

Amsterdam Center for Language and Communication ACLC

Timing of urntaking

Timing of Turntaking: Early Responses and Use of Intonation in an Elicited Minimal Response Task

Wieneke Wesseling Rob van Son

ACLC Phonetic Sciences University of Amsterdam

Dag van de Fonetiek 2005

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

Introduction: Motivation

In understanding language, different sources of information are used:

- syntactic information
- semantic information
- visual cues (e.g. gaze direction, gestures)
- prosodic information (loudness, duration, tempo, pauses, pitch)

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

Main Question: What is their relative importance?

Introduction: Motivation

In understanding language, different sources of information are used:

- syntactic information
- semantic information
- visual cues (e.g. gaze direction, gestures)
- prosodic information (loudness, duration, tempo, pauses, pitch)

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

Main Question: What is their relative importance?

Introduction: Task

Minimal Response Task:

Identification of TRP's in Dialogue

- Reaction Time (RT) task
- Identify when to start speaking
- by saying 'AH'
- more 'natural' task than pushing button
- responses recorded with laryngograph

Assumption: at this point there is recognition of (at least part of) the previous utterance

Introduction: Questions

Timing of urntaking

Questions adressed in this talk:

- Is intonation enough for TRP projection?
- How is the use of intonation integrated with other sources of information?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

What do we know about the time course of TRP projection?

Introduction: Questions

Timing of urntaking

Questions adressed in this talk:

- Is intonation enough for TRP projection?
- How is the use of intonation integrated with other sources of information?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

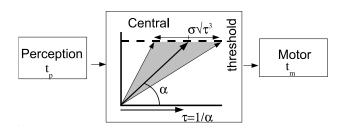
What do we know about the time course of TRP projection?

Introduction: Questions

Timing of urntaking

Questions adressed in this talk:

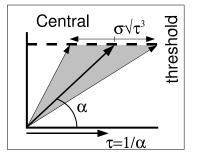
- Is intonation enough for TRP projection?
- How is the use of intonation integrated with other sources of information?


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• What do we know about the time course of TRP projection?

Introduction: Reaction-Time Model Sigman & Dehaene (2005)

Timing of urntaking



Three temporal stages in Reactions to Stimuli:

- Perceptual component (P) and Motor component (M), both with deterministic response-times (t_p and t_m)
- Central **decision making component** (*C*) characterized by a random walk to a decision threshold

• Mean Reaction Time:
$$\overline{RT} = t_0 + \tau$$

Introduction: Timing in PCM-model

Relative integration time to decision, τ , can be determined from the relative **variances** of the Reaction Times

$$\frac{\tau_1}{\tau_2} = \sqrt[3]{\frac{S_1^2}{S_2^2}}$$

with
$$(S^2 = variance)$$

◆□▶ ◆舂▶ ◆恵▶ ◆恵▶ → 恵 → の々で

Experiment: Materials

Full Set

- 61 dialogues from CGN, telephone & face-to-face
- informal and spontaneous
- orthography, hand aligned on word level
- extra transcription on turn switches and minimal responses

Stimulus Set

- 7 telephone & 11 face-to-face dialogues (165 minutes)
- for each utterance: boundary tones are estimated as

 $Z_i > 0.2 \longrightarrow \text{high boundary tone}$ $-0.5 \le Z_i \le 0.2 \longrightarrow \text{mid boundary tone}$

 \longrightarrow low boundary tone

$$(Z_i = \frac{\overline{F}_0 - F_0}{sd(F_0)})$$

Experiment: Materials

Full Set

- 61 dialogues from CGN, telephone & face-to-face
- informal and spontaneous
- orthography, hand aligned on word level
- extra transcription on turn switches and minimal responses

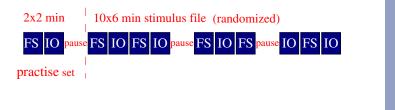
Stimulus Set

- 7 telephone & 11 face-to-face dialogues (165 minutes)
- for each utterance: boundary tones are estimated as

 $Z_i > 0.2 \longrightarrow \text{high boundary tone}$ $-0.5 \le Z_i \le 0.2 \longrightarrow \text{mid boundary tone}$ $Z_i < -0.5 \longrightarrow \text{low boundary tone}$

$$(Z_i = rac{\overline{F}_0 - F_0}{sd(F_0)})$$

Timing of Furntaking


▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Experiment: Stimuli

Two sets of stimulus files:

