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P J' .. RADOXES AHOUND 'I'HE EXf'ONENTIAL iiORN 
t.r-o they danger sign<'\: f: ? 

by 

HENDHIK MOL f9r Gerold Ungeheuer 

For the calcul3tion of Hlendcr ucousLic tubes the equation of 
Webster�) iH widely accepted. Adopting the velocity potential ' ns 
a means for derivil1g sound prc.ssure p a.'1d particle velocity u in 
the followi.n� way 
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wht! re r is the densi.ty 
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Jn order to kill twc birds with a stone. 
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For the expooeutial horn we shall study now, the cro8o-area 
S(xJ depends on x as follows 

S(x) Ill). s � 0 
Substitution of (3) in (2) yields 
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. ) A.G. Webster, Proc. Natl. Acad. Sci. (U.S.) 5, 275 - 282 ( 1919 ) 
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The general solution of this equation C<,;JJ t� found by mean� of the 

met ho d of separating the variables x and t 

�(x,t) !:: cy(:x).(t) (5) 
where cp is a function Ollly of x t:l.lld • dept!nds ouly on t 
These two functions car; be four:d o··· 

,J suost.itution of (5) in (4) 
and taking i!; to con side i•;1tio!'J th;,; bouno.a:-:-r conditions: .in other 
wordi:; by s,e<)ci fying_how the tu":Je :is loaded .:i.t Poth enns a...'1d by what 
sound source it is being driven. 

In engineering practice one is not alw�ys interested in the most 
general solution : it is customary to calculn.te and me;:i.sure net­
works by seeing hew they rea�t to sinusoidal driving forces. It is 
a fact that, when a sinusoidal drlvin� fo�ce is switched to a network, 

the volteges and currents in the meshee of that network will, in the 
long run, that is in the steady ntatc �ftcr the transient phenomena 
have died down at last, have become .::driU..'30,i.dn.l too. What goes for 

elect.t"i c1ll net'#orks goc� for acoustic.CJ.l networl�s too. So, if ,ti(x,t) 
oj (5) is o ge:le::-ul solution indeed, il :m.t.1t o! necessity hold for 
the steady sinuso:i.d:il state. In other word;�) for this state 

or 
�(x,t} = �(x) sin wt 
�(x,t) = �(x) cos wt 

or even, in the complex notation 

�(x,t) ·wt m ( x) c:J ' 

(6) 
(7) 

(8) 

Substitution of (8) i.rt (L1) pro<lu1.er, a differential equatiou 
in <p(x) : 

l 
') ' 1·p O(P w· 

2 
+ m '!' cp -::. 0 

dx c:. dx r 
(9) 

wi. th the general 8olu t.:i.on 

<.p(x) = + ( 10) 

where A1 and A2 take care of tha t-oti.cda.ry conditions and 

b1 and o2 are the roots of 
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Let us, for the sake of simplicity, introduce the auxiliary velocity 

v = c 

2 2 m c 
4w2 

then combination of (8), (10), (12)� (13) and (14) 
result in the complete solution 

-tmx jll) (t + �) -lmx ja>( t 

f(x,t). 
v A2'� = A1 e £ + € 

.. v 'I .. 
wave 1 wave 2 

( 14) 

will fint:tlly 

- �) . ) v (15) 

� x 

Interes"!:j ng enough , this equati<:>n �resents the steady ::>inusoidal stat.� 

as the superposition of two travelling waves running in opposite 
directions: 

wave 1 ' travelling at the 

wave 2, travelling at the 
Strange <'.1.S it may seem for 
v is suEersonic 

u.• >trn c 
For w = t m c V :::: CD 

speed v in 
speed v i.n 

fre4uencit!s 

v > � 

the negative direction of x 
the positive dircct:i.on of x. 
abo-ve U) 0 :::: , '[ m c • the speed 

Finally , for w < -} m G there can be no wave propagation at all, 

suggesting a low-frequency cut-off at oo 0 :::: t m c 

Seemingly , we are saddled with two paradoxes: 

---------------------�-----------------------------------------------

*) We would, of course, have obtained exactly the same result if we 
had announced , from the beginning, 

as the sol�tion of (4) for sinusoidal 

vibrations. 



