities at the glottis and the lips are the input and output signals
respectively (fig 1). The transfer function of this filter can be

written as the Laplace Transform (see App. I) :

(2) H(s) = C(z) / &(=)
where z = exp(sT) ,
T = 28/c ,
¢ = velocity of sound |,

_1
C(z)= k.z i is a phase function of constant amplitude k ,

A(z)= polynomial in z lof degree N.

Hence H(s) is a function of exp(sT). So the frequency response H(2mjF),
where F is the frequency, is a function of exp(2mjFT), and consequently
it is periodical with period AF = 1/T. This periodicity is typical of

the model, for it is a consequence of the fact that the section length
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£ is constant. The periodicity of the frequency response implies a
discrete impulse response [ Brigham,1974] . From the notation z = exp(sT)
it is clear that #(z) := H(exp(sT)) = H(s) is the z-transform of the
impulse response. Note that this result is obtained without sampling
the impulse response. H(z) comprises the frequency response over the
whole frequency range from zero to infinity. The frequency amplitude
response of the filter is within a constant k = |C(z)| determined by

A(z).

Derivation of the transfer function from the area function.

The polynomial A(z) contains the information about the tube areas and
the glottal resistance in the following way. The reflection

coefficients are defined as :

i-1 i .
(3) U. :=~§—1——-—————3‘- ; i=1,2,..,N.

with SN = pc/Zg .

p is the demnsity of the air. In practice SN is of the order 0.4 cm?,

and uN> 0. The glottal termination is represented by a semi-infinite

tube of area S (fig 2). The volume velocity uN(t) in this tube can

be compounded of the forward and backward travelling waves u (t) and
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fig 2. Model with the artificial SN-section.



u;(t) respectively. u;(t) represents half of the glottal volume

velocity ug(t) [ Markel &_Gray,l976,p.7l]. If ug(t) = 0 in a certain
interval of time, then uN(t) is the flow through the glottal resistance.
Thus in fig 2 this flow is the diffracted part of the backward travelling

wave u;_l(t) in the S ,-section. The energy carried by this diffracted

wave represents the lgs; in the glottal resistance. The two limits

Zg= 0 and Zg=1w correspond to SN=”“=,uN=—1 and to SN= 09 UyN= 1 res-
pectively. In other words they correspond to a totally open and closed
tube ending at the glottal side respectively. In these cases there

is total reflection of waves at the glottis and there is no loss of
energy. Tubes with lossless terminations are referred to as lossless
tubes in this paper. Only the closed glottis model (uN=l) is of interest

as a lossless vocal tract model, for My is never valued below O.

According to Markel & Gray the function A(z) can be obtained with a

recurrence relation. This reads :

A(2) = A _(2) + u ez A (1/2) , m=1,2,..,N.
(4) AO(Z) = 1,
A(z) = AN(z) .

The functions Am(z) are polynomials in z-"1 of degree m, with real

coefficients. If a denote the coefficients of z * (i=0,1,2,..,m),
b

then z—m-Am(l/z) is obtained from A(z) by reversing the order of the
coefficients =

m

(5) 2"eA_(1/2) Bofnpeit?  » T1a2,e 00N .

Thus the recurrence relation (4) can also be written as

am,i = am_],i Um.am—l,m—i ,k1=1,2,..,m—1 3
(6)
am’0 = 1 3 am’m = oy o m=1,2,..,N.

According to the fundamental theorem of algebra A(z) can be factorized :

N d N
= Y L] _1 - - _1
(7) A(2) 1+ iglaN,i z iI=I](l z:2 ) .
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There is a one-to-one correspondence of the N zeros z; with the
prediction coefficients ay g (i=1%2, % IN)% 1As ay ; are real coefficients
g1 - i

s
the zeros either occur in complex conjugate pairs, or they are real.

The relation between the resonances and the zeros of the transfer function.

