Manipulating Tracheoesophageal Speech

R.J.J.H. van Son, Irene Jacobi, and Frans Hilgers
Netherlands Cancer Institute/ACLC, University of Amsterdam, The Netherlands

Abstract
- Use LPC analysis-synthesis to manipulate tracheoesophageal speech
- On-line experiment with expert judges
- Rate perceived intelligibility (7-point scale)
- Modeling the source amplitude improved speech most
- Regularizing pitch had no effect
- Using a fully synthetic voice source decreased intelligibility

Introduction
Tracheoesophageal speech (TE) — Pulmonary driven air passes from the trachlea → prosthesis → pharyngoesophageal (PE) segment → oral cavity

“Voice” is generated by the neo-glottis in the PE.
- Intelligibility of TE speech often is low
- Lack of knowledge of the relation between intelligibility & underlying deficits
- Search for possibilities to improve therapy by modulating effects on speech

Speech manipulations
- Manipulate speech with LPC analysis-synthesis (Linear Predictive Coding)
- Compare LPC synthesis baseline to “improvements”
 → Voice amplitude
 → Pitch stability
 → Source spectrum (pitch period shape)

Methods
Speech materials
- 16 TE speakers, Median age 58 (46-82)
- 30 recordings of sentence:
 /ok @t wer heft an dez@ toxt me/G@wErkt/
 (Eng. “The weather has also contributed to this trip”)

Subjects
- 6 Experienced speech therapists/phoneticians
- On-line experiment
- Perceived intelligibility on a 7-point scale

Stimulus synthesis
Four types of stimuli:
- AS baseline analysis-synthesis
- EI regularized amplitude
- EP regularized pitch
- NS fully synthetic periods

Synthesize only voiced parts (hand-labeled)

LPC source waveforms
- Analysis-Synthesis (AS)
- Regularized Amplitude (EI)
- New Source (NS)

Results: Manipulation effects

Results: Response Consistency

Distribution of responses
- 4 types x 180 responses
- Distributed over 1-7
- Ans were consistent
- Trend EI > EP > AS > NS
 * Ratings were consistent over judges:
 p < 0.001 for each of AS, EI, EP, and NS; ∗; 0.0002

Intelligibility of original speech (V) versus baseline AS stimuli (H)
- Original and AS correlated
- AS responses (Z-values)
- Weak correlation R<0.375
 → low quality synthesis from
 1 Identification voiceless
 2 LPC analysis-synthesis

 ∗ p < 0.0002

ASR scores
- 9 sentence, 149 word story read aloud by the TE speakers (carrier of stimulus sentence)
- NSP: Pronosthological Features, average (%) recognition probability (ELIS Ghent Uni)
- SPRAAK: Word score (%) = number of words recognized (ESAT-PSI Leuven Uni)
- Bag-of-words model of sentences — No alignment

Stimulus quality and ratings
- Judges and ratings were consistent
- Rating task was feasible for speech therapists and phoneticians
- Original intelligibility differences were (somewhat) preserved in AS
- Synthesis quality is “fair” for low quality TE speech
- Synthesis quality is not good for normal speech

Examples of stimulus fragments (/ɣʌwer/) Sound waveforms

LPC stimulus construction

Discussion

Hypo/hyper tonicity
- Expert rated Hypo/Hyper tonicity on 7-point scale
- Correlated to original or AS
- Negative correlations
 * p < 0.005

Conclusions
- Manipulating individual aspects of pathological speech is possible
- It can improve intelligibility
 → Modeling a regular voice period amplitude was beneficial
 → Replacing voice source with synthetic periods deteriorated quality
 → Modeling a regular pitch period (stable EI) had no effect
- Select speech features relevant to therapy
 ⇒ predictively synthesize speech after therapy?