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Abstract

The basic inventory of sounds (phonemes) used to encode speech varies considerably between
languages. Nevertheless these inventories show an unmistakable preference for certain phonemes
and phoneme configurations. It has oten been remarked that phonemic systems seem to strike
some balance between maximal perceptual distinctiveness and minimal speaker effort. Computer
models formalizing these principles have yielded phonetically quite accurate results for vowel
configurations. This thesis describes a computational model that attempts to apply these same
principles to consonant phonemes, which are much more complex than vowels in articulatory
and acoustic terms.

The model makes use of an articulatory synthesizer to generate speech sounds and uses
dynamic time warping (DTW) to judge perceptual similarity between these sounds. DTW is
also used to compare the resulting phonemes to those found in natural languages.

Results indicate that the model is able to arrive at a set of perceptually distinct consonant
phonemes. However, the effort minimization parameter used in the model is not shown to
result in more common phonemes. I argue that the model may be a useful means of researching
phonological universals in consonant inventories but needs to be improved in several ways, which
are discussed at the end of the paper.



Contents

1 Introduction 4
1.1 Phonological patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Innatism versus emergentism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Computer models of language and speech evolution . . . . . . . . . . . . . . . . . 6
1.4 Modeling consonant inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Approach 10
2.1 Articulatory synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The articulatory model of Boersma (1998) . . . . . . . . . . . . . . . . . . 11
2.1.2 Constraining Boersma’s model to explore consonant space . . . . . . . . . 12

2.2 Creating a cost function for consonants . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Defining perceptual distinctiveness . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Measuring perceptual distance with DTW and MFCCs . . . . . . . . . . 17
2.2.3 Defining articulatory effort . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Combining effort and distinctiveness into a cost function . . . . . . . . . . 20

3 Search method 22
3.1 Searching a complex landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Evaluation method 27
4.1 Natural language data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 From auditory/articulatory data to phonemic classification . . . . . . . . . . . . 27

4.2.1 Incorporating articulatory features . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Phoneme frequency as a naturalness metric . . . . . . . . . . . . . . . . . . . . . 29
4.4 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 The size principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Balancing maximal distinctiveness and minimal effort . . . . . . . . . . . 32

5 Results 33
5.1 Qualitative analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Quantitative analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Results for individual phonemes . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.3 Effect of effort cost weight on naturalness . . . . . . . . . . . . . . . . . . 37
5.2.4 Effect of inventory size on naturalness . . . . . . . . . . . . . . . . . . . . 37

1



6 Conclusion and discussion 39
6.1 Summary and analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 Improving the optimization model . . . . . . . . . . . . . . . . . . . . . . 40
6.2.2 Towards a non-teleological, speaker-oriented model . . . . . . . . . . . . . 41

7 Acknowledgements 42

List of Figures

1.1 Plot of relative frequency versus frequency ranking of UPSID segments . . . . . . 4
1.2 Maximizing F1/F2 distance in the vowel triangle . . . . . . . . . . . . . . . . . . 7
1.3 Relative frequencies of the 15 most frequent consonant phonemes in UPSID . . . 7
1.4 Schematic representation of constraints on consonant inventories . . . . . . . . . 9

2.1 Representation of the vocal tract in Boersma’s model . . . . . . . . . . . . . . . . 11
2.2 Synthesis example: /@B@/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Comparison of natural and synthesized nasal consonant . . . . . . . . . . . . . . 14
2.4 Overview of muscle parameters used in the model . . . . . . . . . . . . . . . . . . 14
2.5 Schematic representation of variation allowed in the articulatory model . . . . . . 16
2.6 Illustration of dynamic time warping of MFCC pairs . . . . . . . . . . . . . . . . 18
2.7 Scatterplot of DTW distances between 60 phonemes in an /a a/ context . . . . . 19
2.8 Schematic summary of cost function . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Effect of raising muscle activity on perceptual distance . . . . . . . . . . . . . . . 23
3.2 Example DTW distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Scatterplot of DTW distances between template segments . . . . . . . . . . . . . 29

5.1 Example of a 5-segment inventory after optimization . . . . . . . . . . . . . . . . 33
5.2 Synthetic vocal tract during /Q/-like articulation . . . . . . . . . . . . . . . . . . 34
5.3 Development of DTW distance between segments in a simulation run . . . . . . . 35
5.4 Frequencies of phoneme labels emerging from the simulations . . . . . . . . . . . 36
5.5 Effect of varying effort cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.6 Effect of inventory size on naturalness . . . . . . . . . . . . . . . . . . . . . . . . 38

These figures were drawn in Praat (Boersma and Weenink 2009), with the following excep-
tions:

• Figures 1.1, 1.3, 3.1, 5.4, 5.5 and 5.6 were created in OpenOffice.org Calc.

• Figures 1.2 (adapted from Liljencrants and Lindblom 1972), 1.4 (adapted from Lindblom and Maddieson
1988), 2.1 (adapted from Boersma 1998) and 2.8 were created in the vector graphics editor
Inkscape.

2



List of Tables

2.1 List of muscle parameters used in the model of Boersma (1998) . . . . . . . . . . 15
2.2 Displacement values for muscles in the model . . . . . . . . . . . . . . . . . . . . 20

4.1 Overview of the 18 consonant labels assigned to model output . . . . . . . . . . . 28
4.2 Frequency scores for phoneme labels . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Overview of simulation runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 p-values of t-test results comparing the effect of effort cost . . . . . . . . . . . . . 37

3



Chapter 1

Introduction

1.1 Phonological patterns

Natural languages show remarkable variety in the number of different sounds (phonemes) that
are used as units in speech. The conventional method of transcribing speech sounds, the Inter-
national Phonetic Alphabet IPA (1999), uses 107 distinct symbols to encode speech sounds, and
also includes more than 50 diacritics to indicate slight specifications on this basic set of symbols.
Indeed, some languages distinguish between a large number of these sounds. For instance, the
English phoneme inventory distinguishes approximately 45 phonemes, of which about 20 are
vowels and about 25 are consonants (Roach 2000). The Khoisan language !Xóõ has the largest
known phoneme inventory, with at least 58 consonants and 31 vowels (Traill 1985). Smaller
phoneme inventories are more common, however; the average seems to lie somewhere between
20 and 40 (Clark et al. 2006).

Figure 1.1: Plot of relative frequency (in percent, vertical axis) versus frequency ranking (absolute,
horizontal axis) of UPSID phoneme segments
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Despite this variety, the distribution of phonemes among different languages is far from ar-
bitrary. The UPSID (UCLA Phonological Segment Inventory Database, Maddieson and Disner
1984), a statistical survey of the phonological inventories of 451 languages, shows that the con-
sonants /m/, /k/, /p/ and /j/ and the vowels /a/, /i/ and /u/ all occur in over 80% of the
languages in the database. On the other hand the front rounded vowel /y/ occurs in only about
5% of the surveyed languages, and many consonant segments are even rarer (like the click conso-
nants of the aforementioned !Xóõ, some of which are only attested in that language). Generally
the segments in the database show a Zipfian distribution (Zipf 1949), where a small number of
phonemes are extremely common crosslinguistically, whereas a large number of phonemes occur
only very rarely (Figure 1.1).

Looking beyond the distributions of individual phonemes, there are are also common pat-
terns to be found in the organisation of sounds within phoneme inventories. Rarer (marked)
phonemes tend to occur more frequently in larger inventories, and the appearance of a marked
phoneme in an inventory often implies the presence of a similar unmarked phoneme. For in-
stance, the presence of the marked close rounded front vowel /y/ in a phoneme inventory implies
that this language also has its unmarked counterpart, the close unrounded front vowel /i/. Ten-
dencies of this sort are called phonological universals, and occur across languages that are not
provably related.

Languages and their phoneme inventories are not static entities; as they are transmitted from
generation to generation they are subject to change. A well-documented historical example
is the branching of the Romance language family: the 10-vowel inventory of Classical Latin
(Allen 1989) grew to 17 vowels in modern French and shrank to 5 vowels in modern Spanish
(Battye et al. 2000). From a diachronic perspective, saying that certain phonological patterns
are more common than others can be rephrased as stating that certain phonological states are
more stable or attractive than others over time. However, there is considerable controversy and
debate over the mechanisms behind this stability. The next section examines these different
viewpoints in more detail.

1.2 Innatism versus emergentism

Broadly speaking, explanations for phonological tendencies or universals come in two forms.
The first type of hypothesis argues that preferences for certain phonological patterns are to some
extent innate, that is to say, hard-wired into the human capacity for language learning. The
second type of hypothesis views phonological patterns as emergent : they arise as a consequence
of phonetic properties of the phonemes themselves and the way they are transmitted. Moreton
(2008) calls the two types of hypotheses analytical bias and channel bias respectively, and
stresses that they need not be mutually exclusive.

Theories of innate phonological bias are usually connected to Chomsky (1965)’s theory of
Generative Grammar (which primarily concerns syntax) and were made explicit for phonology
in Chomsky and Halle (1968). Generative views on phonology often describe phonemes in terms
of basic distinctive features. Each phoneme can be described in terms of a unique combination
of these features, and sets of features can describe classes of phonemes which undergo some
phonological process. Innatist approaches to phonological typology state that features do not
merely serve a descriptive purpose: rather, the crosslinguistic predisposition toward certain
feature combinations and classes suggest that there is a cognitive basis to the features.

There has also been some psychological research supporting an innate bias. For example,
Caramazza et al. (2000) found evidence from two aphasics that consonants and vowels are
processed separately, suggesting a cognitive basis for the universal phonological distinction
between vowels and consonants. Indications of neurological correlates for more fine-grained
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phonemic distinctions have also been found (e.g. Eulitz and Lahiri 2004).
Proponents of emergentist theories (sometimes also called substance-based theories) point

out that many aspects of phonological typology seem to be governed by phonetic principles. One
such property is perceptual contrast : phonological inventories tend to organize sounds in such a
way that they are maximally auditorily distinct from one another. This is especially apparent
in the organisation of vowel inventories. The UPSID shows that languages with three vowels
overwhelmingly have the configuration (/a/, /i/, /u/) (Maddieson and Disner 1984). These
three vowels are maximally dispersed in terms of their first and second formant frequencies,
which are considered the most important cues in vowel perception (Klein et al. 1970). Obviously
there are benefits to such dispersion: it diminishes the probability of confusing one phoneme
for another, making communication in a noisy environment more efficient.

