
 

APPENDIX A: 
 
AUTOMATIC SLOPE MEASUREMENT ON 
FORMANT TRACKS* 

This appendix describes the theory behind the peak-picker which 
was used in chapter 2 to determine the maximal and minimal 
values of formant tracks. The peak-picker was based on an 
automatic segmentation algorithm that dissects formant tracks 
into near-linear segments. Peaks and troughs are the points 
between segments where the formant slopes switch sign. 

*Adapted from: Van Son, R.J.J.H. (1987). "Automatic slope measurements on formant 
tracks", Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam 11, 
67-78. 
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Introduction 

In chapter 2, we used a peak-picker to determine the point of extreme F1 or 
F2 values. This peak-picker is based on an automatic segmentation algo-
rithm to measure formant track slope. This appendix describes that algo-
rithm. 

With natural speech it is often very difficult to measure spectral changes 
in a speech signal. The spectrum of a constant or slowly changing signal 
can be determined almost to the theoretical limits. The measurements of a 
rapidly changing signal, however, suffer from a lack of theoretical under-
standing and comprehensible representation. The central question is which 
changes are to be measured on a given set of spectra, measured on different 
points in time (e.g., spectral envelop, band-filters, harmonics). Even the 
status of a spectrum, measured on a changing signal, is often not clear due 
to the implicit assumption of stationarity that underlies most spectral 
representations. 

Interest in the spectral changes of speech signals is most often concen-
trated on the behaviour of spectral peaks. There are several ways to mea-
sure and represent spectral peaks. One possibility is to transform the 
speech waveform into a spectrum, essentially making some type of time 
representation of bandpass filter outputs or the energy distribution result-
ing from a Fourier Transforms. The problem is to identify peaks and follow 
their course in time and frequency. This is no trivial matter because it is 
difficult to decide what is a peak and what is not and which parts of the 
spectrum are instances of the same peak at subsequent points in time.  

Another possibility is to formulate a model of human speech production 
and measure the changes in the parameters of this model that affect the 
spectral contents of the speech signal. This last approach is followed in this 
paper with the use of Linear Predictive Coding (LPC). This LPC analysis 
can encode the spectral peaks of the speech signal with a fixed number of 
variable, second order, bandpass filters. The spectral parameters of interest 
are the centre frequency and the bandwidth of each peak encoded this way. 
Here a method will be described for measuring the rate of spectral changes 
as used to study the course in time of spectral peaks. For this kind of study 
all spectral peaks have to be defined at all times. In normal LPC analysis, 
with the Levinson algorithm, sometimes a peak is "lost". To prevent this 
disturbance, a different algorithm is used here for the LPC analysis, the so 
called Split-Levinson algorithm. This algorithm was implemented by 
Willems (1986, pp.34-40). 

Choosing an LPC representation has some advantages over approaches 
that use FFT or banks of fixed band-filters. It is possible to manipulate all 
parameters of an LPC analysis and still resynthesize recognizable speech. 
Small changes in the parameters result in small changes in the resynthe-
sized speech. In this way it is possible to test for clues for speech synthesis 
or speech quality by changing the relevant parameters and, the other way 
around, to hear whether a change in parameters removes the quality or 
clue of interest. 

The spectral peaks that result from LPC analysis are often called for-
mants. This is because the production model that forms the root of this ap-
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proach, can model the effects of resonances in the speech organs quite well, 
at least in vowels. These resonances are, by definition, formants. The fit be-
tween the model and reality is, however, not good enough to ensure a per-
fect fit between the LPC spectral peaks and the formants. Sometimes there 
is a discrepancy between the measured peaks and the real formants. 
Resynthesized speech however, mostly is of acceptable quality. In spite of 
the imperfect fit, the spectral peaks extracted from an LPC analysis will be 
called formants hereafter. 
 