The vibrational modes of the vocal tract model can be derived from the

zeros z, of A(z) according to (App I) :

(8) z, = exp(—ﬂBkT +2ﬂjEkT) , 1i=1,2,..,N, k=1,2,..%
Every mode, or resonance, is characterized by the parameter-pair

(Fk’Bk)’ whére F denotes‘the k-th formant frequency ahd‘B its

k k
corresponding bandwidth. To every zero z; corresponds an infinite
series of resonances with equal bandwidths but with formant frequéﬁéies
which differ by integral multiples of 1/T from each other. This is the

result of the above-mentioned periodicity of H(jw) (see section 2.1).

Finally, in section 3 the following properties of the model are used,
They follow from the reasonable assumptions that no two formant

frequencies. are equal, and that uN> 0. ")
a. For even N the transfer function has no real zeros.

b. For odd N the transfer function has precisely. one real zero on the
the negative axis corresponding to a fixed formant frequency

F%(N+l) = 1/2T.

c. The N zeros zi that characterize the transfer function are determined
by N characteristic frequencies. These frequencies can be obtained
from measurement of the first [N/2] '') resonances. If N is odd

the bandwidth B is needed too.

[§/2] +1 = Biwén)

"

The proof of these properties is simple and is not given in

this paper. If the reader so wishes the author can send them .

'') [N/2] :=ENTIER(N/2) is the largest integer smaller than or equal to N/2,

i.e. its truncation.



2.4 Review

The linear prediction model provides us with an infinite series of
resonances (Fk’Bk)’ k=1,2,.. . These pairs can be derived from N
coefficients ay s of A(z), i=1,2,..,N with (7) and (8). On the

b
assumptions that no two formant frequencies are equal and that

>0, a can be derived from N measured frequencies by means of

U .
(g) and ?é; too. In these formulas the zeros 2y of A(z) are used. On
the other hand the set aN,i can be calculated from the reflection
coefficients Hy with (6). In their turn the reflection coefficients
are calculated from the section areas and the glottal resistance with

(3). The whole scheme is illustrated in fig 3.
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{(BJ[%N]J+1 }:{ z; )
if N odd)

{ Fk’Bk } &=

i=1,2,..,N, - ,
) A ——— : confirmed,
j = 172, o, [4N]

k=1,2,..,9. : to be confirmed.

.

fig 3. N-tube parameter relations.

From this figure it can be seen that all mappings are one-to-one

if the dotted arrow between {u.} and {aN i} holds. In the next section
1 s

we will examine the conditions necessary for the validity of the

dotted arrow.



ON THE RELATION BETWEEN THE REFLECTION COEFFICIENTS AND THE
COEFFICIENTS OF THE TRANSFER FUNCTION

In this section the recurrence relation (6) is used to prove that from

U, 4 -1 } for N = 2
(9) TRl B S
" J for N = 3,4,...
Ui+"1

(i=3,4,..,N)
it follows that the mapping

10) () - {agy) Geh2,. 0.

is one-~to-one, where N=1,2,..... .

Outline of the proof : first the cases N=1 and N=2 are considered (3.1).
For N=3,4,... (10) will be proved by the principle of mathematical
induction (3.2). For the sake of convenience we rewrite (6), omitting

the trivial terms a =1 .
m, 0

(11) a .J = a .+ oy , (m=1,2,..,N;

°a .
m,1 m-1,1 m m-],m-1

i=1,2,..,m-1)

The cases N =1 and N 2.

N=1. In (11) there is only one step to do, viz. m=1. Thus a, | = ul
bl

and (10) holds. There is no restrictive condition on the reflection

coefficient.

N=2. There are two recursive steps :

m=1 a]’]= Hy

m= 2 : a2’1= Ul'(l+U2) .
ok _
292 12

If u, = -1 the two equations (12) have one non-trivial solution for u
2 1

and u2.0n this condition a

9 iand My (i=1,2) detemine each other uniquely.
’



3.2 The case N > 2.

We use the principle of mathematical induction.

N=3. The first two recursive steps are similar to the case N=2

(see 3.1). With (12) the third step is realized :
2y 4 =ur(HmQ *UgtH, s
(13) 283 9 = Mgt () +uy

39 ~ By o

Inspection of these equations shows that they are only independent if

o F 1,-1
(14) 3
u2 + S

Thus with these restrictions there is a one-to-one relation

between 33,i and ui , 1=1,2,3.