Paradox I ( the su_pe;·s0"1.L<: nar.::ido"<" ) = the so]ution for �(x,t) 

•contains• tw0 wave� tra�&ll1�g in opposit� directions 

at a speed v > � . 
Paradox II ( the breath-����n� parauox ) : the travelling waves 

&re sub��ct tc a cut-of: freque�cy that prevents the 
horn from trd�3mitting the frequency w = 0 , that is a 
constant air flow like the breathatream� 

Whether we are aL,rmeci hy these paradoxei:: or not doponds 011 
the view we adopt; whAn we take the Practical view we need not be 
alarmed as we may argu.e th1-tl: the ::::upersonic waves a.re nothing but 
ohady characters in ::.1. mathematical shaC.ow-show: they do not 'exist' 
physically. In thL, respect it is rcwa:.·ding to consider the special 

case of m = 0 
!"or r.i =- C the e.Y.:ponential horn der;:encrates into o. tube: with 

constant cross-area, t,'.1e well-known simple or1�ar:. pipe. In this case 
the solution folds down to 

.e\(x,t,} 

( t + x ) 
c 

jUl ( t - x ) 
c 

( 16 ) ' 

again the superpoeition of two t�avellj�� waves, but now travelling 

at the nor·mal veloci t.�- of ,_:;mwd c • 'f'hi�: normal veloci t;y makes 
the se wave"" look le:=::.;; cor.spicl:ou:s l<r11: thet· :fore le.ss suspicious 
but, neverthelesc, they no not p�y�ic��ly cxiat either. There is co 

re a.son , however 1 to ui[,c;nrrt tl.8 (.;1ef;n:t math•)r.nat:Lcal possibility 

of decomposing ;;i stut..ion<>ry WC-''C-}JCt:t.ern i�to two fjcti�ious waves 
travelling in oppo�itc djrcctionc. A� �ill be shown in a special 

appendix ( see page � ) , the par�ioxe� do not prevent us from 
deriving the general circuit para�etera of the e�ponential horn 
seen as ac acoustical four tarmi�al network- In addition, our sinus-
oiclal steady st ate methcd lendG to exactly the same formants, in 
the case of the expo:--.ent:ial horn, as Ungeheuer' s eigenvalue .. · method. 
Practical conRidcratjonn , however , should not sing us to sleep. 
'l,herefore, we mv.y t.il:::.o adopt tht) vie��f fundamental critici s:m. and 
ask ourselves : why doec application of Webster's equation in the 
exponential cas� lead to the supersonjc paradox ; is this a cha.nee 

hit or is there so�ething fundornentblly wronG with Webster's equation 
that comes to the fore .Lr1 a dr.u.n:.<.tl.c way in the ca.s0 of the exponen-
tial horn ? 



r. .. 

1 u order to pave the 7W.y to -. J:-Ot;,-,inlc ;mswer t.o thi o questio1;. we 

shall first of all tler:i vc W•!bntcr 's horn equation in r.he classical 
wRy, seL� fig. 2 • 

bS f,+-dl( hx 
s I 
, I � � 

OU . 
"<l u+-ox ---�x 

bx 

.:d,� 

" 

�pp�ication of the law 
o :·' cor.tinuit:,· 

u(Su) p /) x = 

applic�tion of the 
adi:::ib,'1.t:l.c luw 

p ::. c 

F I (i U :1 E 

,. ,, 

Deriv�tion of ����t�r's 
horn equ.:� ti on . 

s 

p 

application of the 
dyn3.l!lic law 

The &coustic calculations are haseG o� three laws. One of these , the 
law of continuity , ciel'.l0r.ds that in the r.orn no matter cru1 be created 
nor annihilated. It l::l cu s to?ra.ry to apply this principle to the thin 

disc depicted in the le ft-hand fieu.re. Per unit of time the following 
mass enters the surface ... 