This tendency towards maximal auditory dispersion seems to be counterbalanced by a
tendency toward maximizing articulatory efficiency (see e.g. ten Bosch 1991). According to
Boersma and Hamann (2008), languages with only one phoneme on a given auditory contin-
uum often place it in the center of this continuum, corresponding to an articulation which
requires least effort. The Quantal Theory of Stevens (1972) explains phoneme distributions in
both articulatory and acoustic terms: it states that languages prefer phonemes which are robust
to small variations in articulations.

As the long-term acquisition of spoken language is impossible to recreate in a laboratory
setting, direct empirical research into either hypothesis is not feasible. However, it can be
argued that generally, emergentist explanations are more elegant: they refer to measurable
properties of speech production and perception. On the other hand explanations in terms of
innateness often rely on postulating complex neurological structures, about which much remains
unknown and which can only be verified indirectly, at best. This means that explanations
viewing phonological patterns as emergent are preferable per Occam’s Razor; if a phonological
universal has a plausible explanation in emergentist terms, this eliminates the need for a more
complicated model of innate bias. The next section will focus on some computational research
on language and speech acquisition supporting an emergentist view.

1.3 Computer models of language and speech evolution

Over the last decades, computer modeling has gained popularity as a means of research into
language evolution. These models concern both the biological evolution of language (simulating
the emergence of the language faculty in our hominid ancestors) and the cultural evolution
of language (simulating sound and language change). An example of the latter is the Iter-
ated Learning Model (ILM) of Kirby and Hurford (2002). In this model, interaction between
individuals is modeled in a simple ‘protolanguage’. Even without pressuring for efficient com-
munication, essential properties of natural language such as compositionality and recursivity
emerge spontaneously in a population of simulated learners (Kirby 2001). This indicates that
linguistic structure and regularity may emerge without any a priori innate preference for it.

In the field of phonetics and phonology, computational research into sound systems has
likewise indicated that many properties of sound systems are emergent. An pioneering study in
this respect was performed by Liljencrants and Lindblom (1972), who found that many common
vowel systems can be easily explained in terms of acoustic properties of the vowels themselves:
by calculating for a given number of vowels a configuration that maximizes the distance between
vowels in terms of their first and second formant, configurations closely resembling those found
in many languages emerged. (Figure 1.2). These results have more recently been refined by
Schwartz et al. (1997).

6



3 4 5

Figure 1.2: Maximizing F1/F2 distance between 3, 4 and 5-vowel configurations, adapted from
Liljencrants and Lindblom (1972); the rightmost figure shows a plot of Dutch vowels for comparison
(data from Pols et al. 1973), with the corner vowels /a/, /i/ and /u/ circled.

de Boer (2001) simulated the emergence of dispersed vowel systems in a population of simu-
lated speakers (agents) without explicitly modeling a need for maximization of acoustic distance:
rather, the agents strived toward minimizing communication errors, and realistic dispersion
emerged in their shared language as a consequence. Oudeyer (2001) elaborated on these re-
sults with a simulation that included a simple articulation model capable of producing syllables
consisting of both consonants and vowels. Zuidema and de Boer (2009) showed, again through
an agent-based simulation, that phonemic coding (re-using different combinations of sounds)
emerges as a better means of communication than a sound system consisting of only holis-
tic signals. Sounds in this simulation were represented as trajectories on an abstract plane.
van Leussen (2008) combined the model of de Boer (2001) with a model of phoneme dispersion
by Boersma and Hamann (2008) based on Optimality Theory (Prince and Smolensky 1993) to
show how articulatory effort might be incorporated in an agent-based model of vowel dispersion.

Figure 1.3: Relative frequencies of the 15 most frequent consonant phonemes in UPSID. The most
frequenct consonant, the bilabial nasal /m/, occurs in the inventories about 94% of the languages in the
database.
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1.4 Modeling consonant inventories

While computer models into phonological patterns have yielded phonetically very accurate
predictions for vowel systems, modeling consonant inventories has remained more elusive. Sim-
ulations involving consonants or consonant-vowel combinations often represent the space of
possible phonemes abstractly (see e.g. Boersma 1989, Mielke 2005), or in terms of their phono-
logical features. Using predefined categories or abstractions limits the explanatory power of
these simulations, since the outcome is shaped by the phonological categories assigned to the
input. The reason for these abstractions must probably be sought in the difficulty of formalizing
the phonetic properties of consonants.

By their nature consonants are often more complex than vowels in terms of their articulation,
acoustics, and the relation between these two. Vowels can be classified quite accurately in terms
of just the first and second formant frequencies (or effective second formant frequency, see Bladon
1983). Articulation of vowels is usually reduced to three dimensions: tongue height, tongue
backness, and lip rounding (for example de Boer 2001). Furthermore, there is a clear monotonic
correlation between these articulatory dimensions and the first and second formant frequencies
(Traunmüller 1981, Ladefoged 2005). On the other hand cues for consonant perception are
more numerous, harder to place on a continuum, and often depend on spectral transitions and
durations rather than static qualities (Delattre et al. 1955). Articulatory aspects of consonants,
particularly manner of articulation, often do not form a clear continuum; and there is often
not a monotonic relation between articulatory gestures and acoustic properties of the resulting
sound the way there is for vowels.

Nevertheless, languages show a clear preference for a small subset of consonants out of the
hundreds of distinct possible consonants sounds (see Figure 1.3). Emergentist explanations
of these tendencies in consonant inventories often state that the same principles that account
for vowel typology apply to consonants. Figure 1.4, adapted from Lindblom and Maddieson
(1988), ilustrates the tension between two of these principles mentioned earlier: maximizing
perceptual distinctiveness and minimizing articulatory effort. ‘Phonetic space’ is represented
as an amorphous blob, indicating the difficulty of defining the acoustics of consonant phonemes
on any sort of numerical scale.

This paper presents a model for finding optimal consonant configurations under the afore-
mentioned constraints on distinctiveness and effort. If these are indeed the main forces acting
upon consonant inventories, the model should predict the clear preference for certain conso-
nants above others found in natural language (Figure 1.3). Optimizing within consonant space
requires the following ingredients:

1. A means of defining the articulatory borders of the phonetic space, and generating all
possible states within these borders;

2. A means of defining perceptual distance between points in this space;

3. A means of translating this perceptual distance and other properties of consonant inven-
tories to parameters in a cost function, and a method to optimize this function.

4. A means of comparing the results of the optimization to natural language data, in order
to test the the relative importance of the cost parameters in the model.

This paper will attempt to show that all ingredients are within reach using existing tech-
niques from speech synthesis, speech recognition, and artificial intelligence. By using an articu-
latory synthesizer, articulatory properties of phonemes may be formalized, and the state space
can automatically be constrained to the set of speech sounds that can be produced by human

8



beings - provided the synthesizer is realistic enough. Methods of defining perceptual distance
between pairs of sounds have been studied extensively in automated speech recognition and
related fields, and these same techniques can be used to interpret the results. Finally, finding
a global optimum in a complex multidimensional landscape is at the heart of many problems
in AI. While these techniques have all been applied to research into speech sound patterns in
earlier studies, I believe combining them in a single model of consonant typology has not been
attempted so far.

Phonetic

space

Neutral articulations

"Magnets" (perceptual distinctiveness)

"Rubber band" (articulatory simplification)

Figure 1.4: Schematic representation of the main phonetic forces acting upon consonant inventories,
adapted from Lindblom and Maddieson (1988). Phonemes are magnetically pulled toward perceptually
distinctive states, but at the same time rubber bands tie them toward neutral, less effortful articulations.

The paper is organised as follows: Chapter 2 provides more details on the different com-
ponents of the model and explains some of the choices made, and Chapter 3 describes the
implementation of these components in an optimization algorithm. Chapter 4 explains how the
simulation outcomes may be evaluated against natural language data. Chapter 5 shows the
outcome of running simulations with the model using different optimization parameters. The
relevance of these results, and suggestions for future improvements on the model, are discussed
in Chapter 6.
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Chapter 2

Approach

2.1 Articulatory synthesis

Although mechanical emulation of the human speech apparatus has been attempted for cen-
turies1, nowadays the term articulatory speech synthesis is normally taken to mean software
models. Articulatory synthesizers produce sound by modeling the movement of air through the
vocal tract, which is usually represented as a series of interconnected tubes. Manipulating the
width of the tubes at various points, either directly or through parameters representing the
muscles controlling certain articulators in the vocal tract, affects the resulting waveforms. An
early model that synthesized vowels was made by Kelly and Lochbaum (1962). More sophisti-
cated models capable of synthesizing consonants and consonant-vowel combinations have also
been developed (eg. Mermelstein 1973, Maeda 1982); and more recently, a three-dimensional
vocal tract model, based on articulatory data from MRI studies, has been developed by Birkholz
(2005).

Articulatory synthesis is theoretically an attractive model for text-to-speech (TTS) systems,
since perceived speaker attributes such as age and gender can be varied simply by changing the
relevant parameters controlling the simulated vocal tract (Shadle and Damper 2001). Neverthe-
less, over the years commercial TTS systems have moved away from articulatory synthesis to-
ward concatenative synthesis based on pre-recorded segments (Klatt 1987, Jurafsky and Martin
2008). The acoustical calculations involved in realistic articulatory synthesis are still too de-
manding to perform in real-time; and despite the advances described in the previous paragraph,
natural-sounding voice quality in running speech remains hard to attain.

However, articulatory synthesis has seen extensive use as a tool in phonetic and phonological
research. For instance, modifications of human articulatory models have been used to investigate
the vocal abilities of apes and monkeys (de Boer 2008) and Neanderthals (Boë et al. 2002).
The model of Birkholz (2005) has been used to investigate the effect of larynx height on vowel
production by Lasarcyk (2007).

