
Synthesising Chat Sessions

Caroline Foster

June 4, 2004

Abstract

Festival’s text-to-speech output was compared with
the that of the computer game Unreal Tournament
2004. Some simple techniques for alleviating imme-
diate tokenisation and pronounciation deficiencies
are outlined, along with an introduction to other
problems that were encountered during the inves-
tigation.

1 Introduction

Unreal Tournament 2004 is a networked multi-
player first person shooter. It has different game
formats (e.g. Capture The Flag, DeathMatch) that
encourage different levels and types of player inter-
action. In the Unreal Tournament 2004 environ-
ment, players can communicate with each other via
a chat client which synthesises user-entered text to
speech. This is particularly popular at the end of
the game when players no longer need their hands
for killing each other and can type friendly mes-
sages instead.

1.1 Requirements

Many abbreviations are used, since speed of output
is of prime importance. Emoticons are commonly
used :-). This results in a heavier burden on the
tokenising rules than for other types of text. The
Unreal software had built in support for common
gaming/chat abbreviations e.g.
gg → good game
lol → laughing out loud
:-) → smile.

however there is no functionality for adding ex-
tra abbreviations or redefining existing ones, you
are stuck with the ones the game already knows.
Gamers are not particularly eloquent and will of-

ten say the same things to each other e.g. many
will say ”good game” at the end of a game. Since
these are all spoken with the exactly the same into-
nation by the synthesiser this is funny at first but
soon sounds monotonous.

There are multiple speakers, often speaking in
different languages with foreign or unusual names.
Gamers will often spell their nickname with special
characters or digits substituted for letters e.g. ’@’
for ’a’, ’3’ for ’e’, etc. to help make it unique. The
Unreal software uses only an English voice. This
can have some comical effects on European servers
where conversations regularly include a mixture of
English, French, German and Dutch.

The text is also reproduced on-screen, so it is
not essential that every utterance be synthesised.
This is in contrast to the usual approach where it
is imperative that the message is spoken as it is
assumed that it is not available in any other form.
In particular; long sentences, urls, obscenities and
garbage text are probably best left unspoken. This
is something that the user may want to customise.

2 Customising Festival

The main Festival functionality is set up by the
Scheme file init.scm. This script by default looks
for a siteinit.scm local initialisation file containing
additional scripts to run at startup, and all cus-
tomisations were added to this file.

2.1 Abbreviations

To add abbreviations to Festival, they were defined
in a Scheme module and loaded at startup. This
module uses pattern matching to identify target
abbreviations and expands them to the full list of
words.

1



Many languages and domains have their own ab-
breviations e.g. in Dutch:
aub → alstublieft
ff → even.

so in practical terms is is impossible to cater for
every one. This raises the requirement for users
to have the ability to add their own abbreviations
to the system at runtime. For research purposes
this can be achieved by reloading the initialisation
script after making ay changes. For a real applica-
tion the abbreviations would preferably be stored in
a data object accessible at runtime by both the user
interface and the Tokeniser. A design of this type
would make it much easier to add domain-specific
abbreviation plugins.

2.2 Emoticons

It is difficult to know what to do with emoticons-
should they be spoken or should they affect the
intonation? A sophisticated system would try to
apply the emotion to the prosody, but the Unreal
chat client settles for replacing the emoticon with
a suitable word e.g.
:-) → smile.

Even taking this simplistic approach with Festi-
val, emoticons proved to be trickier to implement
than normal abbreviations. They are typically con-
structed only from punctuation marks and so pro-
nounciation rules dictate they are not required to
be spoken at all. This means that they are not
passed on to the tokenisation rules and so adding
extra rules for emoticons initially had no effect. To
identify the emoticon it it necessary to redefine the
set of punctuation characters to exclude those used
to build the emoticon.

2.3 Unknown Words

Foreign or unusual words can be added to the lex-
icon to correct mispronounciation. This does have
the advantage that they can be added at runtime,
but a disadvantage is that it only applies to the
lexicon in use - a switch to another voice may re-
quire adding the entry again. Also, the word must
be converted into the phonetic components and this
requires some knowledge of the voice, phoneset and
lexicon currently in use.

For this investigation the oald lexicon and the
mrpa phoneset were used. Entries were tested with

the don diphone voice, but they should also work
with any voice using the oald lexicon, e.g. the
rab diphone voice.

2.4 Intonation

Chat messages are usually short and to the point,
so the Simple intonation module was selected. This
method lives up to its name by simply stressing
all content words. Since chat messages tend to
be short and high in content words this makes
them sound like exclamations which seems to give
the right effect. By contrast the ToBI intonation
method sounded more serious.

3 Further Problems

3.1 Multiple Languages

In dealing with multi-user chat sessions it is not
valid to assume that everyone is speaking the same
language, let alone that is is English. Ideally the
chat system will detect the language of the text
and choose an appropriate voice before attempting
to synthesise it. Festival does not offer support for
language selection, although this could be added as
an extension.

Switching voices is relatively time-consuming,
and in multi user sessions the language may change
frequently. It is also likely that a speaker will use
different languages depending on the language of
the other users, and may switch between languages
during a session or even a single post.

Taking this a step further, it should be possible
to identify the speaker and choose a custom voice
and/or speaking style to suit. SABLE markup sup-
ports the selection of different speaking voices and
a text mode for SABLE is provided with Festival.
The chat logs provided by e.g. Trillian1 provide the
username followed by a colon at the start of every
line which makes it easy to identify the speaker. A
new text mode could be defined to synthesise the
chat logs by switching voices to identify the differ-
ent speakers.

1a popular instant messaging client

2



3.2 Bad Input

Often in chat sessions people type fast and make
lots of errors; it is irritating to the listener if all of
these errors are spelled out. Many of these errors
could be rectified by running the text through a
spell-checking module before passing it on to the
synthesiser.

4 Evaluation

Festival deals well with some repetition e.e haha-
hahaha which is said very fast and actually does
sound a bit like laughing. Adding one or more ?
marks to phrases that would otherwise not be a
question (e.g. it is where) does change the intona-
tion, but adding any to an existing question (e.g.
where is it) does not.

The Unreal software did not deal well with long
urls or techniques used for emphasis e.g. surround-
ing text by dashes. In the best cases the symbol was
simply ignored, in the worst cases the next word
was not recognised and was spelled out instead of
being said as a word. Festival correctly tokenised
the ”gg” as ”good game” in both –gg– and *gg*.
The dash is defined as non-spoken punctuation in
the lexicon so was not spoken. The asterisk was
said as ”asterisk”, also as defined in the lexicon.

All changes to Festival were tested using the
don diphone voice. The quality of the speech gen-
erated was deemed to be better than the Unreal
software, particularly regarding the intonation.

5 Conclusion

Unreal also offers support for VoIP and this is in-
creasingly being used for tactical in-game commu-
nication between team members.2 The limitations
of real-time TTS are too great for this demanding
user environment and as a practical tool it is likely
to be eclipsed by the growing availability of VoIP
systems.

2regular players form clans and play in leagues so team
tactics are important

3


	Introduction
	Requirements

	Customising Festival
	Abbreviations
	Emoticons
	Unknown Words
	Intonation

	Further Problems
	Multiple Languages
	Bad Input

	Evaluation
	Conclusion