;;:. o:..� the disc at right anglel; ( be <;a use of 
the one-dimensional strait jacket into which the problem is squeezed 
in the Web�ter method ) : 
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p u s (17) 

Through the S oS dx . + sx there escapes , ugain per unjL of 
time, the m1Jss 

( bu 
) 

( cS , ) p u �· - d.x: s + -c::x bx Ox 
By subtructine (17 from (16), nt th� G3me timr neglecting tern� 

".l 
cont.:dning (dx)'· , we see th<Jt, seern:i.ne-ly, the disc produces , per 
unit of time , tte maos 

o( Su ) p dx 
ox. 

( 19) . 

A� cre�tion cf mass is �ot olloweci tha mass described by (19) has 
been obta:i.ned at the co::.t of the density in the C.isc; per unit of 

time the disc loses the muse 

op dx St 

As (19) un;st be equal to (20) we a:--riv� ;.lt 

o(Su) 
P bx = - S Op '1 Et 

This equation cor.tailli:: the crux of .Veb;:;ter'i:: mot:-:od : the 
cross-il!'e:.t S has been cJ qpi<tly includP.d iri t�1e p:.irtial 

(20) 

(21) 

'Neb:;ter's method. :implies ihl�t th0 ,,._locity u is u_:;jform over 
the cross-area of the tube ,'lnd , m.01·eover , that the �;trE:amlines 
enter and leave the disc at right drc1es withouL offering an 
explanation o.f how such a mj.racle ;r.ib'ht te accomplished Ly 
e;oings-on L1 tne cii..;c. Webster hi:'_�; tc;.�.pe•I .;:d with tr1e utreamlines, 
transforming the situation ir?to <i. c.:.i.ri catur·e. 

·rhc next tr;,di tion;;,l step is to a.ppl;y the dynamic law to the 

(slightly di :·re rent ) di:;c in the rir;h t-hand. figure. This law per­
tains to virtual displacements of the air p3rticlPs, that is dis­
placements along the stree:.rr.lines. 'T'he thin cylinder is thought to 
move under the influence of a force furniuhcd by the pressure dif­
ference exerted oL the end surfacec. The surplu� force in the 

positive direction of x equals 



- S � dX bx 
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(22) 

The product of mass and acceleration of the cylinder is equal to 

du pS cx­dt (23) 

'l'he dynamic ·1aw require�> that (22) is eqt:.al to (23) , which leads to 

J (24) = 
riu -P dt 

We direct the attention of the render to the fact that in the 

right-hand mem�er there appears a total derivative. 

Expression (24) is not a typical Webster invention because S 
does not appear in it. Nevertheless t sound pressure p is sup­

posed to be uniform over the cross-area· S whereas the air 

�articl�s are supposed to move along streamlines that are paral­

lel to the x - axio. In other words, 8lco the dynamic law i5 applied 
to a caric�ture of the �treamlines. 

In order to be atle to formulate the adiabatic law �t is 

supposed that the density p of the medium performs very small 
variations around it redt valu� in the following way 

p = (25) 

The �rnBJl quantitJ s jG C3ll�d the condens�tion. The adiabatic 

law says 

p - (26) 

Now the scene is set for thn aerivation of Webster's equation. 
We must take measures to er.:;:;ure thet we e.rrive at a linear 
differential equation. 

bp bs 
St by St in ( 21) 

b(Su) 
Po 8x ' 

To begin with, we replace 

so that we obtain 

0s - s st 

p by p and 0 

(27) 
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The next step is to linearizc (24) by repla cin g the total 

derivative of u with reapect to t by the partial derivative. 

In general, we have 

du (')u dt ou dx = 

bt + ox (28) 

or 
d1J ou OU 
dt ::. 

St + (\x u (29). 

For the small velocitieo we meet in practice the second term of 
the right-hand member of (29) may be neglected. We then obtain 

op 
bx ::: 

at the same time replacing 

(30)' 

P by Po 
We are now in a poEitio� to introduce the velocity potential � 
defined in the followin� manner 

p (31) 

u (32). 

'l'hi.s choice il:i based 011 the dynami-:: law ( 3'.:'l) because· w:r.en 
we ::;u b:.; ti tute ( 31) and ()2) i:i (:.c) we f L1 cl tlw. L 

., 
o'·it 

= - po Sxet indeed. 