For the research into phonetic properties of consonant inventories described in this paper, I
have decided to use the articulatory synthesizer of Boersma (1998). The choice for this model
was primarily based on the following:

• While the model is limited in its ability to synthesize vowels (Boersma, personal com-
munication, May 2009), it is capable of synthesizing many different types of consonants,
including ejectives, trills and clicks, making it well-suited for research into consonant
inventories.

1An extensive overview of the history of speech synthesis is available at the website of Haskins Laboratories:
http://www.haskins.yale.edu/featured/heads/heads.html
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• Rather than vocal tract shapes or phonologically informed gestures, the model takes mus-
cle activity as input, which can be directly related to the notion of articulatory effort
mentioned in Chapter 1.2. This also means that the model is not biased toward certain
phonemes a priori.

• A working and scriptable version of the model is available in the software package Praat
(Boersma and Weenink 2009), which conveniently can also be used for phonetic analysis
of the articulations and resulting waveforms.

2.1.1 The articulatory model of Boersma (1998)

This section will provide a short overview of Boersma’s model necessary to explain its role in the
simulations described in this paper, and also describes a number of limitations in its ability to
synthesize consonant sounds. For an exhaustive description of the model, including the physical
equations used to model airflow and movement of the vocal tract walls, the reader is referred
to Boersma (1998).

A major difference between Boersma’s model and most other articulatory models is that
source and filter (Fant 1970) are not independent components. Instead, the entire vocal appa-
ratus is modelled as a series of interconnected tubes, starting at the lungs and radiating into
the atmosphere at the lips and nostrils. The vocal cords are also modelled in this manner.
Springs are connected to the walls of these tubes, controlling their position and stiffness (see
Figure 2.1). A set of 29 muscles controls these springs; thus, the shape of the tract is ultimately
determined by the activities of each of these muscles. By varying the shape of the tract over
time while causing air to flow through it, speech sounds may be created.

Lungs Pharynx Lips

Figure 2.1: The vocal tract as represented in Boersma’s model. The position and elasticity of the walls are
controlled by various muscles through springs, and by the flow of air through the tract. Neighbouring
walls are also connected by springs. Acoustic output is determined by the airflow radiating into the
atmosphere at the lips (and at the nostrils; the nasal tract is not shown in this figure). Adapted from
Boersma (1998).

Utterances in the model are specified as a series of muscle activity targets on a timeline
running from zero to a user-specified length. These targets represent muscle activity as a
variable between zero (at rest) and one (fully contracted) 2. By default two targets are specified

2The activity parameters may actually also take on negative values. However, since these are not necessary to
produce realistic articulatory movements and represent an anatomical impossibility (muscles may only contract
in one direction), the activity parameters are kept within the range of [0,1] in the model described herein.
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for each muscle: zero activity at the start of the utterance, and zero activity at the end of
the utterance. The amount of activity at a given point on the timeline is linearly interpolated
between target points. By setting a nonzero target for a muscle on a point on the timeline,
contraction of this muscle is initiated, resulting in movement of the associated articulator.

As an example, creating a 0.5 second utterance that sounds like /@B@/ requires setting at
least four muscle parameters:

• To cause an outward movement of air, the air in the lungs must be compressed. This is
done by decreasing the Lungs parameter from 0.1 at 0 seconds to 0.0 at 30 ms.

• To make the vocal cords vibrate when air passes them, they must be tensed somewhat,
but not completely (which would close them and prevent air from escaping). This is done
by setting the Interarytenoid parameter to 0.5 throughout the utterance.

• To make sure air only escapes through the mouth, the velum must be raised so that
the nasal tract is closed off. This is done by setting the LevatorPalatini parameter to 1
throughout the utterance.

• To create a transition from the vowel /@/ to the consonant /B/ and back again, the lips
must be brought close together (but not closed) in the middle of the utterance. This is
done by setting the OrbicularisOris parameter to 0.7 between 200 and 300 ms. To make
sure the vowel quality remains constant for an instant before and after articulation of the
consonant, this same parameter is kept at 0 between 0 and 100 ms and between 400 and
500 ms.

Figure 2.2 illustrates the effect of superimposing these muscle gestures on a male-like vocal
tract.

A variety of different consonant sounds can be synthesized in this manner; nevertheless,
there are also sounds that cannot be synthesized convincingly with the articulatory model as
set out in Boersma (1998). Most notably, I have not been able to synthesize natural sounding
nasal consonants (/m/,/M/,/n/,/ n/,/ñ/,/N/ and / N/). Articulatory, nasal consonants are char-
acterized by a complete closure somewhere in the oral cavity, so that all air flows out through
the nose. Acoustically this results in a sound with clearly distinguishable formants, which are
however much fainter than in vowels (Ladefoged 2005). While Boersma’s model does allow for
the modeling of these types of consonants by creating an oral closure and lowering the velum,
the resulting sound cannot be said to resemble a nasal consonant (Figure 2.3).

The class of sibilant fricatives (/s/,/z/,/S/,/Z/,/ s/ and / z/) also cannot be synthesized well.
This class of sounds is characterized by a high amount of noise in the upper region of the auditory
spectrum, which is caused by a jet of air directed against the upper teeth through a narrow
constriction between the tongue and the roof of the mouth. The aerodynamic calculations
required for modeling this process are not incorporated in the articulatory model (Boersma,
personal communication, June 2009).

These limitations, which are intrinsic to the model, regrettably constrain the number of
speech sounds that can be explored using Boersma’s model. Some of these limitations only
became apparent after significant time had already been invested in incorporating this articula-
tory synthesizer into the model. The following section will explain some additional constraints
which I imposed to prevent the search space from growing too large.

2.1.2 Constraining Boersma’s model to explore consonant space

Because input to Boersma’s model comes in the form of parameters specifying muscle activity,
it is very well suited to computational exploration of the phonetic space available to humans
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Figure 2.2: Synthesizing an /@B@/-like utterance in a male voice. The top graphs show the values of the
muscle parameters over time; the middle figure shows an annotated oscillogram of the sound; the bottom
figure is a spectrogram of the sound.

in the production of consonant sounds. However, the realism of the model comes at a high
computational cost: at the moment of writing, synthesis of a single 0.5 second utterance takes
several seconds on a reasonably modern personal computer. Any search of articulatory space
will therefore be severely bottlenecked by the synthesis component. Furthermore, since only a
small number of muscle movements will actually cause the airflow necessary to produce speech,
a lot of search time may be wasted on finding articulations that result in any sound at all,
rather than those that produce distinct consonants. To keep the time taken by the simulations
within acceptable bounds, it was necessary to put some constraints on the articulations that are
tried during search, both in terms of the muscle parameters used and in terms of their temporal
specification.

An important constraint is that of the 29 muscle parameters available in the model, I allow
only a subset of 14 to change during search. Specifically, only muscle parameters that control
the tongue, mouth and oropharyngeal cavity can be changed. I will call this subset of muscles
M. Table 2.1 and Figure 2.4 give an overview of the muscles used and their effect on vocal
tract shape. The other muscles are not used in the articulations produced during search, with
the exception of the following parameters which are standard for each articulation:

• The Lungs parameter is set to 0.1 at 0 ms and to 0.0 at 30 ms to create air pressure in
the vocal tract.

• The InterArytenoid parameter is set to 0.5 throughout the utterance to create phonation
when air passes the vocal folds.

• The LevatorPalatini parameter is set to 1.0 throughout the utterance, sealing off the nasal
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Figure 2.3: A spectrogram of a real male speaker saying /ama/ (left) and of a synthesized male speaker
making /ama/-like articulatory movements in Boersma’s model (right). The fainter formants associated
with nasal consonants are not reproduced faithfully in articulatory synthesis; the resulting utterance
sounds more like /ala/.

tract.

Hyoglossus Styloglossus Genioglossus UpperTongue LowerTongue TransverseTongue VerticalTongue

Risorius OrbicularisOris TensorPalatini Masseter Mylohyoid LateralPterygoid Buccinator

Figure 2.4: Overview of muscle parameters that are changed during search, showing a sagittal cross-
section of the vocal tract when the value of that parameter is 1. Note that some muscles do not show
a change in tract shape, as they either control tenseness rather than position of a wall, or cause only
lateral movement.

A second important constraint is that I limit the time during which the activity of the muscles
can vary. The consonant segments tried during search are embedded in an unchangeable /@ @/
environment: that is, they are preceded and succeeded by the neutral vowel schwa, which is
produced by making the vocal cords vibrate while keeping the nasal tract closed and relaxing the
tongue and mouth muscles. The choice of schwa should prevent the vowel context from exerting
too large an influence on the consonants. To make sure the beginning and end of the produced
utterances remain constant, the muscle parameters are fixed at zero during the vowel segments,
and may only take on another value in the middle segment. During this middle segment their
value also remains fixed: movement of articulators only takes place during a transitory period
between the vowel and consonant segment (Figure 2.5). With these constraints, we can define
the activity of a muscle m from the set M using a single real-valued parameter am, and define
a consonant segment c as a set of activity values {am1

, am2
· · · amn

}, where n = |M|.

2.2 Creating a cost function for consonants

The articulatory model of Boersma, described in the previous section, is able to generate a
state space for our model of consonant distribution. To optimize in this space, it is necessary
to find a cost function that reflects proposed optimal properties of consonants and consonant
inventories. Two of these properties will be investigated in this paper: maximal perceptual
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Table 2.1: List of muscle parameters in the articulatory model of Boersma (1998). Note that some
of these muscles have overlapping functions, while others are antagonists of one another, i.e. pull the
articulators into opposite directions. Only a subset of these 29 muscles is explored in the optimization
model described in this paper. The rows shaded gray represent parameters for which the value is fixed
during search; the unshaded rows are the subset of musclesM that are explored in search.

