FARADOXES ARCUND THE EXrONENTIAL HORN
Are they danger signais ?
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HENDRIK MOL for Gerold Ungeheuer

For the cadculucicon of slender ucoustic Tubes the equation of
¥
Webster ) is widely accepted. Adopting the velocity potential £ as
a means for deriving sound pressure p  and particle velocity u  in

the following way
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plx,t) = - p =& a(x,t) = == (1)
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where p is the density of the medium ,

we¢ have only to solve
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in order to kill twce birds with a stone.
"'or the exponeutial horn we shall study now, the cross-area

3(x) derends on x as followg
S(x) - Soe {3

Substitution of (3} in (2) yielas
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)A.G. Webster, Proc. Natl. Acad. Sci. (U.5.) 5, 275 - 282 ( 1919 )




The general solution of this equation cun be found by means of the

method of separating the variables x and ¢

gixyt) = gix)4{t)

where @ is a function only of x and ¢ Ccdepends only ocun t .
These two functicus can We found by suostitutiocn of (5) in  (4)
and taking into consideration the houndary conditions: 1inu other

words by specifying how the tube is loaded at both ends and by what

sound source it is heing driven.

' ngineeri ractice wne is not always interes in th vst
In engineerin Tice S H t ted in the most

P

general solution : t is customary to calculate and measure net-
works by seeing hcw they react to sinusoidal driviag forces. It is
a4 fact that, when a sinuscidal driving force is switched to & network,
the volteges and currents iu the meshee of that network will, in the
long run, that is in the steady stzte after the transient phernowmena
have dlied down at last, have tecome sirnwsoidal too. What poes for
electrical networks goes for acoustical networks too. So, if glx,t)

of (5) is o general sclution indeed, it aust of necessity hoid for

the steady sinusoidal state. In other words, for this state

g(x,t) $(x) sir wt (6)

or g(x,t) = @(x) cos wt (7)

H

or even, in the complex notatiocon

ﬁ<XQt} = fuf:(x) ngt

Substitution of (&) in (%) preduces a differeatial equation

in @{x)
2 2
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v#ith the gereral solution
b,x B.x
%) 2 Ay & + by e ” (10)
where A and & take care of the tourdary conditions and
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., and © are the roots of :



b + mb ¢ —— = 0 (11)
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v = (14)

ther combination of (&), (10), (12). (13) and (14) will finslly

result in the complete solution
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fix,t) = A€ ¢ + Ase € (15)
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Interesting enrough , this equatiecn vresents the steady sinusoidal state

as the superposition of two travelling waves running in opposite
directions:
wave 1, travelling at the speed v in the negative direction of x

wave 2, travelling at the speed v ir the pecsiitive direction of X.

Strange as it may seem for freyuercies szbove wo = %+ mc , the speed
v is supersonic

w >+ w c . Vi & =
For @ = 3 mc sy V= ®© .

Finally , for @ < 3 m ¢ there can be no wave propagation at all,

suggesting a low-frequency cut-ofi at wo = ¥tmec .

Seemingly , we are saddled with two paradoxes:
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*) We would, of course, have obtained exactly the same result if we

had announced , from the beginning,

g(x,t) = A g gt as the soclution of (4) for sirusoidal

vibrationse.
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arzdox 1 ( the supersonic »aradox ) : the zclintion for #(x,t)
'contains' two waves truvelling iu opposite directions
at a speed v > ¢ .

Paradox TI ( the breath-taking paradox ; : the travelling waves

are subieazt te a cnt-off freguency that prevents the

horn from trersmitiing the fregu

&

ncy & = O 4, that 1s a
constant air flow like the otreathsiream.
Whether we are alarmed by these paradoxes or aot dopends on

the view we adoont; when we take the vractical view we need not be

alarmed as we may argue that the supersonic waves are nothing but
shady character: in a mathematical shacow=-show: they do not ‘'exdist!
physically. In *this respect it is rewarding to cornsider the special
case of m =0 .

Por m = ¢ the exponential horn degenerates inte a tube with
congtant cross-~area, tuae well-known simple orgen pipe. In this case

the soluticn folds down to

LI G S ) jo (& - X
c c
Flx,t,) = Ase + Ae { 16 ) ,

agaiv the superpociticon of twe travelling waves, but now travelling
at the normal velocity of scund ¢ . This normal velocity makes
these waves look leazs cerspicuous and thsrefore less suspiciocus
tut, nevertheless,; they no net physically exist eitrner. There 1s 2o
reason 4 nowever , to discard the ¢legant mathematical possibility
oT deconmposing a stutionary weve-rattern into two fictitious waves
travelling in opposite directions. fe will Ye shown in a special
appendix ( cee page ¢ ) , the parndoxes do not prevent us from
deriving the gereral circuit parameters of the .exponeatial horn

seen as ar accustical four terminsl network. In additiorn, our sinus-
oidal steady state methed leads te exactly the same formants, in

the case of the exponential horu, as Ungehener's eigenvalue- method.
Practical considerations , however , should not sing us to sleep.