By combininG (26), (27), (j1) and (32) we eaoily arrive at 

1'/,.5 1 as 9i 1 02� 

0 � + ?. ot2 = 

bxc. s ox ox c 

Here is Webster's horn equation at last. 

(33) 

(34) 
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It da�cribcs a lotis-frce , one-dimensional model of �he 
general, ::;len<ler acoustic tube. J ts derivation L; the resi;l t 

of nn idealization of the streamlines , followed by the usual 
linearizatior. for small amplitudes. 

When is a mociel a �ood model, ir spite of the fact that 

it Joes not fit physic�l real�ty in lha t�be to a T? The 
';nt;wer depends o:n the criterion one ct:oo:::es for judging the 
worthwhileness of a certai:-i model. for p�rnncti c a.ppl i.c;,tions 

with a view to the voc�l tract one i� inclined to say that the 
W�bstcr modPl should produce the correct formants, taking for 

gr�ntPd one knows how to define and how to meaGure the formants. 

In this re::>pect no high uccuracy may be expected 110:- needed 

as l.he speech code is ))ilscd on contrasts between form::.iuts rather 

�han on absolute positions of tho forma�ts. A� fRr as T c&n judge 

at th� wom�n� the Webster model is a work�ble model but this 
do0s not remove my grud�e against the supersoni� paradox. I am 
toying with tl1e idea , that it i3 the lamp.:.:=-i.!1g with t.he :.;;trearcli:it::s 
th:.1t i, ;it the root of the supersonic paradox. 'ehi:.:; idea is 
.s·;..1pported by the c•�se cf the coc?ic,11 horn we sh<�ll elabor:1te to 

some extent in the appendix ( see page 13 ) .  In te re f;tj r1e;l y 
enougn , tnc hypotictic�l travellir� waves in the conical horn 
travel at the ncrm�l cpoed c 1 in spite of the fact that we 
<:ppl.y Webster 1 s h0rn €1.p.t<J.tion. 

LU 8 N ll [ x 

We ::.;halJ fi.r:�t of .::ill comlJin•· (1� . (f.) arm (10) which yields 

os6 b1,: b x jolt 
jWp ( A.1 c 

I A e ? J p =- - p ()t .:c - + r:: 2 (35) 

'09f b1x li ,X jl.!.Jt 
u ,.. s L A1b1e t1.,h�t:: ( ] =. ·� SY. ::: + E: (; ,-' (36) 

The reader will have noticed we have introduced the volume 
velocitv 

s u (37) 



10 

The co�stants A1 and A2 may be related lo the values 
or p and U for x = 0 • These values depe�d on the way of 
driving as well as on the w;..y of loading the horn. Be fore we do 

so, we take the liberty to oruit the factor 

iu>t E: u 

keeping well in mind to re-intr00.uce it whenever necessary • In 

thQt way p and U assume the character of complex amplitudes. 

For the sake of simplicity we shall not change their notation. 
So, for :x = 0 we have 

po = - jwp r LA1 + /,2] 

u .. s [A1b1 + A'.)b�] 0 0 c. c. (39) 

Solution of (38) and (39)" yiel<lG 

po u 0 b".l - + s ... jwp 0 
A.1 = 

b� b1 c. 

( l+O) 

po u 
b.., 0 + -

I jUlp s () 

A
2 

-:; ·---- (41) 
b b .. 

c:. I 

'l'he next step is to �ub�titute (40) und (1+1) in (35) cind ("56) 

at the some time omittinc the fnctor 
jwt t. • As, j n four pole 

theory, we are interested in the relation between the quantities 
nt the sending end :::nc� those a t  the rcce:i ving end, we put x :: 1 , 
the length of the horn. We then get, afte� some elaboration 

b11 l; 1 b11 b21 b2f: 
b ·1 f.: 

2 -
jillp e - E: u (42) P1 ::.. po + 

s 
0 

b
2 

- b1 0 b2 
- b

1 



u 0 

11 

b11 b_l b...,l b1l <:: � s \... e b1e "l €: - €: l ., 2 1J ( i.,3) u1 - j •upb1 b2 po + 
112 t s b_ b1 

C• - -
1 0 c: 

We may w�itc these two exvr0RsJonu a� follows , at the same time 
de fining the i::eneral circ1;_ i. t ,P<irame teri:; A , B , C and D : 

.1 D J• l) 
n u -- i) ! l ,, (44) 

u1 - - Cp + A u 0 0 (45) . 