 
A.1 Modeling formant tracks 

If the objective of measurement is to determine the spectral change, i.e. the 
spectral slope, then it is necessary to perform differentiations on the spec-
tral data. Differentiation is an operation that is very sensitive to random 
measurement errors or noise. It amplifies those errors and noise in such a 
way that even small, local errors can completely corrupt slope measure-
ments. To deal with this phenomenon it is necessary to remove, at least 
part of, the noise from the data. To successfully separate the desired signal 
and the noise, it is necessary to develop a model of the signal and the noise. 
If there would have been a model for speech production available from 
which accurate estimations of the course of formants in natural speech 
could be obtained, the problem could be solved without major problems. But 
since such a model is not available yet, it is necessary to develop an accu-
rate description of the signal without much reference to production. 

It is very often possible to approximate a signal of unknown composition, 
a posteriori, to any desired accuracy by constructing a sum of model func-
tions. The remaining discrepancy between data and description is treated 
as noise and removed, only the modeled part is kept. It is important to 
choose the right class of functions to model the signal. An inappropriate 
model function will lead to a disturbed signal. Functions that can be made 
orthogonal are to be preferred.  

Choosing functions for modeling is always a guess. The guess made here 
is that an LPC formant track, f(t), on a given interval [t0,t1> can be mod-
eled a posteriori with any desired precision with a polynomial function that 
has the form: 

 
f(t) = a0 + a1·t + a2·t2 + .... (A.1) 

• 
= Σ aj·tj  

j=0 
= H•(t) 

 
with: t �  [t0,t1> 

 
For any given maximal order J of the polynomials the coefficients aj of 

 
J 

HJ(t) = Σ aj·tj (A.2) 
j=0 
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are chosen such that HJ(t) is the best approximation of f(t) for this order of 
polynomials on this interval. It is possible to rearrange the terms of equa-
tion A.2 in such a way that HJ(t) = bJhJ(t) + HJ-1(t), i.e. the best fitting 
polynomial of order J is the sum of the best fitting polynomial of order J-1 
and some order specific polynomial hJ(t). The hJ(t) form a set of orthogonal 
polynomials. Using a set of orthogonal functions to describe a function f(t) 
has great methodological and computational advantages, especially if J • 2. 
A short description of one such set of orthogonal polynomials, the shifted 
Legendre polynomials, is given in Appendix B. 

After the calculations of HJ(t) the original formant track is replaced by 
 
 f(t) = HJ(t) + ε(t) (A.3) 
 
in which ε(t) is an error term. For high orders of J it will be difficult to de-
termine (a posteriori) the best intervals [ti,ti+1> of f(t) to fit HJ(t) on. The 
order of the model function should therefore be as low as possible. For mea-
suring formant slopes (=velocity) an order of 1 will do, for measuring for-
mant acceleration an order of 2 is necessary. In the discussion below an or-
der of 1 will suffice, the order indication of the model functions H1(t) will be 
omitted hereafter. 

For this first order polynomial model to make a good fit it is important to 
choose appropriate intervals. The formant track is modeled as a succession 
of simple straight line segments. If the boundaries between successive line 
segments are chosen wrongly, the resulting modeled track will hardly have 
any resemblance to the originally measured formant track. In this model 
therefore the original formant track f(t) is divided into intervals Ti = 
[ti,ti+1> that do not overlap. In every interval Ti the formant is modeled 
with: 

 
 f(t) = Hi(t) + ε(t) = ai·t + bi + εi(t) (A.4) 
 
 t �  Ti = [ti,ti+1> 
 Hi(t): a straight line on Ti 
 εi(t) : the error term on Ti, defined by  εi(t) = f(t) - Hi(t) 
 
Next εi(t) can be modeled by a noise term ei(t) with a Gaussian distribution 
with expected value E(ei(t)) = 0 and variance E(ei(t)2) = σi2. Hi(t) becomes 
the straight line that minimizes σi2. In this model the value of the formant 
at time t �  Ti  is Hi(t) and the slope is ai.  

The assumption that εi(t) can be modeled by a Gaussian distributed 
noise term is made for convenience. It is possible to use other distributions 
but calculating the best fit becomes time consuming and for the simple ex-
ample described here there is no point in using any other distribution. The 
minimizing criterion for the best fitting function can be altered to empha-
size the errors in special parts of the interval, e.g. the centre of the interval, 
by using a weighting function.  