N -1 = N. Consider an N-tube model which is restricted to (9).
This tube has a transfer function AN(z).‘From this we construct an
(N-1)-tube with transfer function AN_](z), omitting the glottal

section with area S_. The shorter tube can be looked upon as a vocal

N

tract model with glottal section S . For this tube (9) holds too

N-1
and the induction statement is according to formula (10) : ’

(15) { aN—] i } S { ui } s i=1929°-9N_1°

From (11) it follows that the transfer functions of the two tubes

are related by :

S R IR S T ETCRET R
a,y o Mo

and 1. being equal, they determine each other uniquely. It now
aN,N N

(16)

only remains to prove that there exists no other function A&_l(z)

with coefficients a . that gives the same coefficients ay in
N-1,1 sl
(16).



The mapping
B ST T3 PR At

is linear according to (16) and is exﬁ%ssed by N-1 homogeneous linear
equations. The mapping is only one-to-one if the determinant of the

matrix of coefficients is unequal to zero :

G P S UN
0 1 Uy 0
" 1 uN .
(17) : : + 0
‘ My 1 .
0 uN 1 0
uN Q ¢ ¢ ¢ 4 0 i

The form of the center of the matrix depends of whether N is even or
odd. In both cases we can see that (17) implies that Wy + 1,-1.

Thus putting aﬁ_] i into (16) under this restriction, we can only
b4 "

o
et ayos df Ay ¢ BT 4

This completes the proof.
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Note that u

N-TUBE MCDZLS RILATED TO THE LINEAR PREDICTION MODEL

Model with a resistive radiation load.

2 or more it is

For area functions with a mouth area S0 of 5 cm
rather the radiation load than the glottal resistance that is

responsible for the bandwidths, especially for those of the higher
formants (> 2 kHz) [Flaragan,1972,p.63] . The simplest model is a :
constant and resistive load Rr’ which .is the real part of Zr' Analogous
to the representation of the glottal termination in section 2.2 Rf can
be represented by 'a semi-infinite tube with cross-sectional area S_.=

1

pc/Rr connected to the S.~section (fig 4a). This tube only transmits

0
a wave travelling away from the lips, representing the loss of energy
in R_. In practice S_l >'SO. Between these sections a reflection

coefficients 1 is defined analogous to formula (3) :
(18) U, = -1 70 ,

O> 0. Formula (4) for the calcﬁlation of the transfer
function applies also to the model with hoth resistive glottis and
rac¢lation load. The index m has to be taken from O to N and the

initial ccnditicn becomes A ](z) =]

In Appendix 1I it is shown that N-tubes of this kind with oppogsitely

" ordered or cppositely signed reflection coefficients have. identical

volume velceity transfer functions (within 2 constant). So there are

four accustically equivalent tubes, which are characterized by :

3. (UO9U1‘°"UN) 3
b. (ué,u;,..,uﬁ) = (UN"”UI’UO) s

L PR
)

én (ué',ul seealy’

(-uo,—ul,.~,-uN) ,

Ter

SERTCT AL ST AL

(ligs= sy hg) s

As the coefficients with indices O and N have to be greater than zero

(see below form. (3) and (18)), the tubes c and d are not interesting

‘as vocel tract wodels. The change of sign makes these coefficients

negative.
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fig 4. Two N-tubes with oppositely ordered reflection coefficients.

Let us consider the tubes a and b with uN=1 (fig 4a and 4b). Tube a
with areas S—I’SO""SN is a 'resistive radiation load model' with no
glottal losses (SN=O). Tube b is a 'resistive glottis model' with no
radiational losses, as u6=1. The areas of tube b are the oppositely
ordered reciprocals of those of tube a : (Sil,Sb,..,Sﬁ) = (k/SN,..,k/SO,
k/S_l). Or S'(x) = k/S(L-x). k is an arbitrary constant of dimension
[length]*. This can be verified by formula (3), the definition of .
Model a is preferred by Wakita [1973] because of better results.