- **FS** Full Speech
- IO Intonation Only: nothing but intonation and pause structure

resynthesized as reiterated 'UH' sequences with the original pitch contour

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

Experiment: Recording Setup

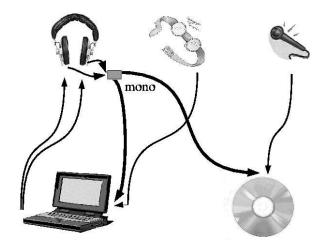
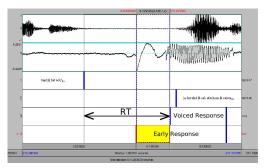
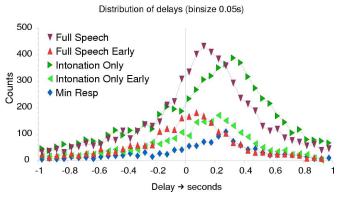



Figure: Response recording from laryngograph and microphone

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

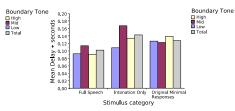
Experiment: Recordings Example response waveform and segmentation

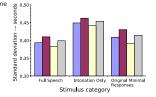

Timing of urntaking

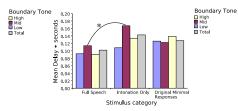
- Top: Mono waveform of the stimulus
- Center: Laryngograph signal of a single response
- Bottom: Annotation tiers for the two speakers and the automatic segmentation of a *voiced* and *early response*.
- Intervals: The two classes of response delays and their difference in color

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

• Number of responses: FS/IO 6084/6575 (Early: 2349/2377)

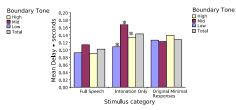

Results: Distribution of Reaction-Time Delays


- Response counts are already increasing before end of utterance
 → Projection of TRPs takes place.
- Delays are shorter for *Full Speech* stimuli (But note similar shape!)



- Intonation Only stimuli get
 For all boundaries tones,
- in *Intonation Only* stimuli, No differences between

イロト 不得 トイヨト イヨト 三日


- Intonation Only stimuli get longer delays for mid tone endings.
- in *Intonation Only* stimuli, No differences between

- Standard deviation -0.00 0.20 0.20 Full Speech Intonation Only Original Minimal Responses Stimulus category • For all boundaries tones.

spuopes 0.45

0.40

- Intonation Only stimuli get longer delays for mid tone endings.
- in *Intonation Only* stimuli, mid tone endings have longer delays than low and high tone endings.
- For all boundaries tones.

イロト 不得 トイヨト イヨト 三日

Intonation Only Original Minimal

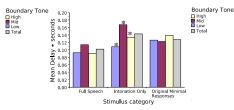
Stimulus category

Responses

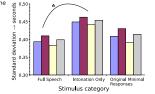
No differences between

Full Speech

spuose 0.45


Standard deviation -0.00 0.32

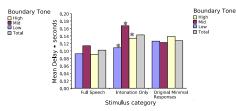
0.40


*: p < 0.01

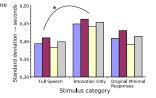
Timing of urntaking

- Intonation Only stimuli get longer delays for mid tone endings.
- in *Intonation Only* stimuli, mid tone endings have longer delays than low and high tone endings.

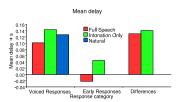
• For all boundaries tones, more variance for *Intonation Only* responses


イロト 不得 トイヨト イヨト 三日

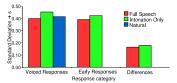
 No differences between boundary tones


*: p < 0.01

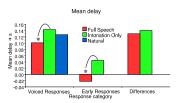
Timing of urntaking



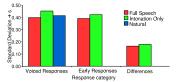
- Intonation Only stimuli get longer delays for mid tone endings.
- in *Intonation Only* stimuli, mid tone endings have longer delays than low and high tone endings.


- For all boundaries tones, more variance for *Intonation Only* responses
- No differences between boundary tones

*: p < 0.01

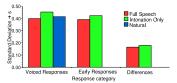

- NB: *Early* & *voiced* resp. differ by construction!
- Mean delays for *FS* are shorter than those for *IO* for both *voiced* and *early responses*.
- The mean delay of the difference RT is also longer for *IO* stimuli.

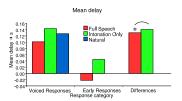
Standard Deviation


- More variance in responses to *IO* stimuli for both voiced and early responses.
- No difference in variance of the difference RTs.
- The variance of the difference Rts was much lower than the variance of the *voiced* and *early* RTs.

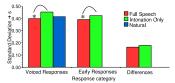
- NB: *Early* & *voiced* resp. differ by construction!
- Mean delays for *FS* are shorter than those for *IO* for both *voiced* and *early responses*.
- The mean delay of the difference RT is also longer for *IO* stimuli.