 
The preceding argument can be summarized as follows: 
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With LPC analysis it is possible to extract formant frequencies from a 
speech signal. These formant frequencies form tracks in time. Each of these 
tracks, represented by the function f(t), can be modeled by dividing the 
track in non-overlapping intervals Ti and replacing the measured track f(t) 
with: 

 
 f(t) ♠ Hi(t) + e(t) = ai·t + bi + ei(t) (A.5) 
 
 t �  Ti = [ti,ti+1> 
 Hi(t): a straight line on Ti 
 ei(t) : a Gaussian noise term on Ti, defined by   

E(ei(t))  = 0 
E(ei(t)2) = σi2 (i.e., independent of t) 

 
In equation A.5 the best guess for Hi(t) is the linear regression line on Ti. 
 
 
A.2 Segmentation 

In the above model, segmenting the tracks in independent intervals is cru-
cial for a good fit of the model on the tracks. Such intervals are called line 
segments here. A line segment is defined as the largest interval in which 
the formant track can be modeled by a straight line according to equation 
A.5. The segmentation can be done in an automatic way if there is a small-
est interval length τ for which there is no smaller line segment. If there is 
such a smallest length of a line segment, then it is possible to find all the 
boundaries between the segments. This is done by deciding whether a test 
segment of the track (called ∆0 ) with a length smaller than or equal to the 
smallest interval length (i.e., |∆0| ≤ τ) contains a boundary between line 
segments. If it is concluded that the test segment does contain a boundary 
between line segments, then the best point to place this boundary can be 
found. This test segment is shifted over the track until all possible bound-
aries are found. 

The decision whether or not the test segment contains a boundary be-
tween line segments is made by trying to find a subdivision of ∆0 in two 
sub-segments ∆1 and ∆2 that have a lower expected value for the remaining 
variance of their regression lines (called E(v12) and E(v22)) than the undi-
vided test segment (called E(v02)). If there is no boundary present in ∆0, 
that is, ∆0 is completely confined in a segment (Ti) of the track with only 
one straight line segment, then all subdivisions of ∆0 will have the same 
expected values for the remaining variance of their regression lines as ∆0 
itself. Or, for all subdivisions ∆1 and ∆2 of ∆0 lying in segment Ti : 
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 E(v02) = E(v12) = E(v22) = σi2 (A.6) 
with:  
E(v02), E(v12), E(v22): the expected values of the remaining variance 

of the regression lines in the segments ∆0, ∆1 and ∆2 
v02, v12 and v22: the estimated or calculated values of the remaining 

variance of the regression lines in the segments ∆0, ∆1 and ∆2 
σi2 : the variance of the model noise term in segment Ti (cf. equation 

A.5) 
If, however, the test segment ∆0 contains a boundary between two seg-
ments, Ti and Ti+1, with different model lines (not only different noise 
terms), then there exists at least one subdivision of ∆0 in two segments ∆1 
and ∆2 that has a lower expected value of the remaining variance than the 
test segment itself. Or 

 
 |∆0|·E(v02) > |∆1|·E(v12) + |∆2|·E(v22) (A.7) 
 
 with: |∆0| = |∆1| + |∆2| the lengths of the segments 

 
The subdivision with the lowest remaining variance,  |∆1|·E(v12) + 
|∆2|·E(v22), has expected values of the remaining variance of the regres-
sion lines that are equal to the variances of the noise terms in Ti and Ti+1. 
That is: 

 
 E(v12) = σi2 (A.8) 
 E(v22) = σi+12 
and 
  |∆1|·E(v12) + |∆2|·E(v22) =  |∆1|·σi2 + |∆2|·σi+12 
 
These equations are valid for a continuous formant track and then for one 
for which all parameters are known a priori (we used espectation values). If 
track parameters have to be estimated from a limited number of measuring 
points, then equation A.7 will become: 

 
 n0·v02 > n1·v12 + n2·v22 (A.9) 
 

with: n0 = n1 + n2 the number of measured points in the segments 
∆0, ∆1 and ∆2 

 
If a subdivision is found for which this inequality holds, then there is a 
segment boundary in ∆0. The best guess for the position of this boundary is 
the point that separates the sub-segments ∆1 and ∆2 with the lowest value 
of n1·v12 + n2·v22. If this value is not equal to zero then take this subdivi-
sion and rewrite equation A.9 to: 