Name of muscle (group) Function

Buccinator Tenses oral walls
LateralPterygoid Moves jaw horizontally
Mylohyoid Lowers mandible, opening mouth
Masseter Raises mandible, closing mouth
TensorPalatini Lowers velum
OrbicularisOris Purses lips
Risorius Spreads lips
VerticalTongue Makes tongue thinner
TransverseTongue Makes tongue thicker
LowerTongue Lowers tongue tip
UpperTongue Raises tongue tip
Genioglossus Moves tongue forward
Styloglossus Moves tongue back and upwards
Hyoglossus Moves tongue downwards

LevatorPalatini Raises velum
Sphincter Constricts pharynx
UpperConstrictor Constricts upper part of pharynx
MiddleConstrictor Constricts middle part of pharynx
LowerConstrictor Constricts lower part of pharynx
Thyropharyngeus Constricts ventricular folds
Sternohyoid Lowers larynx
Stylohyoid Raises larynx
LateralCricoarytenoid Opens glottis
PosteriorCricoarytenoid Closes glottis
Thyroarytenoid Relaxes vocal folds
Vocalis Tenses vocal folds
Cricothyroid Tenses vocal folds
Interarytenoid Adducts vocal folds
Lungs Expands lungs
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Mutable (consonant) segment

Transition segments

Fixed (vocalic) segments

Figure 2.5: A graph representing possible articulatory movement over time for the 14 muscles that are
used in search. A single real-valued parameter between 0 and 1 represents the activity of a given muscle
during the middle (consonantal) segment. The activity will be 0 (relaxed) during the vowel segment,
and movement from zero activity to the specified level of activity takes place in the transition segment.

contrast and minimal articulatory effort. The first is a property of consonant sets which can
be derived by comparing the waveforms of different utterances generated by the articulatory
synthesizer; the second is a property of consonants themselves, and can be derived directly from
the muscle activity patterns which serve as input to the synthesizer.

2.2.1 Defining perceptual distinctiveness

Computational models of vowel sytems usually define perceptual distance using some weighted
combination of their first and second (and sometimes third and fourth) formant values, which
numerous perception experiments have shown to be the primary cues for vowel perception.
Cues for consonant perception are also to be found in the spectrum. For example, in languages
that have a contrast between voiced and voiceless plosives, an important cue that determines
whether voicing is perceived is Voice Onset Time (VOT), the time elapsed between release of a
plosive and the start of vocal cord vibration (Lisker and Abramson 1963). However this same
cue plays no role in the perception of sibilant fricatives, which are primarily identified through
the location of intensity peaks in the spectrum (Harris 1958). Cues for place of articulation
are often found in formant transitions, making them dependent on the preceding and following
segments. Clearly, combining these different types of cues into a single perceptual distance
metric is not as straightforward as it is for vowels.

The problem of defining a global measure of perceptual contrast is briefly considered by
Boersma (1998). However, he ultimately dismisses the notion of a global contrast measure as
”linguistically irrelevant”, since perceptual difference is known to depend heavily on the lan-
guage(s) the hearer is proficient in; the language one is exposed to can determine the perceived
contrast between two segments (e.g. Kazanina et al. 2006). This holds true when modeling
language at the level of the speaker, but as the model described in this paper concerns crosslin-
guistic notions of optimal distance, a global distance metric is indeed relevant. Furthermore,
the ubiquity of certain types of vowel systems mentioned in Maddieson and Disner (1984), and
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research on perception of speech sounds by nonhuman animals (e.g. Kuhl 1981) indicate that
perceptual distance is at least partially grounded in common properties of mammalian hearing.

At this point it is instructive to take a look at best practices in the area of automatic speech
recognition. After all, speech recognition is also concerned with mapping an incoming speech
signal to a best fit among a set of stored signals. An effective metric of similarity between
segments is therefore desirable for accurate recognition. The next section describes how one
such measure, dynamic time warping on mel-frequency cepstral coefficients, can be used as an
effective method for computing perceptual distance between two consonant segments.

2.2.2 Measuring perceptual distance with DTW and MFCCs

Dynamic time warping (DTW) is an algorithm for measuring similarity between two signals or
sequences, which is robust to variations in time and speed (speaking rate). Both signals are
divided into a number of frames, which contain vectors representing features or measurements
from that point in the signal. A matrix representing the distance between each frame of the
first signal and each frame of the second signal may be computed according to some distance
function defined on the feature vectors. The least costly path through this matrix may then
be computed, for instance using the Viterbi algorithm (Viterbi 1967). The length of this path
represents the ‘warp’ or distance between the two signals. The accuracy of DTW as a distance
measure can be improved by placing some constraints on the minimum and maximum slope of
the path (Sakoe and Chiba 1978).

Perceptual features for comparing speech signals can be extracted by dividing the power
spectrum into a number of frequency bins and taking the power of the signal inside each
of these bins. Because human hearing is not organized along a linear scale, more accurate
feature vectors can be created by first transforming the sound signals to the psychoacous-
tic Mel scale (Stevens and Volkmann 1940) using mel-frequency cepstral coefficients (MFCCs,
Bridle and Brown 1974; Davis and Mermelstein 1980). MFCCs are a fairly effective metric for
the recognition of isolated segments (e.g. Sroka and Braida 2005) and are also used in the field
of automatic music recognition and retrieval (Tzanetakis and Cook 2002). Employing DTW as
a measure of perceptual distance between phonemes was inspired by Mielke (2005).

For this paper, I have used the MFCC and DTW implementations of Praat (Boersma and Weenink
2009), using the standard settings for creating MFCCs from waveforms. Under these settings,
the sound is divided into windowed frames of 15 ms, with a sampling period of 5 ms, and 12
mel-frequency cepstral coefficients are calculated on these frames using the method described in
Davis and Mermelstein (1980). Distances between frames can then be calculated as a weighted
sum of three components:

1. euclidean distances between the cepstral coefficients

2. euclidean distance between the log energy (loudness) of frames

3. the regression coefficient of the cepstral coefficients over a number of subsequent frames

However, weights (2) and (3) were set to zero in the experiments described in this paper, as
they did not seem to have a positive effect on the effectiveness of the distance metric. Therefore
the mutual distance dij between two MFCC frames i and j is calculated with the formula

numCoefficients∑

k=1

(cik − cjk)
2 (2.1)

where numCoefficients = 12 and cij is the jth coefficient of frame i. The optimal Viterbi
path through the matrix of frame distances is then calculated, with the constraint that the first
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and final frames of the two signals match, and that the path lie between two lines with slopes
1

3
and 3.
Figure 2.6 shows DTW paths for comparisons of a male speaker saying /asa/, /apa/ and

/aza/. In terms of phonological features, the segment pair /s/-/p/ is more distant than the
pair /s/-/z/; the first pair differs both in place of articulation (Alveolar vs Bilabial) and
manner of articulation (Fricative vs Plosive), the second pair only in voicing (Voiceless

vs Voiced). This is reflected by a shorter DTW path for the pair /asa/-aza/.

0

0.6556

0 0.488027211

DTW of /asa/ vs /apa/ (distance: 142.007)

0

0.6556

0 0.683673469

DTW of /asa/ vs /aza/ (distance: 86.813)

Figure 2.6: An illustration of dynamic time warping on two pairs of MFCCs. Left shows /asa/ (vertical)
versus /apa/ (horizontal), right shows /asa/ (vertical) versus /aza/ (horizontal). The distance matrices
are shown, with darker cells representing a greater distance. The more the path through the matrix
resembles a straight line, the smaller the distance between the two signals.

The length of the paths calculated between MFCC representations of two sounds thus pro-
vides a metric that may correspond to the perceptual distance between these two sounds. Figure
2.7 illustrates that the DTW distance corresponds quite well with phonologically informed ideas
of perceptual distance, clustering a number of natural classes together.

As said, the distinctiveness of a consonant segment s is not an intrinsic property of conso-
nants themselves, but must be stated in terms of its relation with the other segments in the
inventory S. Let us define the mutual perceptual distance between two sound signals created
from a pair of consonant segments s1 and s2 as DTW (s1, s2). We then define a cost function
over the perceptual distinctiveness d of a given segment s as the smallest distance between it
and the other sounds in the inventory S:

d(s) =
50

min
sj

(DTW (s, sj))
such that s 6= sj (2.2)

This metric will be used as a variable that is to be minimized during search; hence the choice to
used inverted distance for distinctiveness cost. The choice of 50 as a numerator was to ensure
that the values for d(s) lie in approximately the same range as the effort values discusses in the
next section. DTW will also be used as a method to interpret the results of the simulations
(4.2).

2.2.3 Defining articulatory effort

The obervation that speakers aim to reduce the amount of effort they spend on enunciating
has often been made, both in connection to running speech and to the organization of sounds
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Figure 2.7: A scatterplot representing the DTW distances between 60 phonemes in an /a a/ context. For
visualization purposes, the 59-dimensional space has been reduced to two dimensions using individual
difference scaling (as implemented in Praat’s INDSCAL function on distance matrices). Nasal sounds
are drawn in green, fricatives in red, and plosives in blue; other categories (trills, taps, clicks, ejectives,
affricates, laterals and approximants) are drawn in black

in inventories; but formalizing the notion of ‘articulatory effort’ is difficult (e.g. Trubetzkoy
1939). Nevertheless, since the articulatory model used for this research receives input in the
form of parameters which directly or indirectly represent muscle contraction, we can employ
these parameters in a (naive) approximation of articulatory effort.

A first approximation of an effort function e(s) over segments would be to simply sum the
activities of the muscle parameters during the mutable middle segment, as in 2.3. This favors
articulations which are articulatorily close to a neutral articulation, as well as articulations
which utilize a smaller number of muscles.

e(s) =
∑

m∈M

am (2.3)

This would divide articulatory cost equally among the different muscles. However, the
amount of tissue that is moved by contracting each of the muscles in this set varies considerably.
Giving activation of the UpperTongue parameter, which only raises the tongue tip, the same
weight as the Masseter parameter, which raises the entire lower jaw, is probably too crude an
assumption. We can approximate articulatory cost more closely by taking into account the
amount of mass displaced by activation of each of the muscle parameters.