Standard Deviation

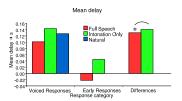

- More variance in responses to *IO* stimuli for both voiced and early responses.
- No difference in variance of the difference RTs.
- The variance of the difference Rts was much lower than the variance of the *voiced* and *early* RTs.


- NB: *Early* & *voiced* resp. differ by construction!
- Mean delays for *FS* are shorter than those for *IO* for both *voiced* and *early responses*.
- The mean delay of the difference RT is also longer for *IO* stimuli.

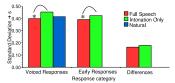
Standard Deviation


- More variance in responses to IO stimuli for both voiced and early responses.
- No difference in variance of the difference RTs.
- The variance of the difference Rts was much lower than the variance of the *voiced* and *early* RTs.

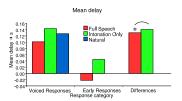
- NB: *Early* & *voiced* resp. differ by construction!
- Mean delays for *FS* are shorter than those for *IO* for both *voiced* and *early responses*.
- The mean delay of the difference RT is also longer for *IO* stimuli.


Standard Deviation

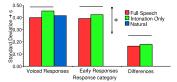
- More variance in responses to *IO* stimuli for both *voiced* and *early responses*.
- No difference in variance of the difference RTs.
- The variance of the difference Rts was much lower than the variance of the *voiced* and *early* RTs.


イロト イタト イヨト イヨト 一日

- NB: *Early* & *voiced* resp. differ by construction!
- Mean delays for *FS* are shorter than those for *IO* for both *voiced* and *early responses*.
- The mean delay of the difference RT is also longer for *IO* stimuli.


Standard Deviation

- More variance in responses to *IO* stimuli for both *voiced* and *early responses*.
- No difference in variance of the difference RTs.
- The variance of the difference Rts was much lower than the variance of the *voiced* and *early* RTs.


イロト イタト イヨト イヨト 一日

- NB: *Early* & *voiced* resp. differ by construction!
- Mean delays for *FS* are shorter than those for *IO* for both *voiced* and *early responses*.
- The mean delay of the difference RT is also longer for *IO* stimuli.

Standard Deviation

- More variance in responses to *IO* stimuli for both voiced and early responses.
- No difference in variance of the difference RTs.
- The variance of the difference Rts was much lower than the variance of the *voiced* and *early* RTs.

First question:

• Is intonation enough for TRP projection?

Timing of urntaking

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

First question:

- Is intonation enough for TRP projection?
- Intonation Only responses are delayed for mid tone endings) & they have more variance.

Timing of urntaking

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

First question:

- Is intonation enough for TRP projection?
- Intonation Only responses are delayed for mid tone endings) & they have more variance.
- Still faster than most latencies for shadowing tasks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

First question:

- Is intonation enough for TRP projection?
- Intonation Only responses are delayed for mid tone endings) & they have more variance.
- Still faster than most latencies for shadowing tasks
- Rapid responses + effect of boundary tones rule out that subjects reacted to the utterance ends themselves.

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

First question:

- Is intonation enough for TRP projection?
- Intonation Only responses are delayed for mid tone endings) & they have more variance.
- Still faster than most latencies for shadowing tasks
- Rapid responses + effect of boundary tones rule out that subjects reacted to the utterance ends themselves.

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

→ Mid tones: subjects have to wait for the pause.

First question:

- Is intonation enough for TRP projection?
- Intonation Only responses are delayed for mid tone endings) & they have more variance.
- Still faster than most latencies for shadowing tasks
- Rapid responses + effect of boundary tones rule out that subjects reacted to the utterance ends themselves.
 - → Mid tones: subjects have to wait for the pause.
 → Intonation into a high or low boundary tone is sufficient to predict an upcoming utterance end, at least some of the time.

Second question:

• How is the use of intonation integrated with other sources of information?

- Both boundary tones and verbal and prosodic information help TRP projection (reduced delays)
- The difference between voiced and early responses was not affected by the stimulus-type
- Intonation Only stimuli mostly affect early integration-times, not the timing after early responses.

 → There seems to be a perceptual, P, type of delay.
 → Removing everything but intonation & pauses increases the integration time with around 10 ± 1.3 %

Second question:

- How is the use of intonation integrated with other sources of information?
- Both boundary tones and verbal and prosodic information help TRP projection (reduced delays)
- The difference between *voiced* and *early responses* was not affected by the stimulus-type
- Intonation Only stimuli mostly affect early integration-times, not the timing after early responses.