 
ϕ2 = { (n1+n2)·v02 - (n1·v12+n2·v22) } / {n1·v12+n2·v22} > 0 (A.10) 

 
ϕ2 Is the largest value possible for the quotient on this test segment (see 
figure A.1). If both sides of equation A.9 are equal to zero, there is no 
boundary in the test segment. If only the right hand side of equation A.9 is 
equal to zero, then there is a boundary in the test segment. Because of def-
inition and the fact that v02 is calculated from the same points as 
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n1·v12+n2·v22 is calculated, ϕ cannot be smaller than zero. It is however 
easily seen that ϕ > 0 is possible with no boundary present.This erroneous 
boundary detection results from stochastic errors in the estimators v02 , v12 
and v22. For this reason equation A.10 should be changed to: 

 
ϕ2 > δ2 (A.11) 

 
for detection of a boundary. δ Is a dimensionless number which gives a 
threshold for detection in numbers of standard deviations difference be-
tween (n1+n2)·v02 and the smallest possible n1·v12+n2·v22 value in the test 
segment. 

Because there are different numbers of points involved in calculating the 
different estimated variances, it is important to use unbiased estimators. 
Here the following unbiased estimators are used: 

 
n1+n2 

v02 = { Σ (f(ti) - H0(ti))2 } / {n1+n2-2} (A.12) 
i=1 

and 
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Figure A.1: An example of a formant track f(t) and the calculated values of the parameters of 
equation A.10 on a test segment ∆0 (see text for explanation). The division used is indicated by 
a dashed line and is the one with the highest value of ϕ2. ∆0 is a test segment with n1+n2=100 
points. ∆1 and ∆2 are the two neighbouring sub-segments of ∆0, each containing 
n1=n2=50 points. H0, H1 and H2 are the regression lines on these three segments. It can be 
seen that the test segment, ∆0, is chosen too large. Three line segments are actually present 
inside the test segment ∆0, which results in a total of two boundaries. But inside a test segment 
only one boundary between line segments can be found with the method described here. As is 
shown in this figure.  
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n1 n2 
v122 = { Σ (f(ti) - H1(ti))2 + Σ (f(tj) - H2(tj))2 } / { n1+n2-4} (A.12') 

i=1 j=1 
with: v122 = { n1·v12+n2·v22 } / { n1+n2 } 
ti �  ∆1 
tj �  ∆2 
H0(t), H1(t) and H2(t) the regression lines in the segments ∆0, ∆1 

and ∆2  
 

In this notation ϕ2 will become: 
 

ϕ2 = { v02 - v122 } / v122 > δ2 (A.13) 
 
for boundary detection. 

Two assumptions are critical for the fit of the model track to the formant 
track. First there is no more than one segment boundary in any part of the 
track with a length ≤ τ, with τ being defined as some minimal length 
greater than or equal to the length of the test segment. Second the formant 
tracks consist of straight line segments with additive Gaussian noise. If the 
first assumption does not hold and a test segment contains two or more 
segment boundaries, then the behaviour of ϕ2 will become dependent on 
where the boundaries are inside the test segment. The detection and as-
signment of boundaries between line segments becomes very erratic. If the 
second assumption does not hold and the formant tracks are curved, then 
boundaries will be placed in such a way that the regression lines will fit the 
curve with more or less constant variance. 

 
In an actual implementation of the described boundary detector one shifts 
the test segment one point at a time and accepts only subdivisions with 
lowest v122 which divide the test segment in two parts of equal length. This 
secures the use of the most accurate estimation of v122 for boundary detec-
tion. Every boundary is shifted in the centre of the test segment only once 
and so can be detected only once. 

To calculate two regression lines in a test segment, this segment must 
contain at least 6 points (three points for each regression line). This con-
straint determines the minimal time resolution needed for the formant 
measurements. 