Therefore, we may ul:o adopt the view of fundamental criticisz and

ask curselves : why doegs application of Webster's equation in  the
exponential case lead to the supersonic paradox ; is this a chance
kit or is there sometning fundumentalliy wrong with Webster's enuation
that comes to the fore in a drematic way in the case of the exponen-

tial horn 7



I order to pave the wauyv to =z

shall first of all derive

way, see fig. 2 .
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application of the law

of continuity
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Derivation of W

Webster's hern eguation in

possinle answer tc this question

aoLter

horn equation.
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By subtrsctiag (47 ) from (16),

—-)
coataining (dx)“ , we see that, s

{17)

there escapes , again per urit of

(18)

at the same time neglecting ternms

eemingly, the disc produces , per
unit of time , the mass
d( Su )
ax (19).
Ox
Az creation of mass iz not sllowed the mass described by (12) has
been obtained at the cost of the density in the disc; per unit of
time the disc loses the mass
of
- n ~nom L -~ 5
a 5% dx (LO}
As {(19) must be equal to (20) we arrive at
o(Su) . QP
: = -5 o= 21
X R (21)
This egquation contalus the crux of @debster's method @ the
cross-area S has been elegantly inclvded in the partial
differential quotient, But how aboul the cost of elegance ?
Nebster's method dmplies that the veilccsity v 1is uniform over
the cross-area of the tube and , moireover , that the streamlines

enter and lesve the disc at right
explanation of how such a miracle
goings-on in tne disce. Webster ha
transforming the situaticn into w

The next traditional step is
(slightly different ) diusc in the
tains to virtual dizplacements of

tlacements along the streamlines.

meve under the influence of a force furnished by the

terence exerted on the encd surfaces. The surplus force

positive direction of ®

argies withoul offering

by

an

might be accomplished

s tempered with the streamlines,
caricature.

law to the

to apply the dynamic

right-hand figure. This law per-

the air particles, that is dis-
The thin cylinder is thought to
pressure dit-

in the

equals



Ny
- S =k dx (22)
0X
The product of mass and acceleration of the cylinder is equal to

%)

o (23)

G

PSS dx
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The dynamic law requires that (22) is equal to (23) , which leads to

%? = =P %% (2k)

We direct the attention o¢f the reader to the fact that in the
right-hand memvter there appears a total derivative.
Expression (24) is not a typical Webster invention because S
doet not appear in it. Nevertheless , sound pressure p 1is sup-
posed to be upiform over the cross-are¢a' S whereas the air
particles are supposed to move along streamlines that are paral-
lel to the x - axis. Ian other words, also the dynamic law is applied
to a caricature of the streamlines.

In order to be atle to formulate the adiabvatic law it is
supposed that the density p of the medium performs very small

variations around it rest value p_ in the following way

B m= po 8 (25)
The spall quantisy s dis ¢alled the c¢ondensation. The adiabatic
law says
P = ¢ & ' (26) .
.
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Now the scene is set for the derivation of Webster's equation.
Ve must take measures to ensure that we zrrive at a linear

differential equation. To begin with, we replace o by Po and

dp ds R —_— s
3t by ST in (21) , so that we obtain
a(Su) B c 05
po % = Sl SE (27)




The next ster is to linearize (24) by replacing the total
derivative of wu with respect to t by the partisl derivative,

In general, we have

Ou ou

= = —— )
du g At + = dx (28)
or

du  0u du 5

az = é-{ + (T;. 3 («.-9).

For the small velocities we meet in practice +the second term of

the right-band member of (29) muy be neglected. We then obtain

() du -
.b—).( = - pr) S-E (,‘o),
at the sage time replacing p by »p v

o
We are now in a position to introduce the velocity potential ¢

defined in the following manner

o -
P = - P, g (%1)
i e %&‘ (32).

Thig choice is based on the dynamic law (32) because when

we substitute (31) and (32) in  (3C) we find that

2 - /-) ’
O O 4 . %z
ol P B T indeed. (33)

By combining (26), {(27), (51) and (32) we easily arrive at

12( o 1 2
eoF o Sogmiel o L BE o g (34)
ax " S ©ox Ox c” ot” |

Here is Webster's horn egquation at last.



1t deacribes a loss-free , one-dimeasiornal model of the
gereral, sdiender acocustic tube, Tts derivation is the result
of an ldealization of the streumlines , followed Dby the usual
linearizatior. for small amplitudes.