 → There seems to be a perceptual, P, type of delay.
 → Removing everything but intonation & pauses increases the integration time with around 10 ± 1.3 %

イロト 不得 トイヨト イヨト 二日

Second question:

- How is the use of intonation integrated with other sources of information?
- Both boundary tones and verbal and prosodic information help TRP projection (reduced delays)
- The difference between *voiced* and *early responses* was not affected by the stimulus-type
- Intonation Only stimuli mostly affect early integration-times, not the timing after early responses.

→ There seems to be a perceptual, P, type of delay.
→ Removing everything but intonation & pauses increases the integration time with around 10 ± 1.3 %

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

Second question:

- How is the use of intonation integrated with other sources of information?
- Both boundary tones and verbal and prosodic information help TRP projection (reduced delays)
- The difference between *voiced* and *early responses* was not affected by the stimulus-type
- Intonation Only stimuli mostly affect early integration-times, not the timing after early responses.
 - → There seems to be a perceptual, P, type of delay.
 → Removing everything but intonation & pauses increases the integration time with around 10 ± 1.3 %

Discussion: Integration of Intonation

Second question:

- How is the use of intonation integrated with other sources of information?
- Both boundary tones and verbal and prosodic information help TRP projection (reduced delays)
- The difference between *voiced* and *early responses* was not affected by the stimulus-type
- Intonation Only stimuli mostly affect early integration-times, not the timing after early responses.

→ There seems to be a perceptual, P, type of delay.
 → Removing everything but intonation & pauses increases the integration time with around 10 ± 1.3 %

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

Discussion: Integration of Intonation

Second question:

- How is the use of intonation integrated with other sources of information?
- Both boundary tones and verbal and prosodic information help TRP projection (reduced delays)
- The difference between *voiced* and *early responses* was not affected by the stimulus-type
- Intonation Only stimuli mostly affect early integration-times, not the timing after early responses.
 - → There seems to be a perceptual, *P*, type of delay. → Removing everything but intonation & pauses increases the integration time with around $10 \pm 1.3 \%$

Third question:

- What do we know about the time course of TRP projection?
- We can determine the relative amounts of (integration) time for early and voiced responses $\frac{T_{diff}}{T_{mark}} \approx 0.55$
- Early integration time τ_{early} is about 2 × difference integration time τ_{diff}
- $\tau_{voiced} = \tau_{early} + \tau_{diff} \Leftrightarrow \tau_{diff} = RT_{voiced} RT_{early}$

→ With a t₀ of ≥50 ms under the most favorable circumstances (shadowing tasks) we can conclude that planning (elicited) minimal responses starts more than 300 ms before the actual utterance end (TRP).

Third question:

- What do we know about the time course of TRP projection?
- We can determine the relative amounts of (integration) time for early and voiced responses $\frac{\tau_{diff}}{\tau_{early}} \approx 0.55$
- Early integration time τ_{early} is about 2 × difference integration time τ_{diff}
- $\tau_{\text{voiced}} = \tau_{\text{early}} + \tau_{\text{diff}} \Leftrightarrow \tau_{\text{diff}} = RT_{\text{voiced}} RT_{\text{early}}$

→ With a t₀ of ≥50 ms under the most favorable circumstances (shadowing tasks) we can conclude that planning (elicited) minimal responses starts more than 300 ms before the actual utterance end (TRP).

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

Third question:

- What do we know about the time course of TRP projection?
- We can determine the relative amounts of (integration) time for early and voiced responses $\frac{\tau_{diff}}{\tau_{early}} \approx 0.55$
- Early integration time $\tau_{\it early}$ is about 2 × difference integration time $\tau_{\it diff}$
- $\tau_{\text{voiced}} = \tau_{\text{early}} + \tau_{\text{diff}} \Leftrightarrow \tau_{\text{diff}} = RT_{\text{voiced}} RT_{\text{early}}$

→ With a t₀ of ≥50 ms under the most favorable circumstances (shadowing tasks) we can conclude that planning (elicited) minimal responses starts more than 300 ms before the actual utterance end (TRP).

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

Third question:

- What do we know about the time course of TRP projection?
- We can determine the relative amounts of (integration) time for early and voiced responses $\frac{\tau_{diff}}{\tau_{early}} \approx 0.55$
- Early integration time $\tau_{\it early}$ is about 2 × difference integration time $\tau_{\it diff}$
- $\tau_{voiced} = \tau_{early} + \tau_{diff} \Leftrightarrow \tau_{diff} = RT_{voiced} RT_{early}$

→ With a t_0 of \geq 50 ms under the most favorable circumstances (shadowing tasks) we can conclude that planning (elicited) minimal responses starts more than 300 ms before the actual utterance end (TRP).