It i::. c;.::;y to prove t.!'!at 
A D - B C (46) 

which prorerty :,llown u� to �>L1lve p and U from (44) �nd (45) as 0 0 
follows 

p 0 

u 0 

+ 

+ 

B U 1 

i) u1 
The�e ar8 th� well-known four-pole equations fo� sending from 
x .. 0 to x == l 

-------
--

. 

A L C i> 
l\D · rr· ..: 1 

------ / 

...a:: --- ·- 1 ---� 
,, X-U u 

0 

___ ,...,. ); 

, � BC D 
1 ,, -� �1\D -BC= 1 

direction of 8endl�g 

F I G U H E 3 
The (o�pone�tiul ) horn �e�� �s a 

four terminbl network. 

(47) 
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things, to pre dict the behaviour of ( exponential ) horns in 
cascatle. 

It is possible to solve th0 volume velocity U, in the mo�th 
..L 

opening fro� (47) and (48) by introdu�ing the rn� i ation impedance 

z1 of the mouth opening , defined as 

and the internal impedance Z of the throat·defined as 0 
p = e - U  Z 0 c 0 

where e represents the ' acousto-�otcric force ' of the throat • 

(50) 

In phonetic practice, however, it is not necessary to go all the way. 
There one goes to the 
opening ancl u -· 0 0 

extre�es of supposing 

at the throat. Equation 

p1 = 0 in the mouth 

(4e) shows thnt these 

assu�ptions make sense only for those frequencies for wnich D � 0 
As (4�) clearly indicates these are the frequencies for which 

0 - ( 51) 

By sutstitating (12) and (13) in (5�) we firw.lly arrive -..t 

v�·� 

,} 
2 \ I L <1)-rr. l t;ir: + -..: 

11 :-v 
<.. c 

., I 
' ::n 0 ( 5Z:) =-

�l 

This iG exactly tr.-:' ,;;un•"-' for:cul.•J as reach<�•:l 'oy met..ns of the 
eigenv&lue method . . ) 

It L� :bterestinp: t.o r.otj ce , that the par:�doxal cut-off 
frequency li' 0 comes to the fore here as a ree:il formant 
as it obeys expression (52) 

For m = 0 . the case of the tube with constant cross-area , 

(52) reduces to 

Wl cos -
c 

::. 0 as it �hould do. 

Moreover, (52) i� sensitiv� to the cign of m , also a necessary 

propet·ty • 

. ) 
Gerold Ungeheuer, E1err.e1;te einer airnstischer, 'J'heorie der Vokal-

artikular,ion ( t\prir:cer-VerJ c.g 1962 ) , 



2. The case of the conicDJ horn. 

In the C<•Se of the conic<il i-:.orn 

s 
�o th�t WebGtcr1$ equ�tioL reduces to 

02� 
.... � 1 2 .  1) 'I' 0 � + - � ? 

--
ox c. i'Jx ' x (• t"lt 

Not..• th<.:.t the COOf>t.3:1 L ::!. do'-lo>t; n ot apfe� r· in the 
1'�<Jr t.i1e steady :-:;inu:;oid·;l ntote we have 

�(x,t) 

leading to 

2 d -(£: i � - + - + ? 
(] y, ;( dx 

w:, l.h thf' solution 

j 
'l A1 -

er< ") c ._ -- € x 

0(;..,t) 
x 

') 
ui'-

� c:: :p ;;, 
c 

x A 2. 
.... -x 

)'. 

0 

c 
.u -,, - x c 

t - � ) c 

·--�C 

(53) 

( �/1) 

wave equation. 