 
 

A.3 Segmentation of several tracks simultaneously 

If more than one formant track is used simultaneously to detect syn-
chronous segment boundaries, a total v02 and a total v122 are calculated by 
summing the individual v02 values for all tracks and by summing the indi-
vidual v122 values for every subdivision of the test segment for all tracks. 
Equation A.13 for boundary detection will not change, but total values will 
be used for the estimated variances instead of individual values. This is the 
equivalent of treating the frequency values of different tracks as indepen-
dent dimensions and stating that each segment contains a multidimen-
sional straight line. 
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A.4 Other parameters for detecting boundaries 

The method to detect boundaries in formant tracks described above is 
purely statistical. It is possible to use other clues to find those segment 
boundaries. For example, a change in the voicing of speech (voiced to un-
voiced or the reverse) signifies an important change in speech that is likely 
to have an important effect on formant tracks. It is also possible to use 
threshold values for the energy of the speech signal or other threshold val-
ues to find important changes in the signal. Of all possible parameters that 
could be used to detect segment boundaries, only the voicing transition is 
currently implemented, complementary to the formant tracks themselves, 
of course. 

 
 

A.5 Comparing straight lines 

After the segmentation, the formant track is divided into a large number of 
segments. The regression lines of many of these segments will not differ 
markedly from that of their neighbours. It is possible to remove a consider-
able number of those segment boundaries and merge segments by compar-
ing the regression lines of neighbouring segments. 

Comparing straight lines is done by calculating a distance between lines 
in a shared interval. The distance of the straight lines in two neighbouring 
segments Ti and Ti+1 is defined here as the Root Mean Square difference 
between the two lines in the total interval (Ti ≈ Ti+1). The difference be-
tween the lines is measured perpendicular to some standard line. This 
standard line can be the time axis, a regression line through the combined 
interval, the bisector line that divides the arc between the lines evenly in 
two, or it can be some other line. Using the bisector line as the standard 
line for distance measurement results in the shortest distance between 
lines and is currently implemented. 
 
The distance between two lines is calculated as follows. Define two straight 
lines (see figure A.2): 

g(t) = a·t + b 
h(t) = c·t + d 

The distance between these two lines is defined here in the interval [ 0,T >. 
Any other interval can be transformed to this interval easily. The distance 
is defined perpendicular to the bisector line. The bisector line between g(t) 
and h(t), i.e. the line that divides the angle γ into two equal halves, is calcu-
lated as follows. 
Define the bisector line as:  

 
 b(t) = e·t + f 
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The angle between g(t) and h(t) is called γ and is: 
 

 γ = arctangent ( (a-c) / (1+a·c) ) 
 
define:  
 
 Γ = tangent ( γ / 2 ) 

 
then the parameters of the bisector line become: 

 
 e = ( c+Γ ) / (1-c·Γ) 
 f = { (1+c·e)·b + (1+a·e)·d } / { 2 + (c+a)·e } 

 
To calculate the distance perpendicular to b(t) all lines are rotated and 
translated such  that b(t) lies on the horizontal axis. In this reference frame 
the new lines g'(t) and h'(t) are: 

 
 g'(t) = a'·t + b' 
 h'(t) = c'·t + d' 
 
and a' = { a-e } / { 1+a·e } 
 b' = { b-f } · • [ { a'2+1 } / { a2+1 } ] 
 
 c' = { c-e } / { 1+c·e } 
 d' = { d-f } · • [ { c'2+1 } / { c2+1 } ] 

 
The distance D is defined in this reference frame as: 

 
T 

 D2 = [ • { g'(t)-h'(t) }2 dt ] / T  
0 

 
This can be simplified to: 

 
 D2 = ( a'-c' )2 · T2 / 3 + ( a'-c' ) · ( b'-d' ) · T + ( b'-d' )2 

 
The mean distance is D. 
 

t –> T0

g(t) = a·t + b

h(t) = c·t + d

γ

 
Figure A.2: Two straight lines, g(t) and h(t), with an angle of γ in between. 
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The mean line distance, defined as above, depends on the total interval 
length and tends to infinitely large values if the interval length becomes in-
finite. So this distance is not a quality of the two lines but of the two lines 
in an interval and depends on the interval. Long intervals must resemble 
each other more than short intervals in order to be merged into one inter-
val. This distance can be calculated over several formants simultaneously 
by treating each formant as an independent dimension and the lines as 
multidimensional straight lines. The total squared distance is calculated by 
summing the individual squared distances. 