When is 2 moael a gocd model, ir spite of the fact that
il does not [it physicael rveality 1in the tube to a T 2?2 The
snuwer depends on the criterion cone choovses for judging the
worthwhileness of xu certain mocdel. For paonctic applications
with a view to the vocai tract one is inclined to say that the
Webster model should produce the correct forssnts, taking for
granted one knows how to define and how to meacuces the formants.
In this respect n¢ high accuracy may be expected nor needed
as the speech code 1s hased on contrasts Dbetween formunts rather
rthan on absolute positicns of the formants. As far as T can judge
at the woment the Webster model is a workable model but this

does nol remove my grudge against  the supersonic paradoxs I am

toying with the idea , that it i5 the tampering with the strearlines

that 12 al the root of the supersconic paradox. This idea is
supported Ly the case c¢f the corical horn we shall elaporate to
some extent in the azppendix ( see page 13 J. Interestingly
erough , tne hypotaetics) travellirz waves in the conical horn
travel at the normal speed ¢, 1n zpite  of the fact that we

epply Wetster's horn equation.

iz B N & O X

1« The penerszl circuit parameters etc. of the exponentiasl horn.

We shall first of 211 combice (1) . (8)Y ane (10) which yields

N b, x box et
P= -0 = = - jwp (A1€ + Ay " Je (35)
. b, x b x St
o O @ 1 . & o ]
U= 3 Sg = 8 | Aque + A boe ] e (36

The reader will have noticed we have introduced the volume

velocity

63}
-
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The constants

of p and U

driving as well as

s0, we take the liberty to omit the factor

keeping well

that way p &nd

For the sake of simplicity

S0, for x =

Po

U

[o]

(38)

Solution of

18]

The next step iz to substitute

for x = 0 .
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tne character of

may be relatec to

the values

depernd on the way of

on the way of loading the horn. Before we do

in wmind to re-intrcauce it whenever necessary . In

compley amplitudes.

(40) ana (%1)

As,

relation between the

we s5hall not change their notation.

(40

{41)

in (35

in four ©pole

quantities

at the sending end zrd those at the receiving end, we put x = 1

the length of the

horn. We

then get, atter some elaboration

(42)

and (%6)

A
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things, te precict the bYehaviour of ( exponentizl ) horns in
cagcade.
It is possible to solve the volume vslocity U, din the moutlk
P

opering from (47) and (48) by introducing the radiation impedance

- o

Zl of the mcuth opening , defines as
= L9y
pl U] Z:. ( 9)
and the irternsal impedance Z0 of the throat defined as
- o YA
P,= ¢ ~U_ 2 {50)

where e represents the ' acousto-moteric force ' of the throat .

In phonetic practice, however, it is not necessary to go all the way.
There one goes to the exiremes of supposing Py = G in the mouth
opening snd T _ = 0 at the throat. Equation (4€) shows that these
aszumptions rake sense¢ only tor those frequencieg for which D = O .

As (Lk9) cleurly indicates these are the frequencies for which

b1 bl
2 1 - -
b ¢ - b &0 (31)
By finally arrive aut
=
ﬁ-— = o (5:”)

4

This is exactly thke seme forruls as reached vy means of the
eigenvalue method .‘)

It is dntereating lo rotice , that the paradoxal cut-off
frequency &¢,o- * m ¢ comes to the fore here as a rewl formant
as it obeys expression (52) .

For m = 0 . the case of the tuke with constsnt cross-area ,

(52) reduces to

cos as it c<hould do,

L]
C
-

wl . )
C;

Moreover, (52) is sencitive to the sign of m , also & necessary

property.

*)

Gerold Ungehever, Elererite einer akustischer Theorie der Vokal-

artikulation ( Gprinper-Verlag 1962 7,



2. The case of the conicsl horn.

In the ciuse of the conical norn

|

4 a x- (93)
so that Webster's equatlorn reduces to
?;294 2 op 1T 878 L
S0 o s S e BB g @ Sl
ox” x D ¢ ot
Note that the censtanl &  does not appesr in the wave equation.

For the steady sinusoidal state we tave

. PR ) L
d{x,t} - ?;-‘,.\)5" (f)‘))
leading to
42 L
[¥% o QE 9 =1
:]'.r."[ % A CL'
w Lk the solution
W 1
o Mo A" J (’T AL-_‘ o < |
“( Y ) -;n'- € + T € (‘),/) .
s¢ that
A G - A T )
. \ ! ¢
Blxot) 5 = - (585 .

& .t’— ——— . O

This eyuaticn again contfronts us wiln two ( fictitious )
waves travelling in opregite dirvectiovs but at the normszl speed ¢ .
¢ a

We must be very careful ir drawing our conclusions now Az

regards the tampering witb *he streamlines Webstar's model is ro
better for the conical howvn than for the exponentiul horn. {t leads,
however, to a wive eguation that produces a6 supersonic paradox.
This wave equation , Lv the way, inspires us with a better model

for the conicul hern: wancu we reploce the linecar variable x  in

(5%) wy the radizl variable r we get :




2 - ) 2
0 g . 2% . L2XE . o (59).
or r or e &t”

This is the well-known wave equation fer spherical waves unmarred by
the supersonic paradox. Th2 conical horn deserves a model Dbetter
than the Webster model: the spnericaul model with wave propagation
in radial directions and sphericsl wave fronts.