Praat allows the calculation of a VocalTract vector from an articulation, which contains the
cross-sectional areas (in m2) of all tubes in the modeled vocal tract at a particular time. The
approximation displacementm of the amount of area moved by a muscle m can be given by
comparing two VocalTract vectors: one representing the shape of the tract when this muscle
is fully contracted, and one representing the shape of the neutral articulation sneut, i.e. when
all muscle parameters are set to 0 (creating the sound /@:/). The summed absolute difference
between each of the tubes in the VocalTract objects of sneut and sm was then taken as the value
for displacementm. Table 2.2 shows the values for all 14 muscles in M. We can now define a
slightly more informed version of equation 2.3:
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Table 2.2: Values representing the displacement of vocal tract walls caused by setting each of the muscle
parameters to 1 (compared to a neutral vocal tract). These values are used to give more articulatory
effort ‘weight’ to some muscles.

Name of muscle (group) Displacement

Hyoglossus 0.014
Styloglossus 0.012
Genioglossus 0.012
UpperTongue 0.009
LowerTongue 0.002
TransverseTongue 0
VerticalTongue 0
Risorius 0
OrbicularisOris 0.004
TensorPalatini 0
Masseter 0.021
Mylohyoid 0.032
LateralPterygoid 0
Buccinator 0

e(s) =
∑

m∈M

am · (1 + displacementm)2 (2.4)

This definition of effort has the desirable property that articulations involving large move-
ments are punished more severely in the optimization search, and should suffice for this ex-
ploratory study. However it is admittedly somewhat arbitrary and ignores many factors that
probably also play a role in effort. Chapter 6 discusses a number of ways the effort function
might be made more realistic.

2.2.4 Combining effort and distinctiveness into a cost function

Having established definitions of effort e(s) (Equation 2.4) and distinctiveness d(s) (Equation
2.2) over a consonant segment s, they can be combined into a single cost function f(s)

f(s) = (wd · d(s) + we · e(s)) (2.5)

where wd and we are real-valued weights between 0 and 1 such that wd = (1 − we). Figure
2.8 summarizes how the different components of articulation and perception combine in the
cost function. With this function we can test the optimization model as a means of formalizing
optimal properties of consonant inventories. In Chapter 5, this is done by varying two parame-
ters: the size of the segment inventory S and the relative importance of effort weight we versus
distinctivity weight wd in the cost function.
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Figure 2.8: Summary of how a cost function is derived from a set of articulatory targets. The articulatory
cost is directly defined by the amount of muscle activity set in the list of targets. The perceptual cost is
defined by the smallest DTW distance between the synthesized segment and the other segments in the
inventory. Total cost is a weighted combination of these two components.
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Chapter 3

Search method

This chapter explains the search method used to find consonant inventories using the constraints
and costs set out in Chapter 2. A variation of hill-climbing is used to find a set of segments
that is optimal under these constraints. Section 3.2 gives an overview of the algorithm in
pseudocode. A complete collection of Java and Praat code used for the experiments can be
found at the author’s website1.

3.1 Searching a complex landscape

Chapter 1.4 briefly discussed the complex nature of perceptual distance, articulatory effort and
the relation between these two in consonamt inventories. Figure 3.1 illustrates the consequences
of this complexity for the optimization model described in this paper. It shows a transition from
the neutral segment sneut to a segment where the parameter UpperTongue (which raises the
tongue tip) is fully active, in 20 increments of 0.05. The curves show the DTW distance from this
segment to a neutral segment /@:/, to a segment containing a bilabial plosive /@p@/, and to the
previous value of the UpperTongue parameter. While increasing muscle activity (and thereby
effort) generally increases the perceptual distance to the neutral articulation, the relationship
between activity of the UpperTongue parameter and perceptual distance to the segment /@p@/
does not show any linearity. The amount of change wrought by an increment of 0.05 also
fluctuates considerably.

It can be assumed that the actual state space for our optimization problem, which involves
mutual distance between multiple segments and multiple active muscles per segment, is many
times more complex. As a result the state space will contain a large number of local minima.
Because of this, it is necessary to ensure that the distance between neighbouring states is initially
large, to avoid getting stuck in local minima (suboptimal inventories).

3.1.1 Overview

The search algorithm used to find optimal consonant configurations is a form of hill-climbing,
which takes as input five parameters:

• numSegments, the size of the consonant inventory that will be explored;

• numRounds, the number of iterations of the search algorithm;

• numMutations, the number of ‘mutations’ (neighbouring states) that is created for each
segment per round;

1http://home.student.uva.nl/jan-willem.vanleussen
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Figure 3.1: This graph shows the effect of varying the value of the UpperTongue parameter in an otherwise
neutral articulation. It illustrates that the effect of increasing articulatory effort on perceptual distance
is hard to predict. A comparison to a whole set of segments would likely show an even more complicated
relationship.

• maxTargets, the maximum number of muscle parameters that may be active in a consonant
segment;

• effortWeight, the relative importance of the effort parameter in the cost function.

A state in the search space is represented as a set of segments {s1 . . . sn}, where n represents
the number of phoneme segments in the simulation numSegments. For numRounds iterations,
the algorithm generates neighbouring states by creating numMutations of mutations sx

′ of each
segment. If the segment with the lowest cost among these mutations has a lower cost than the
original segment, the new state {s1 . . . sx

′ . . . sn} will replace the old state.
In all simulations described in this paper, numRounds was set to 20, numMutations to 10

and maxTargets to 5. The values for effortWeight and numSegments were varied per simulation
to test the effects of these parameters on the resulting inventories (Chapter 5.2). The following
sections explain how the simulation is initialized and details the mutation process on segments.

3.1.2 Initialization

Each segment s in the total set of segments S is initialized by selecting maxTargets muscle
parameters at random from M, and setting them to a random value between 0 and 0.3. This
ensures that the inital set of segments are all slightly different while staying close to the neutral
articulation. Next, all segments are synthesized in Praat and a (symmetric) matrix representing
the mutual DTW distance between all pairs is calculated on the synthesized signals. The lowest
nonzero number in each row of this matrix represents the minimal mutual distance between
pairs containing that segment. Figure 3.2 shows an example of an initial segment set of 8
phonemes.
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s1 s2 s3 s4 s5 s6 s7 s8

s1 0 62.31 55.17 37.36 60.11 51.05 38.90 47.63
s2 · 0 33.70 50.44 25.56 35.62 58.32 40.59
s3 · · 0 45.82 30.34 27.78 52.63 34.66
s4 · · · 0 48.98 37.39 35.01 37.30
s5 · (25.56) · · 0 33.92 56.69 38.60
s6 · · · · · 0 44.74 20.18
s7 · · · (35.01) · · 0 41.55
s8 · · · · · (20.18) · 0

Figure 3.2: An example DTW distance matrix. The lowest number in each row, representing the smallest
distance between two segments in that row, is set in bold.

3.1.3 Mutations

After the set of segments S has been initialized, the algorithm will proceed to cycle through
the segments and create numMutation mutations of this segment. These mutations come in
two types: large and small. A large mutation consists of picking a random muscle parameter
from M and assigning it a random value between 0 and 1. If there are already maxTargets
active muscle parameters in the segment, a random active muscle will first be set to 0 (i.e.
deactivated). Thus large mutations can result in very different articulations compared to the
original segment.

A small mutation, on the other hand, does not add any new muscles to the list of active
muscles, but rather changes the activity of an already active muscle by adding a small value
to its activity am. This value is drawn from a normal distribution with a mean of zero and
a standard deviation of 0.2. If the resulting activity value exceeds the upper limit of 1, it is
clamped to 1. Likewise, if the resulting value is lower than zero, it will be set to zero, effectively
removing this muscle parameter from the list of active targets. The changes wrought by a small
mutation will usually have less impact on the resulting articulation.

A variable T determines the probability of choosing a small mutation rather than a large
one; for each mutation, a random uniform number between 0 and 1 is generated. If this number
is greater than T , a large mutation is made on the segment s; else, a small mutation is made.
The value of T increases linearly throughout the simulation, as its value is equal to the number
of the current round divided by the total number of simulation rounds. In this way, the distance
between the current state and neighbouring states becomes progressively smaller throughout
the simulation.

Each of the mutated segments is synthesized in Praat, and DTW distances between it and
the other segments in S is calculated, so that the cost f(sij) can be determined for each of the
mutations {si1 . . . sinumMutations}. The cost of the ‘best’ mutation s′i is then compared to that
of the original segment si; if it is lower, the original segment is replaced by this mutation and
the DTW matrix is updated to reflect the new distances.

3.2 Summary

A pseudocode overview of the main loop (Algorithm 1), the optimization procedure (Algorithm
2) and the mutation procedure (Algorithm 3) can be found in this section.
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Algorithm 1 Initialization. (For this and subsequent algorithms, text in small caps refers
to another procedure; if this text is also underlined, it refers to an operation in Praat
(Boersma and Weenink 2009).

procedure Main(numRounds,numSegments,numMutations,maxTargets,effortWeight)
S ← ∅
for i to numSegments do

for j from 1 to maxTargets do ⊲ Initialize segments
pick a random muscle (mx|mx ∈M)
amx ← (random([0, 0.3])

end for
Synthesize(si)
add si to S

end for
Calculate DTW distance matrix

S ← Optimize(S,numRounds,numMutations,effortWeight)
end procedure

Algorithm 2 Optimization. This is the main loop of the algorithm.

procedure Optimize(S, numRounds,numMutations,effortWeight)
we := effortWeight
wp := 1−effortWeight
for round from 1 to numRounds do

T ← (round/numRounds)
for si ∈ S do

Mutationsi ← ∅
for j from 1 to numMutations do

sij ← Mutate (si, T )
add sij to Mutations
Synthesize(sij )
f(sij) = (wd · d(sij ) + we · e(sij ))

end for
s ′i ← arg min(f(sij)|sij ∈Mutationsi))
if f(s′i) < f(si) then

si ← s′i
Update DTW matrix

end if
end for

end for
return S

end procedure
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Algorithm 3 Mutation

procedure Mutate(s, T )
activeMuscles = all m ∈M such that am > 0 in s}
if T <random() then ⊲ ”Large” mutation

if | activeMuscles | ≥ maxTargets then
pick a random muscle (mx|mx ∈ activeMuscles)
set amx to 0

end if
pick a random muscle (mx|mx ∈M)
set amx to a random value [0,1]

else ⊲ ”Small” mutation
pick a random muscle (mx|m ∈ activeMuscles)
a′mx
← amx

+ (randomGauss(µ = 0, σ = 0.2))
if a′m < 0 then ⊲ Make sure 0 ≤ a′m ≤ 1

a′m ← 0
else if a′m > 1 then

a′m ← 1
end if
amx
← a′mx

end if
return s

end procedure
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Chapter 4

Evaluation method

In this chapter I will explain how my model of consonant optimization will be tested by com-
paring the simulation outcomes to actual spoken language data. In section 4.4, a number of
hypotheses will be stated to test how well the model predicts trends and patterns found in
natural consonant inventories.