(55) 

(56) 

( 5'/) ' 

( •;8) 

T1iis e4u.:>.tion .ig:::ti.ri co1i front:;; us wi L:-1 two ( fi.ct:i. t-i ou.-:; ) 
waves trr1vell i1J1Y ir oppcn1 Lt· direct1 or,� bJt at the norm;,} .>per.•d c 
Wt> rr.ut·.t be vE.ry c<J.rt: ful i r: drawiup- our conclu::;io.:H'; now ! •i.-:; 
r·egards thn tampPring wi l:r �h8 streamlines ·:Jebst<.�r· s model :ts r•o 
bett£>r for the conic-.::il liOl'O thi1t1 for thP. CXpOnE:nti;;.1 born. !t lead;:, 
hownver, to ri w��vc: eq1.1r.t:.i..on t.hat produc1'?�-; no supersoriic p:,.r:idox. 
rrihig wave' <::quutior! , L•r tru.' way, i.::1spireo us with a better model 
for the conic;..;l horn: when v1c� r.�pl.cice the linc<1r v;:;.duble x in 



+ .  2 op) 
= 0 {59 ) . 

r or 

This i s  t h e  w e l l -known w�ve equa tion for sphe r i c al waves unmarred by 

the supe r 3on i c  paradox . The coni cal h o rn d e serves a model be t te r  

than the We b n t e r  model : the spheri c�l model w i t h  wave propagation 
in rad ial dire ctio n �  and sphe r i c al wave fron t s .  

S o  1 i11 n: y  opi11:ion we have l t:: a r n e d  t he fol l ow i n l:';  1 0 sson : 

we ohoul d adopt the mo de l t o  t he sh& pe o f  t h e  horn a n �  no t ,  l ike 
Webster did ,  sque e ze .:in ar:-bi t r >1 r·y sh;;.pc i n to a fixed s treamline 
mo d e l .  

3 .  Tra n s forma t i o n  of  t h e  s u pe r son i c  para d o x  i n t o  a. phase paradox . 

U n t il r:ow we h a ve wd tten $1S ( x , t )  i n  the ::-;hape o f  formula 
( 1 5 )  , in t h a t  way cr� u t i r r  t h e  image o f  t wo W6ves t r ave l l ing a t  

Mor e o v e r  these wave s are a f fl i c te d  by 
a paradoxal c u t-o f f  freque n cy • I t  is equally pos sible , however , 
t c  ar range wnve 1 an d wave 2 i n  t h e  fol l o w i n g  ma� n e r  

? 2 
-:jx( 

u; 1!.l- lT. 
) j tll ( t+ : )  -·;rmx - - 2 c � c 

c 
wave 1 .4. , €  G c 

I 

c 

1 ui 2 
- �·mx jx ( (1) 

� )  jw ( x -
2 t - -

c h c c wave 2 A/: € £ 

c 

impo s in g  o n  us the j mage t h a t  the wave s t ravel at th� normal 
ve l o c i ty o f  sound c but suffer from n strange phase angle 

cp (x , w )  
U) x ( -c 

tha � depe n d s  on x and w • 

\ rz-
-v c � -

c? m 
4 

( 60 )  

( 6 1 ) 

{ 62 )  

' 
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'fhe breath- taki n g  paradox i s  ::;till present b e c a.u:se , a s  ( 60) 
a n d  ( 61 ) clearly Dho w ,  b e l ow t h e  fre que n cy lJ) = } m c no 0 
wave propagation a t  t h e  speed c is po ssible e i t h e r .  

I n t r o du c t i o n  o f  t h e  phn.se par::dox does n o t  !'emove the d i f­

ficul t i e s  : i t  merely shj f t s  t h c rr.  t o  w10 t h e r  do1:iain . Never thele ss , 

the phase par3dox , al.L ow i ng t h e  w a v e �  to travel � t  the speed c , 
gives u s  a be t te r  i n si gh t  i n t o  the nature o f  
the twi n - tube model d c pi c t c C:  i n  figure 4 

spe e d  c 
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_7-1.___ __ 

L phase 
d i s conttnu i t y  

F I G U R E 4 
.. Tl� ··WfiVf! s .. ir1 t- he twin-tube m o d e l  

Be c;;.use the tub e s  he<ve u. co n :; t..�.n t c r o ss-:i.rea 

for i n stance , 

in e a c h  o f  t h e m  
waves are allowe d t o  travP l at t h:  spe � d  c wi t h o u t  expe ri•:: n cing 