Using the line distance to remove unwanted segment boundaries gives 
the opportunity to segment with high sensitivity and to remove excess 
boundaries afterwards. This is important because while the segmentation 
stage has only a narrow, local, scope, the comparing stage has a scope that 
can be infinite in principle. A local scope is noise sensitive and error prone. 

 
 

A.6 Conclusions 

An implementation of the theory described above was made on a µVAX II 
mini-computer. Some minor changes were introduced. First, the condition 
that there should be no more than ONE segment boundary in the test seg-
ment was relaxed. Instead of this strict condition, only a minimal segment 
length was required. This proved to work well. Second, it appeared that the 
condition of dividing the test segment into two equal sized sub-segments to 
signal a segment boundary sufficed to select only few excess boundaries. 
There was no need for an additional threshold for boundary detection (δ2 in 
equation A.11). When a minimal RMS line distance is used to decide 
whether a boundary separates distinct parts of the formant track, then it is 
possible to eliminate these excess segment boundaries as well as some oth-
ers that do not separate distinct parts of the formant track. The above the-
ory was used to implement a peak- and trough-picker. This peak- and 
trough-picker was used in chapter 2 to determine the optimum point for 
taking cross-sections through vowel realizations (method formant). 





 

APPENDIX B:  
 
CALCULATING LEGENDRE POLYNOMIAL 
COEFFICIENTS 

Legendre polynomial functions are used in chapter 4 to quantify 
formant track shape. The definition of these functions and the 
way the numerical calculation of the Legendre polynomial 
coefficients was performed, is described in this appendix. 

 
Adapted from: M.Abramowitz, I.A.Stegun, Handbook of mathematical functions, Dover 
publications 19659, National Bureau of Standards 196410. The sections on orthogonal 
polynomials (pp.774,780,798) and numerical integration (pp.886-887) 



162 Appendix B 

 

B.1 Shifted Legendre polynomials 

A Legendre polynomial of order J is a function defined for t �  [-1,1] or t �  
[0,1] of the form: 

J 
LJ(t)=Σ aJj·tj 

j=0 
 

The functions defined on t �  [0,1] are called shifted Legendre polynomials. 
Shifted Legendre polynomials are orthogonal polynomials. That is, they 
obey the relation:  

 
1 
• LI(t)·LJ(t) dt  = 0 if I•J 

0 
= hJ • 0 if I=J 

 
and for the Shifted Legendre polynomials: hJ = 1/{2·J+1} 

 
The first five polynomial functions are (see Abramowitz and Stegun, 1965): 

 
L0(t) = 1 
L1(t) = 2·t - 1 
L2(t) = 6·t2 - 6·t + 1 
L3(t) = 20·t3 - 30·t2 + 12·t - 1 
L4(t) = 70·t4 - 140·t3 + 90·t2 - 20·t + 1 

 
If the interval is t �  [0,k], i.e. the length of the intervals is not zero, then 
the first five functions change into: 

 
L0(t) = 1 
L1(t) = 2·t / k - 1 
L2(t) = 6·t2 / k2 - 6·t / k + 1 
L3(t) = 20·t3 / k3 - 30·t2 / k2 + 12·t / k - 1 
L4(t) = 70·t4 / k4 - 140·t3 / k3 + 90·t2 / k2 - 20·t  / k + 1 

 
and  hJ = k / {2·J+1} 

 
These functions can be translated to another interval, t'� [k1,k2], by substi-
tuting t=t'-k1 and k=k2-k1. 

Any continuous function, f(t), that is defined and is finite in every point 
of [0,k] can be approximated by a sum of these polynomials 

 
• 

f(t) = Σ Aj·Lj(t)  
j=0 

 
Because of orthogonallity it is possible to calculate the factors Aj 
independent of one another with the following relation: 
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k 
Aj = [ • f(t)·Lj(t) dt ] / hj 

0 
 

With this relation it is possible to calculate the factors Aj in a very efficient 
way. 