Model b has been used by Atal and Hanauer [1971]. The models are
identical in transfer function and reflection coefficients save for

their order. This accounts for and is in agreement with the comments



of Strube [1977,p.236] on the contradictory results af Atal and Wakita.
From the previous section we know that the area function and Zg can be
estimated from the transfer function if MN+ 1 in the resistive glottis
model. When the resistive radiation load model is preferred we only
need to place the reflection coefficients in the opposite order. In
this case a unique solution of the area function is guaranteed if

u0¥ 1 (or Rr+ 0). Atal [1970] posed this also in his San Diego talk.
In both cases the the total tube length and a reference area have to

be knqwn.

Model with both resistive glottis and radiation load.

Here the terminations at the glottal and mouth sides are represented
by two tubes having characteristic impedances Zg+ © and Rr+ 0
respectively, as we have seen in section 4.1. From the symmetry
property discussed in this section we know that the determination of
the reflection coefficients from the transfer function will lead to
at least two different sets of oppositely ordered coefficients. In
order to get a unique solution of the area function knowledge of

for instance M is needed, which is a function of SO and R_. Even

then uniquéness is not ensured, as it might happen that M= My and

then the order of the coefficients is not known.

There is no direct method for the calculetion of the area function
of this model. Iterative procedures or other techniques have to be
used. It is to be expected that the result of such a calculation
will be in between those obtained when the two models of the

previous sections are used.

More complicated models.

The radiation load Zr is in fact complex, and a function of frequency
[ Flanagan, 1972,p.36] . For models which include Zr and other details
of the sound transmission through the vocal tract, it is very
difficult or impossible to prove the one-to-one correspondence of
area function and transfer function. They are too complicated. Even
if it is proved for a certain model, it does not always make sense in

practice. For, two clearly different area functions can have transfer
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functions that are so close together that they cannot be

ditinguished experimentally [see Atal,1978 ; Strube,1977].

The lossless model.
We consider the case W= Wy T 1 and ui#=1 (i=1,2,..,N~1). This
corresponds to Rr= 0 and Zg= egi.e. the model is completely lossless.
From section 3 we know that the coefficients ay_.i are uniquely
’

determined by Hps Moo s tho oo because none of these reflection
coefficients is *1. From a . we get the coefficients ay of the

N—],l 51

transfer function with (16). The number of independent prediction
coefficients in A(z) is limited, because from (16) with UN=+I e

follows that :

(20) ay i = Y N-i i=1,2,..,N-1 .
. 9 b

From (20) it follows that for odd N (N-1)/2 values of the parameter
set aN,i’ (i=1,2,..,N) determine the whole set. For even N this
number is N/2. Combination of these cases gives ENTIER(N/2)=:[N/2]
independent parameters that determine the transfer function of a

lossless N-tube. The number of independent parameters that determine

the area function is twice as large, even if the length and a reference

area are kept constant. Every lossless N-tube is a member of an
ensemble with (N-1) - [N/2] = [4(N-1)] degrees of freedom, whose
elements all have the same frequency response, length and reference
area. From the symmetry property of section 4.1 we already know that
S(x) and S'(x) = k/S(L-x) belong to the same ensemble, as Ho= My
These conclusions are the same as those of Bonder [ 1979], found by

means of the so called N-tube formula.

The zeros z, of A(z) are on the unit circle. For both zi and l/zi

are zeros
N N " o
(21) A(zi) =0 e z -A(zi) = A(l/zi) =0 .

By (8) it is confirmed that the resonance bandwidths are zero.
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SUMMARY OF RESULTS

Most 1items of this paper are well-known to phoneticians who work with
the linear prediction model with energy losses in the glottal

resistance Zg and in the resistive radiation load Rr' We have verified
the cne-to-one correspondence of the parameter sets associated with

the model, especially of the reflection coefficients with the prediction
coefficients (see fig 2). This correspondence justifies the estimation
of the area function of the N-tube from the formant frequencies and
their corresponding bandwidths (or from the prediction coefficients).