4.1 Natural language data

The fact that we can speak with some certainty of phonological patterns in the languages of the
world is mainly due to the efforts of numerous descriptive linguists, who have dedicated years
to the study of previously undescribed languages in remote parts of the world. Data gathered
in this manner have been compiled into various databases, such as the aforementioned UPSID1

(Maddieson and Disner 1984) and P-BASE2 (Mielke 2008). These databases aim to provide a
representative sample of phonological inventories and processes in the languages of the world.
Note that representative must not be interpreted in terms of number of speakers; the fact that
roughly a third of the world’s population speaks some form of Chinese, Spanish, English or
Arabic (Lewis 2009) must be attributed to historical and political factors, not to properties of
these languages. Instead, these databases are compiled such that as many language families
(groupings of languages known to be related by common descent) as possible are represented.

Information in these phonological databases usually does not come in the form of audio
recordings, but as classifications based on phonetic/phonological features (IPA symbols for P-
BASE, an idiosyncratic encoding scheme for UPSID). This means that the notions of perceptual
distinctiveness and articulatory effort (Chapter 2) cannot be applied directly to these data. To
compare the outcome of the simulations to the crosslinguistic tendencies that can be found
in these datasets, it is therefore necessary to first convert them to the same format, i.e. give
some sort of phonological label to the results. The metric of DTW distance, discussed in
Chapter 2.2.2, will also be used for converting the articulatory/acoustic data of the simulations
to abstract phonological categories.

4.2 From auditory/articulatory data to phonemic classification

Although the articulatory synthesizer of Boersma was initially chosen for its ability to synthesize
many different types of consonants found in language, the intrinsic and imposed limitations

1http://www.linguistics.ucla.edu/faciliti/sales/software.htm
2http://aix1.uottawa.ca/˜jmielke/pbase/index.html
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Table 4.1: Overview of the 18 consonant labels assigned to the output of the model, sorted by manner
(rows) and place (columns) of articulation. The place categories ‘labial’ and ‘labiodental’ have been
merged; likewise, the coronal consonants and the palatal consonant /j/ have been grouped into a single
place category. Gaps in the table represent sounds deemed articulatorily impossible, either in natural
language or in the articulatory model.

Labial Coronal/palatal Velar Uvular Pharyngeal
Plosive p t k q
Trill r ö

Fricative B, v D G K Q
(Lateral) approximant w, V ô, l, j î

described in section 2.1 diminish the amount of possible phoneme labelings that may result
from the simulations:

• As the source of airflow in the model is determined through fixing the activity of the
Lungs parameter during search, the results are limited to the class of pulmonic egressive
sounds. This excludes implosives from appearing in the simulation.

• As the position of the larynx is fixed in search, ejectives will also not be generated in
the simulations.

• Because timing differences between different articulatory gestures are not allowed under
the constraints I put on Boersma’s model, clicks will not be present in the simulation
results.

• The fixing of the tension of the vocal cords through the Interarytenoid parameter excludes
voicing distinctions.

• The inability of Boersma’s model to accurately synthesize nasals, sibilant fricatives and
sibilant affricates effectively excludes these classes from appearing in the simulation.

Based on these limitations, a set of 18 IPA symbols was chosen to label the segments; Table 4.1
displays an overview.

The most accurate method of labeling the sounds with these symbols would be to have a
phonetically trained linguist annotate them manually. However, annotating the thousands of
segments generated in the simulations by hand is a very labour-intensive task, and possibly
introduces the danger of shaping the results toward a desired outcome. I therefore decided
to automate the labeling of segments generated by the model, using the method of dynamic
time warping on MFCCs described in section 2.2.2. For this I obtained four sets of comparison
template consonants. Each of these sets contains recordings of a male phonetician pronouncing
various consonant segments in an /a a/ context.3 Figure 4.1 illustrates how the templates
related to one another in perceptual space according to the DTW distance metric.

4.2.1 Incorporating articulatory features

As it turned out that labeling the sounds purely on the basis of auditory properties was quite
inaccurate, I have decided to also use articulatory information in classifying the sounds. By

3These sets of recordings were created by Peter Ladefoged, Peter Isotalo, Paul Boersma and Jeff
Mielke. The first two datasets are available online at http://www.ladefogeds.com/vowels/contents.html and
http://commons.wikimedia.org/wiki/Category:General phonetics respectively. The latter two were obtained
from their respective authors.
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Figure 4.1: A scatterplot representing the DTW distances between the 18 template segments (averaged
over four speakers) used to label the sounds resulting from the simulations. As in Figure 2.7 the 17-
dimensional space has been reduced to two dimensions using individual difference scaling.

comparing the shape of the vocal tract in each segment to the shape of a neutral vocal tract, the
tube in which the constriction is the smallest may be located. This tube is used to determine the
place of articulation for the sound to be labeled, and limits the set of 18 labels from Table 4.1
to the subset with this place feature. If the vocal tract is not notably constricted at any point,
the subset will be limited by manner of articulation Approximant instead. Next, dynamic
time warping is performed on MFCC representations of the sound and the subset of template
sounds to determine manner of articulation. Algorithm 4 details this procedure.

4.3 Phoneme frequency as a naturalness metric

Now that we have established a method to phonemically label the articulations emerging from
the simulations, the results can be compared to the crosslinguistic databases mentioned in 4.1.
The preferred approach would be to measure closeness of fit of the inventories to those found in
natural languages, as for example de Boer (2001) and ten Bosch (1991) did for vowel systems.
Unfortunately this is not feasible as the phonemic gaps listed in 4.2 are too large to meaningfully
compare natural consonant systems to the simulation results. Nasal consonants, fricatives and
voicing distinctions are quite common in natural systems, being present in approximately 98%,
91% and 68% of languages respectively (Maddieson 2008a), yet cannot be (completely) produced
in the current version of the model. The size and variation of natural consonant inventories is
therefore not reproducible in the model, making direct comparisons between inventories difficult.

An alternative approach, which is less affected by the phonemic gaps in the current model,
is to measure optimality of inventories through the phonemic quality of individual phonemes.
As Figure 1.1 shows, the distribution of different phonemes across languages is quite skewed;
most phonemes occur only in a fraction of languages, while a handful of phonemes are present in
the inventories of a large majority of languages. This supports the idea that certain individual
phonemes are somehow intrinsically preferable to others, perhaps because they occupy a spot
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Algorithm 4 Algorithm for labeling sounds

procedure LabelSound(s)
Calculate VocalTracts from s

for i to 175 do ⊲ (175 = number of tubes in neutral vocal tract)
widthsi

= width of tubei in VocalTracts

widthneuti
= width of tubei in VocalTractneut

differencei =
widthsi

widthneuti

end for
smallestConstrictionIndex = argmin

i∈{1...175}

(differencei)

Calculate standard deviation of difference
if standard deviation< 0.2 then ⊲ No notable constriction

Subset ← Approximant ⊲ Restrict to {/w/,/V/,/ô/,/j/,/l/,î/}
else

if smallestConstrictionIndex ≤ 65 then
Subset ← Pharyngeal ⊲ Restrict to {/Q/}

else if smallestConstrictionIndex ≤ 70 then
Subset ← Uvular ⊲ Restrict to {/q/,/ö/,/K/}

else if smallestConstrictionIndex ≤ 80 then
Subset ← Velar ⊲ Restrict to {/k/,/G/,/î/}

else if smallestConstrictionIndex ≤ 160 then
Subset ← Coronal ⊲ Restrict to {/t/,/r/,/D/,/j/,/l/,/ô/}

else
Subset ← Labial ⊲ Restrict to {/V/,/v/,/p/,/B/,/w/}

end if
end if
Synthesize(s)
for all 4 speakers in template sets do

for all labels l in Subset do
Calculate DTW distance(s, l)

end for
Normalize distances

end for
Calculate mean distance between speakers per label
return label with lowest distance

end procedure
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Table 4.2: Phoneme labels with their frequencies in P-BASE, and the log10 of this percentage which is
used as an index for phoneme optimality.

Label Phoneme group Frequency % in P-BASE Log frequency score

/p/ /p/,/b/ 97.81 1.99

/k/ /k/,/g/ 93.24 1.97

/j/ /j/ 88.50 1.95

/t/ /t/,/d/ 83.75 1.92

/w/ /w/ 78.83 1.90

/l/ /l/ 78.46 1.90

/r/ /r/ 59.67 1.78

/v/ /v/,/f/ 58.39 1.77

/G/ /G/,/x/ 29.19 1.47

/B/ /B/,/F/ 10.76 1.03

/q/ /q/,/ G/ 10.03 1.00

/K/ /K/ 7.48 0.87

/D/ /D/,/T/ 7.29 0.86

/V/ /V/ 5.10 0.71

/Q/ /Q/,/è/ 5.10 0.71

/ô/ /ô/ 3.10 0.49

/î/ /î/ 1.27 0.10

/ö/ /ö/ 1.27 0.10

in the abstract auditory space of Figure 1.4 that is optimal in both auditory terms (distinctive
from other possible consonants) and in articulatory terms (easy to produce). A good model
of consonant inventories should therefore predict a larger frequency for these phonemes. For
this reason, I use the estimated frequency of a given phoneme in natural language as a measure
of optimality. The source for these frequency estimates is P-BASE (Mielke 2008), as it is the
most recent and to my knowledge also largest (in terms of number of represented languages)
phoneme database available.