 
It is straightforward to calculate the Legendre coefficients from a given 
polynomial representation and vice versa. For instance, any straight line on 
the interval [0,k] can be written as:  

 
f(t) = a·t + b  
 = A0 + A1·L1(t) 
 
t �  [0,k]  
and: A0 = b+a·k / 2 b = A0 - A1 
 A1 = a·k / 2  a = 2·A1 / k 
 
 

B.2 Numerical integration using Newton-Cotes 
formulas 

To calculate the Legendre polynomial coefficients, it suffices to integrate 
the product of the chosen track with the Legendre polynomial of the appro-
priate order. In practice, the track is generally only available in a sampled 
form. Integration then becomes a summation. For convenience we assume 
that the duration of the interval has been normalized to 1. 

1 
Aj = [ • f(t)·Lj(t) dt ] / hj 

0 
 

N 

• [ ℜ {f(n)·Lj((n-1)/N))} ] / (N·hj) 
n=1 

 
The summation will only approximate the integration when N is large com-
pared to the order of the Legendre polynomial j. When N is relatively small, 
the summation does not represent the integration properly. For small N, a 
good approximation of the integration can be obtained by using special for-
mulas for numerical integration that, in a way, first interpolate f(n)·Lj((n-
1)/N) and then perform the summation. We choose to use the closed 
Newton-Cotes formulas. These Newton-Cotes formulas are given in table 
B.1. One should be aware that calculations using the values from table B.1 
are very sensitive to rounding errors, so one should always use the highest 
precision available. For calculating the Legendre polynomial coefficients we 
used a POP11 system that could handle quotients without converting them 
to binary fractions (e.g., 1/2·2/3 was evaluated to 1/3 instead of to 0.333…). 
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We will clarify the procedure used by an example. To calculate the nth 
order Legendre coefficient, An, of a function f(t) whose value is only known 
at 16 equidistant points between t=0 and t=1, we assume that g(t) = 
f(t)·Ln(t)  (i.e., gi = fi·Ln((i-1)/N)). Then, the value of the Legendre coefficient 
(i.e., An) is the sum of an eighth and seventh order numerical integration of 
the product (i.e., g(t)), i.e.,  

1 9 16 
An = 1/hn·• g(t) dt  • 1/hn·(C8/15 · ℜa8i·gi + C7/15 · ℜa7i·gi)= 

0 i=1 i=9 

(4/14175·(989g1 + 5888g2 - 928g3 + 10496g4 - 4540g5 + 10496g6 - 928g7 + 
5888g8 + 989g9) + 7/17280·(751g9 + 3577g10 + 1323g11 + 2989g12 + 
2989g13 + 1323g14 + 3577g15 + 751g16)) / (hn·15). 
Note that g9 is used twice, it is the last point of the 8th order sum and the 
first of the 7th order sum. 

Table B.1: Newton-Cotesformulas for numerical integration (closed form). 
The unknown value of the integral is approximated by calculating a weighted sum of function 
values at equidistant points: 

T N+1 N+1 

• g(t) dt  • C·T/N · ℜaN
i·g(T·(i-1)/N) = C·T/N · ℜaN

i·gi 
0 i=1 i=1 
In which aN

i  is the ith coefficient of the Nth order. Note that the ith point  gi = g(T·(i-1)/N), e.g. 
g1 = g(0) and gn+1 = g(T). This way the value of the function g(t) is evaluated BETWEEN the 
first and the last point (adapted from Abramowitz and Stegun, 196410 page 886-887). 

Ord C � g(t) dt � C/N · ℜai·gi 

0 1 g1 
1 1/2 g1+g2 
2 1/3 g1+4g2+g3 
3 3/8 g1+3g2+3g3+g4 
4 2/45 7g1+32g2+12g3+32g4+7g5 
5 5/288 19g1+75g2+50g3+50g4+75g5+19g6 
6 1/140 41g1+216g2+27g3+272g4+27g5+216g6+41g7 
7 7/17280 751g1+3577g2+1323g3+2989g4+2989g5+1323g6+3577g7+751g8 
8 4/14175 989g1+5888g2-928g3+10496g4-4540g5+10496g6-928g7+5888g8+989g9 
9 9/89600 2857g1+15741g2+1080g3+19344g4+5778g5+5778g6+19344g7+1080g8+ 

15741g9+2857g10 
10 5/299376 16067g1+106300g2-48525g3+272400g4-260550g5+427368g6-260550g7+ 

272400g8-48525g9+106300g10+16067g11 
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