The essential conditions are :

1. Either Zg#f“’and Rr= 0 (no radiative losses) or Zg= 0 and R{# O'(ﬁo.
glottal losses). An equivalent condition is : One of the two
reflection coefficients uo and “N is 1; the other one is smaller
than 1.

2. A reference area Sr is known. This might also be the area of

the artificial sect?in (representing Rr or Zg).
3. The length L of the tube is known.
4. The tube areas are finite.
5. the first [N/2] formant frequencies and their corresponding
bandwidths are known. For odd N also the i (N+1)-th bandwidth has to'bé
known. An equivalent condition is that the N coefficients of
the transfer function are known. These can'-be estimated from an

N-th order linear prediction of the (preemphasized) speech wave.

The completely lossless N-tube (Zg= “§Rr= 0). Every tube of this

kind is a member of an ensemble with [ {(N-1)] degrees of freedom,
whose elements all have the same formants, length and reference area.
The bandwidths ére zero. The transfer function is determined within

a constant by [N/2] independent parameters.
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APPENDIX I. On the general form of the transfer function of the N-tube model.

According to Flanagan [1972,p.26] the Laplace-transformed acoustic
pressure p and volume velocity u at each side of an N-tube section of

constant area Si are related by (fig 5a) :

ui(s) .} cosh(sf/c) B S1'31nh(s2,/c)
(A1) | = pe
‘pi(s) _ pcesinh(sf/c) cosh(si/c)
S

where i denotes the section number, counted from the lips, i=0,1,..,N-1,
2 is the section length and c¢ is the velocity of sound. Actually
Flanagan's model is more complicated. It deals with internal losses

in the tube. In the linear prediction model these losses are ignored.
(A1) is a simplified version of Flanagan's formula. When the tube
terminates in the glottal resistance Zg and in the constant resistive

radiation load Rr the boundary conditions become (see also fig 1) :

(A2) ug(s) = pg(s) Zg + uN_l(s) s u_](s) = p__l(s)/Rr ‘

ug(s) and ngs) are the glottal volume velocity source and glottal

pressure.
M.t . .
S section i-1 1¢ sectign 1-1
i l e
lsection i ! LffCtlon i .
pi (t) \J pi_] (i) ——’)u;(t) _.Ui_] (t)
I |
u.(t _ t — - o
(0 Iu (®) o —
i 1 i-1
L 24 \l_———- et GES > ama.
< x4
g b

Fig 5. Two equivalent descriptions of the acoustical

behaviour of a tube section.
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We continue to describe the model in terms of plane volume velocity
waves u' and u-, travelling in the positive and negative x-directions
respectively (fig 5b). Within a single section the waves are of constant
amplitude. The actual volume velocity u, is ‘the difference of the two
compounding volume velocities. The pressure P; is the sum of the two
pressure waves p and p , which are proportlonal to u+ and u_
respectively. The constant of proportionality is pc/Si, the

characteristic impedance of the section. Thus the transformation is :

+ - + -
(A3) u, =u +ug, p. = g?-(ui + ui) .
i
For the sake of readability the argument s is omitted. Putting (A3)
into (Al) with z = exp(24%s/c), the definition of the hyperbolic

functions and that of the reflection coefficients (3) gives :

+ 1 " +
ui‘ z% Vui {Yi-1

(A4) T = oy _
;% z Yi-1

The termination at the glottal and lip sides is represented by tubes

of area SN= pc/Zg and S_]= pc/Rr respectively (fig 6).

section N ke o 0 -1

l l {_L_ I

u§ L 0

UN ‘— \aa T u;}_‘ —u, (.__ u )
———//-—l
glottis T lips

Fig 6. The whole model in travelling wave notation, glottél

and radiative termination included.
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Execution of the N matrix multiplications gives :

+ +
N : M| [ pawen AR B ey
(43 . T:‘ ot e T o ol le 1
i=0 Mi|-wz o2 | |ul|  DQ#w) [C(2) D(z)