For each of the phoneme labels in table 4.1, I have looked up the relative frequency percent-
age of this phoneme over all languages in P-BASE, i.e. the number of languages possessing this
phoneme divided by the total number of languages in the database. In the case of articulations
which allow voicing distinction in the basic IPA set (i.e. plosives and fricatives), the frequency
of languages containing any phoneme of the voiceless/voiced pair was counted. The base 10
logarithm of these percentages was then used as the frequency score for a phoneme (see Table
4.3). The naturalness of an inventory is defined as the summed frequency score of all unique
phonemes in the inventory, divided by the size of the simulated inventory numSegments. In-
ventories which contain a relatively large number or uncommon or marked phonemes will be
scored as less ‘natural’. The next section will discuss a number of phenomena related to marked
phonemes that should be explained by a model of consonant inventories, and which can be
measured using the naturalness metric defined in this section.
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4.4 Hypotheses

4.4.1 The size principle

A number of trends and common properties found in phoneme systems were briefly mentioned
in Chapter 1. One such trend is that the size of a phoneme inventory correlates with the
number of rare or uncommon phonemes it contains. This is quite visible in vowel inventories,
where 3-vowel systems are almost exclusively made up out of the configuration {/a/, /i/, /u/},
while larger systems often contain these ‘corner vowels’ plus additional, rarer vowels. Com-
puter simulations such as Liljencrants and Lindblom (1972) and de Boer (2001) confirm that
this trend is replicated in computer simulations operating under simple phonetic principles.
Lindblom and Maddieson (1988) show that the size principle also applies to consonant sys-
tems; smaller consonant inventories usually contain only members from a ‘basic set’ of about 20
consonants. Larger consonant inventories mostly consist of members from this set, plus other
consonants which are more complex or ‘marked’.

Inventory size can be set as a parameter in the optimization model for consonant inventories
described in this paper. In a correct model of consonant phoneme distributions, the number
of rare segments in an inventory should correlate positively with the size of the simulated
inventory. The ability of the model to account for the size principle can therefore be tested,
using the naturalness metric defined in the previous section and the numSegments parameter
defining the size of the segment inventory S. This will be done in the next chapter.

4.4.2 Balancing maximal distinctiveness and minimal effort

In Chapter 1, the observation that phonemic systems balance between maximal distinctivity
and minimal articulatory effort was made. For vowel systems, the first property was shown to
be a deciding factor in the optimization model of Liljencrants and Lindblom (1972). The two
properties were combined in the vowel optimization model of ten Bosch (1991), showing that
conservation of effort may also play an important role in vowel systems.

Chapter 2 discussed how the two principles are formalized in a cost function for my optimiza-
tion model of consonant inventories. If the organization of consonant inventories is organized
along these lines, it is to be expected that some weighted combination of the effort cost and
distinctivity cost will perform better, i.e. result in an inventory containing more common con-
sonants, than just optimizing for optimal distinctivity. This hypothesis can be tested by setting
the relative weight of the effort cost function to various nonzero values and observing the effect
on the resulting inventories using the naturalness metric. A comparison of results under varying
settings of the effortWeight parameter will be made in the next chapter.
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Chapter 5

Results

In this chapter the simulation results are analyzed. First, an impressionistic analysis of the re-
sulting phonemes and inventories is given. Next, the results are quantitatively analysed through
the method described in 4.2, and the hypotheses put forward in 4.4 will be evaluated.

5.1 Qualitative analysis of results

Praat is able to draw a schematic representation of the vocal tract at any point during an
articulation. By taking several slices per second of an articulation and aligning these with the
synthesized sound resulting from the articulation, I was able to generate movie files from the
articulations. I used these movie files to obtain a general ‘impressionistic-phonetic’ description
of the articulatory and acoustic properties of the results.

The resulting inventories generally show perceptual dispersal: several distinct consonants
emerge from the simulations, especially in inventories of sizes 3 and 5. An interesting result is
that the results are almost always articulatorily distinct, even though this was not an optimiza-
tion criterion in any of the simulations. Rather, the optimization of perceptual distance seems
to cause, as a side effect, utilization of different muscle groups per segment. Also of interest
is that generally, manner of articulation seems to be the optimal way of making perceptual
distinctions within the inventories: the 3-segment inventories often contain a plosive-like sound
(usually /t/), a fricative-like sound (often /Q/) and an approximant-like sound. Figure 5.1 shows
an example of a 5 segment-inventory found in the model.

/t/ /Q/ /ô/ /p/ /q/

Figure 5.1: Schematic drawing (top) and spectrogram representation (bottom) of a 5-segment inventory
that resulted from search (with EffortWeight=0 ). The phoneme symbols above the images are those
assigned by the labeling algorithm.

When comparing the types of sounds resulting from the simulation runs to the phonemes of
natural languages, the most glaringly wrong prediction of the model is that sounds which involve
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a constriction very far back in the throat are quite abundant in the results. Natural languages
containing these segments, however, are quite rare (Maddieson 2008b, Mielke 2008). Figure 5.2
shows a paurticular type of articulation that showed up quite often in the results, which was
usually labeled as a pharyngeal fricative /Q/. The principally active muscle parameter in this
type of articulation is Mylohyoid, which causes the jaw to move downwards and backwards; as
it approaches 1, a constriction is created at the pharynx. If we assume that the rarity of these
types of sounds are mainly due to conservation of effort, the conclusion must be that the effort
function in the current version of the model is not yet sufficient.

Another shortcoming clearly visible in the results is that some of the resulting segments
are nearly vocalic - that is, the constriction and resulting sound are nearer to a vowel than
to a consonant. This is especially apparent in larger inventories and in simulations where
the effortWeight parameter was set to a high value. The results were nevertheless labeled as
approximant consonants, rather than vowels.

Figure 5.2: A still of the synthesized vocal tract during a segment that sounds like a pharyngeal fricative
/Q/. This type of segment emerged often during the simulations, despite its rarity in natural language.
The top of the picture shows a sagittal cross-section of the mouth and throat, the bottom represents the
relative tube widths at different points in the vocal tract.

.

Chapter 6.2 discusses how the model might be improved to alleviate the general shortcomings
listed above. The next section will provide a numerical analysis of the optimization results based
on the phoneme labels assigned to the segments.

5.2 Quantitative analysis of results

In the course of a simulation run, the optimization algorithm tries to maximally disperse the
segments in available acoustic space while minimizing the values of the different muscle param-
eters. Figure 5.3 shows the effect of this optimization on the DTW distance metric over the
course of a single simulation run. The results generally show this type of pattern, with the
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perceptual distance between phonemes quickly rising in the first few rounds of the simulation,
after which growth tapers off steadily.
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Figure 5.3: Minimum, mean and maximum DTW distance between segments in one run of the simulation
(8 segments, relative effort weight at zero). The pattern shown here is typical for most of the simulation
runs.

However, as de Boer (2006) points out, it is not particularly interesting or informative to
show that an optimization algorithm which aims to minimize a cost function reaches a certain
minimum. What we are interested in are the linguistic consequences of the optimization process:
namely, if dispersion of consonants does indeed take place during the optimization procedure;
and if so, under what parameters the end results resemble natural language most closely. For
this, I will use the naturalness score of phonemes established in 4.3.

5.2.1 Overview

Table 5.2.1 gives an overview of the number of simulations executed to test the model under
different values of the effortWeight and numSegments parameters. Effort weight was variously
set to the values {0, 0.25, 0.5, 0.75, 0.9}. Since setting effort weight to 1 would trivially result
in only ‘effortless’ neutral articulations, this was not attempted in the simulations. For each of
these settings, inventories of sizes 3, 5 and 8 were created. At least 10 runs of the model were
executed under each possible combination of these parameter settings; an additional 10 each
were executed for effortWeight= 0, to get a more accurate view of the effect of inventory size
independent of effort weight.

5.2.2 Results for individual phonemes

Figure 5.4 shows the distribution of segment labels after the final round at the end of all 180
simulations. When compared to the frequencies found for these phonemes in P-BASE (see Table
4.3, it becomes clear that the predictions of the model are quite inaccurate in some respects.
The phonemes /Q/, /V/ and /î/ are much more frequent in the simulation results than they
are in natural language. The latter two, however, are especially frequent in the outcome of
simulations where the effortWeight parameter has a relatively high value. Figure 5.4 also shows
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Table 5.1: Overview of the number of simulation runs for the values of the effortWeight and num-
Phonemes parameters

number of segments 3 5 8

effortWeight = 0 20 20 20

effortWeight = 0.25 10 10 10

effortWeight = 0.5 10 10 10

effortWeight = 0.75 10 10 10

effortWeight = 0.9 10 10 10

that these two approximant phonemes are much less likely to appear in the results if only
perceptual distinctivity is taken into account.

The palatal approximant /j/ and the alveolar trill /r/ do not occur at all in the results,
while both are attested in a majority of the languages represented in P-BASE. In the case of
/r/, it might be that the specific limitations I have imposed on the articulatory model prevent
this phoneme from emerging in search; Boersma (1998) reports that the articulatory model is
able to synthesize an utterance sounding like /ErE/, but does not specify the settings of the
articulatory parameters required to achieve this.

Two segments which are reported as very frequent in P-base, the bilabial plosive /p/ and
the velar plosive /k/, are a lot rarer in the results. For instance the uvular plosive /q/ is more
frequent in the resulting segments than the velar plosive /k/. In natural language, however, the
reverse is the case: /k/ is nearly ubiquitous in the world’s languages, whereas /q/ is present in
only about 10 percent of P-BASE languages. As with the overrepresentation of /Q/, it is likely
the case that the amount of effort involved in making a uvular plosive is not reflected accurately
in the effort metric.