50, in my opinion we have learned the following lesson:
we ghoulcd adopt the model to the shupe of the horn and not, 1like
Wevster did, squeeze an arditrary shape 1into a fixed streamline

model.

3. Transformaticn of the supersonic paradox into & phase paradox.

Until riow w2 have written #(x,t) in the shape of formula
(15) , in that way creatir; the image of two waves travelling at
the ~ucersonic speea v . Moreover these waves are afflicted by
a paradoxal cut-off frequency . It is equally possidble , however ,

te arrange wave 1 and wave 2 1in the following marner

., W
—wnx =gx( =
wave 1 A & (60)
C
P B —
,'_ t
o2 2
3 W j W i q x
- ix( -~ — . - w( t - = )
pRich d J)\( e (.'? e ) Jw( s 4
wave 2 A€ € ’ g (61) ,
c
_—_..-_-__’-
imposing or us the image that the waves travel at the normal
velocity of sound ¢ but suffer from a strange phase angle
2 2!
w w" m
plo,w) = x (2 -\ [ %5 - %) (62)
¢ b

that depends on x and w .,
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The breath-taking paradox is still present because , as (60)
and ( 61) clearly show, below the frequency w,o= #mc no
wave propagation st the speed ¢ 1is possible either.

Introduction of the phase garadox does not remove the dif-
ficulties : it merely shifts them to auother domain. Nevertheless,
the phase paradox , allowing the wavec to travel at the speed c¢
gives us a better idnsight into the nature of , for instance ,

the twin~tube mcdel depicted 1in figure 4 .

speed ¢

P
P

R |
P |

speed c

phase
discontinuity

¥1I¢U0RE 5

_The -waves_ir the twin-tube model

Becsuse the tubes have o conutunt cross-area , in each of them
waves are alliowed to travel at the speed ¢ without experiencing
rhase troutles becansé} ss is apparent from (62} , =0 for m = O.
Whern we consider the twin-~tube as a unit , however, there is a
sudden step in the phase at the joint where both tubes meet. This
Places the twin-tule in the sam: class as the exponential Webster

N

model , it being understood that the pnase troulbles in the exponen-

tial horn are distributed continucusly along its length.

4. Or. the nature of the boundary conditious.

Tais finsl paragragh draws the attention 1o the necessity
of clearly dcfining the boundary conditions when one undertakes
to predict the charaocter of Lhe vibrations in a tube that is

supposed  to obey Webster's ( or znybody's ) horn equation.
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THE PASSIVE CASE
{no external excitation) leadinyg

to the eigenvalue method.
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FIGURE &

THE TRANSMISSION CACE
(external excitation) leacing to the

resonance frequencies .



To begin with, in any case the inter-faces with the outer world
at the positions x = 0 and x = 1 1rust be considered as pistons
that move to and fre in the openings, hindered by the external im-
pedances Zo and Zl.

When we sup®ose, as 1s shown in fig, 9, that one iimits oneself
to the case where the pistons are passively reacting merely to the
vibratione inside the tube, we have wilfully manceuvered ourselves
into an eigenvaluec problem. We then fiad that vibrations in the tuble
are exclusively possible in certain modes, namely, damped oscillations
at prescribed, discrete frequercies. In the special case that
Zo = o and Zl = 0 , these oscillations are undamped pure sines,
in that way giving rise to a sort of acoustic perpetuum mobile.

When, however, we consider the horn as a means for transmitting

energy from a loudspeaker membrane to a listener or from a throat to
the mouth opening, we have to calculate the situation depicted in
fig. 6.

When we now drive the horn from a sinusoidal source, seen either
as a constant velocity fed in parallel or as a constant pressure fed
in series with ZO , we are able to cazlculate , in the stationary
state, for instance , the velocity U in the mouth opening. We

1
then find that the amplitude of U recaches a maximum for certain

3
frequencies , the so-called resonance frequencies. The less damping
the system shows, the sharper these resonrances turn out to te. 1In
the special case that Zo = ® and Zl = U the rescnance fregquen-
cies fourd via the transmission method coincide with the discrete
natural frequencies found via the eigenvalue method. Moreover, in
this special case thae resonances turn cut to be 30 shurp that there
is zero amplitude for all frequeucice that differ from the resonance

frequencies.

The, mathematically speuking, legrl transmission method is not
to be blamed for the existence of the &upersonic paradox: this

parado» remains a typical comnsequence of Webster's equation.