As there is no backward travelling wave in the S_l-section thi volume:
velocity at the lips is that of the forward travelling wave u_;- A and B
are polynomiais in z“1 of degree N, C and D are polynomials in z—l of
degree N+l1. As we know from section 2.2 the glottal volume ve10c1ty u

is twice the forward travelling wave entering the tube : ug= Zz uN

b

As there is no source at the front end u_] is set equal to zero and the

P . . + .
volume velocity at the lips is u_;- the transfer function can now be

The factor z*= exp(fs/c) results from the time difference of uN and ug.

written as @

+ + -3iN, _
(A6) L o R Sty = t. S i
a 22 EN;—- A(Z) const. A(z)

This is formula (2) in section 2.1.

In order to determine the resonmances of the system the zeros sk of H(s)

ar Tl a =
e written as Sk O

characteristic according to :

* jwk . Every vibrational mode k has an amplitude

G| = 8,5,/ ]Gu-s) Gors) | = 8,5,/ [w+ o®= 2jus, |
We define

: Fp =0 /2w, the resonance frequency
k

(A7)

B, = -ok/ﬂ, the resonance bandwidth.

For small losses (w >>ok) H(2'rer)k has its maximum at F and its -3dB-

point at F %B This can be verified by differentiating (A6).

Substltutlon of (A7) in the definition of s, and z gives :

k

(A8) z; = exp(—ﬂBkT +2WijT) , with T = 28/c .

This is formula (8) in section 2.3. z; is one of the zeros of A(z).
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APPENDIX II.N-tubes with equivalent transfer functions.

The next three theorems are valid for N-tubes as described by form. (AS5)
and (A6) in Appendix I. These tubes have a glottal reflection coefficient

My and a radiative one, Hg*

THEOREM 1. Two N-tubes with oppositely signed reflection coefficients

have within a constant identical transfer functions.

Proof. Let the two tubes be characterized by the reflection coefficients
(uo,ul,..,uN) and (ué,u;,..,uﬁ) = (—UO,-lﬁ,.., uN)..The following

general property of matrices is used :

e (it

This property can easily be verified by execution of the multiplications.

a -b

1R

-c d

Applying (A9) .to (A5). in App.I we get for the accented tube :

N T RO IO B
(A10) _h= E —
ol Ia-u) ey p(a u,

The resulting transfer function, obtained by putting u:;=0, is proportional
to 1/A(z), i.e. proportional to the transfer function of the original tube

(formula (A6)).

THEOREM 2. Two N-tubes with opbositely ordered areas have within a

constant identical transfer functions.

Proof. Let the area functions be (S—I’SO""SN) and (Sll,Sé,..S&) =
(SN,..,SO,S_]). Consider fig. 6. For reasons of symmetry it is allowed
to change the roles of glottis and lips. We imagine the lips at the

lefthand side, and “; is set equal to zero. The volume velocity at the

= =
lips is now W=z u_. z * is the correction for the time difference

N

between up and Uy The glottal source is put at the righthand side :

ug= 2u:]. The transfer function of this system can be found by inversion
of the transfer matrix in (A5). The determinant of this matrix is the

product of all partial matrices : AD-BC = g(]—u;)z_]. Thus :



_20_

+
u

-l' zé(N+l) D(z) —B(z? 0

(arn) | e,
(I=p) i ¥
o T e A fuy
The transfer function is within a constant proportional to that of the

original tube :

u _p u )
Wiy ke gl . =BT
g -1 1 i}

THEOREM 3. Two N-tubes with oppositely ordered reflection coefficients

have identical transfer functions.

proof. This case is a combination of the former two theorems. Putting the

reflection coefficients in the opposite order corresponds to putting the

reciprocals of the areas in the opposite direction (see p.12). This is

done in two steps :

1. Change of the order of the areas. According to theorem 2 the transfer
function is not affected by this change.

2. Inversion of the areas. This corresponds to a change of the sign of
the reflection coefficients (see formula (3)). According to theorem !
the transfer function is again conserved.

The product of the constants of proportionality is 1.

q.e.d.
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