Figure 5.4: An overview of the frequencies of each of the phoneme labels in the end results for all
simulations (left) and for simulations with effortWeight=0 (right). Some rare phonemes like /Q/, /V/
and /î/ occur quite often in the results; some phoneme labels are much less frequent when the relative
weight of effort cost is low.
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Table 5.2: p values of 2-sided t-tests comparing the effect of zero effort to the effort values 0.25, 0.5, 0.75
and 0.9. Degrees of freedom was 28 for all tests. Starred values are significant at α < 0.05

we=0.25 we=0.5 we=0.75 we=0.9

3 phonemes 0.39392 0.83581 0.49550 0.00002*

5 phonemes 0.56597 0.15946 0.17014 0.00001*

8 phonemes 0.94417 0.50545 0.15307 0.00000*

5.2.3 Effect of effort cost weight on naturalness

To test the effects of varying the effort parameter, the results for several simulation runs under
differing values of the effortWeight parameter were compared to simulation runs with this
parameter set to zero. Significance was tested using Student’s t-test (two-sided, α = 0.05).
Figure 5.5 and Table 5.2 summarize the results.
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Figure 5.5: Comparing the effect of different values for the effortWeight parameter. The vertical axis
shows the naturalness score (summed frequency score of all unique phoneme labels divided by numSeg-
ments). Red bars show plus and minus one standard deviation. Regardless of the number of segments,
in the range from 0.25 to 0.75 no significant effect of effort is found; if effortWeight is 0.9, there is a
significant negative effect on the naturalness of the resulting inventory.

The results show that for intermediate values (0,25, 0.5, 0.75) of the effortWeight parameter,
no significant effect on the naturalness of the resulting inventories is found. If effortWeight is set
to the high value of 0.9, there is a significant negative impact on naturalness of the results. This
is caused by the large number of (relatively rare) approximant phonemes appearing in inventories
generated under a high value for the effort weight parameter, as shown in the previous section.

5.2.4 Effect of inventory size on naturalness

Figure 5.6 shows the naturalness scores for inventories of 3, 5 and 8 segments under various
values of the effortWeight parameter. To test the hypothesis that rarer phonemes should appear
more often in larger inventories (as is generally the case in natural language), I calculated the
Pearson’s ρ correlation coefficient between the value of the parameter numSegments and the
naturalness score of the inventories generated with effortWeight = 0. The correlation is -0.214,
which is not significant (α = 0.025, one-tailed, df=58). This indicates that the model does not
accurately predict the size principle (Lindblom and Maddieson 1988) acting on the consonant
inventories of natural languages.
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Figure 5.6: Effect of inventory size on naturalness. As in figure 5.5, the naturalness scores indicated on
the vertical axis, and red bars indicate plus and minus one standard deviation.
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Chapter 6

Conclusion and discussion

6.1 Summary and analysis of results

This paper presents a computational model of consonant inventories in natural language. The
model is based on previous simulations of vowel systems, in which vowel configurations similar
to those of natural languages were found by optimizing for maximal perceptual contrast and
minimal articulatory effort. These results support an emergentist explanation of crosslinguis-
tic patterns in phoneme inventories. Consonant inventories, although more diverse than vowel
inventories, are often assumed to emerge under similar constraints. To extend the vowel opti-
mization methods to the more complex domain of consonants, a novel optimization method was
developed. This method uses an articulatory synthesizer (Boersma 1998) to explore the articu-
latory and acoustic space available in consonant production, and a model of acoustic dispersion
based on Dynamic Time Warping (DTW) of pairs of signals thus synthesized. DTW was also
used to give a phonemic label to the resulting sound signals.

The articulatory model used to produce consonants was regrettably found to be incapable
of synthesizing a number of consonant sounds that are quite abundant in natural language.
As a consequence, the phonemic repertoire available to the optimisation model is limited in
comparison to that of real speakers. Because of this, direct comparison of the configurations
emerging from the model to those found in the various languages and language families of the
world was not feasible. Instead, an alternative evaluation method was developed, in which the
naturalness of an inventory was defined as a function of the relative frequencies of its members
in a database of phonological inventories (P-BASE, Mielke 2008).

A qualitative analysis of the resulting inventories confirmed that dispersion of consonants
takes place in the optimization algorithm. As in natural language, certain phonemes were
present in the inventories much more frequently than others; at the same time no single ‘op-
timal’ solution emerged from the results. This is probably due to the complex shape of the
optimization landscape, and in fact reflects the diversity of consonant systems found in language
(there is generally much greater variety for consonants than there is for vowels). However, the
results are not very accurate with respect to the quality of the resulting consonants. Consonant
phonemes which are abundant in natural languages, such as /k/, /j/ and /p/, were absent or
only marginally present in the simulation results. At the same time, several phonemes which
occur only rarely in natural language such as /Q/ and /q/ are quite frequent in the labeled
results. Generally, the model seems too inclined towards consonants made in the back of the
oropharyngeal cavity. The optimality of these consonants according to the model is not reflected
in natural language data.

The naturalness metric was used to test two hypotheses. The first concerns the size principle,
which states that there is a positive correlation between the number of phonemes in an inventory
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and the relative number of rare or more complex phonemes it contains. This would translate to
a lower naturalness for larger inventories in the model. However, no significant correlation was
found between the number of phonemes modeled and the naturalness scores of the resulting
inventories. The second hypothesis concerned the proposed balance between maximal inter-
phoneme distinctiveness and minimal articulatory effort. Simulation results did not confirm
that these constraints apply to consonant inventories: varying the relative weight of articulatory
effort in the cost function did not have a significant positive effect on naturalness.

Quantitative analysis of the results thus supports the conclusion that unlike vowel inven-
tories, patterns in consonant inventories do not emerge from a combination of the phonetic
principles of minimal effort and maximal distinctiveness. However, I believe the qualitative
analysis suggests that the optimization approach may not be a dead end. The overrepresenta-
tion of crosslinguistically rare segments in the results indicates that some aspects of consonant
inventory optimality are not represented faithfully in the current version of the model. The next
section therefore lists a number of improvements that could be made on the model to better
account for linguistic data.

6.2 Future work

6.2.1 Improving the optimization model

As set out in chapter 2.1, the articulatory model of Boersma (1998) used in the optimization
model described in this paper was constrained in a number of ways. Some of these constraints
are intrinsic to the synthesizer, such as the inability to accurately synthesize sibilants and
nasals. I imposed additional constraints to limit the size of the search space. Abstracting from
certain properties of sounds is to some extent necessary in a phonetic model, but in this case
the predictive power of the model is too severely hampered by the abstractions. Given its
inability to synthesize the important classes of nasal and sibilant consonants, in retrospect the
articulatory model of Boersma does not suffice for accurate modelling of consonant inventories.
In order to improve the optimization model it will therefore be necessary to either switch to
another articulatory model, such as that of Birkholz (2005), or to extend Boersma’s model so
that it can account for a richer set of sounds. Increasing the phonetic space available to the
model will also allow for a better comparison of model output to natural language data.

While increasing weight of the effort cost parameter was shown to impact the results, it
did not have the hypothesized effect of increasing naturalness of the resulting inventories. I
believe this does not disprove the notion of conservation of effort ; rather, the effort cost function
introduced in this paper likely does not reflect actual articulatory effort well enough. A first step
towards improving the effort cost function is probably to increase the differences in effort cost for
individual muscle parameters; particularly the articulations resulting in uvular and pharyngeal
constrictions should be punished more severely in the effort cost function. The assumption that
effort is directly determined by muscle activity may also be too naive. Considerations like the
precision required for a gesture (or robustness to articulatory fluctuations, see Stevens 1972)
may also contribute to the concept of articulatory effort.

Perceptual distance is defined purely in auditory terms in the current model. However, while
not strictly necessary to acquire and use speech, visual perception also plays an important role in
speech perception, aiding in discriminating speech distorted by noise (Sumby and Pollack 1954)
and able to overrule auditory information under certain circumstances (McGurk and MacDonald
1976). It is plausible that visually distinct articulations, like bilabials, may be generally pre-
ferred in the world’s languages for these reasons. The lack of a visual modality in the current
model may be partially responsible for the unrealistic proclivity toward sounds made in the
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back of the throat.
In terms of evaluation of the results, the automatic labeling of simulated phonemes through

DTW comparison with template phonemes is another component of the model that can be im-
proved. While manually labeling large numbers of synthesized phonemes is too labour-intensive
to classify all results by hand, the classification algorithm could be improved through supervised
training on a number of hand-labeled examples. For a more principled analysis of the results, it
is also necessary to develop an evaluation method which is able to compare resulting inventories
as a whole to the inventories of natural languages, instead of basing naturalness of inventories
on properties of its individual members. A feature-based approach similar to that of Mielke
(2005) might be taken here.

Finally, the current model could be improved by modelling sound variation in a larger
context. As is, the model only allows for limited variation within a static /@ @/ context. This
serves to keep the search space of the model, and the range of possible results, within reasonable
limits. Actual articulation of speech sounds, however, is often conditioned by the phonemic
environment in which the sound occurs. A more thorough model of consonant inventories
should therefore be able to account for this, for instance by allowing more variation on the
vowel context surrounding the synthesized consonants.

6.2.2 Towards a non-teleological, speaker-oriented model

The model described in this paper optimizes at the level of the language. While many common
sound changes and inventory states can be stated in terms of global processes such as acoustic
dispersion and effort minimization, this ultimately does not explain the mechanisms responsible
for sound change and inventory formation. Rather, these global processes are thought to be
set in motion by local processes at the level of the speaker and hearer (Ohala 1981, Blevins
2004). Computer simulations confirm that optimal phoneme inventories may emerge as a result
of small-scale interactions between simulated individuals (agents) who do not explicitly aim to
optimize the inventory (de Boer 2001).

Many of the components of the current model, such as the use of articulatory synthesis
and the use of techniques from speech recognition to define perceptual similarity or distance,
could probably be incorporated without much trouble in an agent-based model of consonant
inventories. An agent-based model could also incorporate the concept of learnability, reflecting
the fact that some articulations are more difficult to master than others, and that learned motor
gestures can be reused in other articulations. However, as the computational cost of realistic
articulatory synthesis is quite high at the moment of writing, the computing power required for
modelling even a modest number of interacting agents equipped with such a synthesizer may
yet be too substantial.
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