phase trou b l e s  be c ;.i.use , <;::; i �; n pparcn t from ( 6 2 )  , 'iJ ::: 0 for m = O .  
Whe n w e  consi d e r  the twin- tubu a 8  n uni t 1 howeve r ,  t h e r e  l E  a 
��u d d e n  ste-p in the phase a t  ih.:! j o i.. n t  where both tube c. me e t .  Thif, 
places t h e  t w i n - tube in the sum� c l ass as the e xpone n t i a l  Wcb�ter 
model , i t  b e i n g  un d e r s tood t h a t  t h e  piw.se t r o ut.l e s  .Ln the e xpone n­
tial h o rn are d i s t r ib u t e d  con tinuously along i ts len e t h .  

4 .  On the h ature o f  the boundary condi tioL s .  

Thi s f i n � l  p�ragraph d r aws the a t t e n tion t o  the n e cessity 

of c l e arly de f i n i n g  the boundary conditions w h e n  one un d e r takes 

to pre d i c t  the charr, c te t' o f  the vibrations in a tube that is 
cu ppoDc d to obey Weh s t e r ' �  ( or anybo dy ' s  ) ho rn e q�" tion . 
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T H E P A S S I V E C A S E 
( n o  external exci to.tier. }. leading 

to the e igenvalue me t h o d .  

zl 
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x=l I ,  

T H E T R A N S M I S S I 0 N C .� S E 
( e xternal exci tation ) leading to the 

re son an ce fre que ncies . 
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To begin with , i n  any case the inte r - faces with the out e r world 

at the po si t ion s x � 0 and x ::: l must be consi de re d as pi stons 

that move to •nd fro in t h e  openings , hin d e r e d  by the e x t e r n a l  im-

pedan c e s  z c an cl 
When we suppose , as i s  shown in !ig. 5 ,  that one timi t s  oneself 

to the case whe re the pistons are pnssivcly reacting me r e l y  to the 

v:i bratione inside the tube , we h ave w i l fully ruanoeuvered ourselve s 

i n to an eicre nvalue pr oblem . We then find that vibrations in the tube 

are exclusively po ssible in cer tain mode s ,  name l y ,  damped o s c i l lati o n s  

at prescribe d ,  di s cre te frequen cie s .  In the special case that 
Z0 = co and z1 ::: 0 , these o scillation s are undamped pure sine s ,  

in that way gi ving rise to a so r t  o f  a c o u stic perpe tuum ruobile . 

Whe n , howeve r ,  we consider the h o rn as a means for t r &nsmi t t ing 

en� rgy from a loud spe aker membrane to a l i st e n e r  or from a throat t o  
the mouth ope n i n g , we have t o  caiculate the Gi tuat io n depicted in 

fig. 6 .  
When we n o w  drive the horn from a sinusoidal sour c e , seen e i the r 

as a con s tan t velocity fed in pa,rallel or a s  a c o n s t a n t  pre s sure f e d  

in &er i e s  w i t h  Z , we a r e  able to calcul a te , i n  the sta tionary 0 
state , for in s t a n c .:  , the ve J o c i t y  u1 in the rr.ou t h  opening . We 
then find tha t the ampli tu d e  o f  u1 r e a c h .: 11  a maximum for cer tain 

fre quencies , the so-cal l e d  r e so n a n c e  f re q ue n c ie s .  'rhe less damping 

the systere sho w s ,  the sharper the se r e sonan c e &  turn ou t t o  be . 1n 
the spe c i a l  c a se that Z � � and Z - 0 the resonance freque n -

o 
'1 --

cie s fou&d via the transmission me thod coincide wi th the discre te 

natural freque n c i e s  found via the e i ge n value method. Moreover ,  in 

t h i s  spe ci al case the resonan c e s  turn o u t  t o  be so sharp that there 

i s  zero ampli tudE? for all freque n c i e s  tha t di f f  e r  from the re sonance 

frequenci e s .  

The , mathematic ally Epeakin g ,  legal transmissi on me thod i s  no t 

t o  be blamed for t h e  exis t e n cA of the sup e r son i c  paradox :  this 

parade� remains a typi cal consequence o f  Webste r ' s  e quat i on o 