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらぐ

Third question:

- What do we know about the time course of TRP projection?
- We can determine the relative amounts of (integration) time for early and voiced responses $\frac{\tau_{diff}}{\tau_{rankle}} \approx 0.55$
- Early integration time $\tau_{\it early}$ is about 2 × difference integration time $\tau_{\it diff}$
- $\tau_{voiced} = \tau_{early} + \tau_{diff} \Leftrightarrow \tau_{diff} = RT_{voiced} RT_{early}$

→ With a t_0 of \geq 50 ms under the most favorable circumstances (shadowing tasks) we can conclude that planning (elicited) minimal responses starts more than 300 ms before the actual utterance end (TRP).

Conclusions

- End-intonation sufficient cue for upcoming TRP in *intonation only* stimuli, but: more time is needed to predict an utterance end
- Subjects can predict an upcoming TRP from *high* or *low* boundary tones
- but, most likely, have to wait until they perceive the end of the utterance (pause) in *mid* boundary tone *intonation only* stimuli
- The articulation of elicited minimal responses has at least one intermediate stage, visible as an articulatory preparation step.
- Planning (elicited) minimal responses starts more than 300 ms before the utterance end (TRP).

Thank you!

Timing of urntaking

Sigman M., Dehaene S., "Parsing a Cognitive Task: A Characterization of the Mind's Bottleneck", PLoS Biology 3, e37, 2005.

◆□▶ ◆舂▶ ◆恵▶ ◆恵▶ → 恵 → の々で

Probability of a random walk crossing a threshold for the first time at time *t*:

$$g(t) = \frac{1}{\sigma \cdot \sqrt{2\pi \cdot (t-t_0)^3}} \cdot exp\left(-\frac{(1-\alpha \cdot (t-t_0))^2}{2 \cdot \sigma^2 (t-t_0)}\right) \quad (1)$$

Mean Reaction Time: Variation of Reaction Time:

Relative Integration Times:

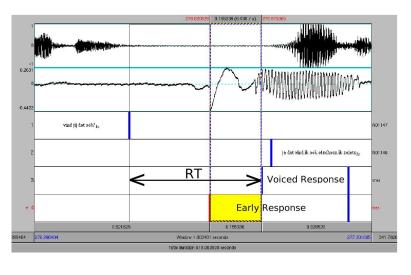
$$\overline{RT} = t_0 + \tau$$

$$var(RT) = \frac{1}{2}\sigma^2\tau^3$$

$$\frac{\tau_i}{\tau_j} = \sqrt[3]{\frac{s_i^2}{s_j^2}}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Appendix: Calculations


- Relative amounts of (integration) time for τ_{early} and τ_{diff} , $\frac{\tau_{diff}}{\tau_{early}} \approx 0.55$
- $\rightarrow \tau_{early}$ is about 2 x τ_{diff}
- With a simple model: $\tau_{voiced} = \tau_{early} + \tau_{diff}$ $\Leftrightarrow \tau_{diff} = RT_{voiced} - RT_{early}$
- For *full speech*, average *difference* RT is 130 ms, integration-time, τ_{early} , is 235 ms and the total effective integration-times τ_{voiced} is 370 ms
- For intonation only, the average difference RT is 140 ms, τ_{early} is 255 ms and τ_{voiced} is 400 ms.
- With a t_0 of \geq 50 ms (taken from shadowing tasks), planning starts more than 300 ms before the actual utterance end.

Timing of

Appendix: Recordings

Timing of urntaking

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Appendix: Reaction Time Distribution under PCM model

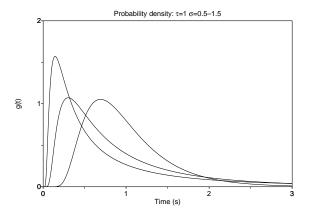


Figure: Distribution of RTs for $\tau = 1$ and $\sigma = [1.5, 1.0, 0.5]$

Timing of urntaking

うせん 同一 本語 医本語 医子科学 オロア

Table: Total number of articulated (voiced) and early responses to stimuli for each of the 3 end-tone categories and minimal responses for the total conversation set.

response category	low	mid	high	total
full speech voiced	1860	2850	1374	6084
early	690	1144	515	2349
intonation only voiced	1917	3205	1453	6575
early	663	1180	534	2377
full dialog set (min. resp.)	386	539	281	1206

For roughly $\frac{1}{3}$ of all responses we can measure a so called *Early Response*

