CAN STANDARD ANALYSIS TOOLS BE USED ON DECOMPRESSED SPEECH?

R.J.J.H. van Son
Institute of Phonetic Sciences/ACLC
University of Amsterdam
Herengracht 338, 1016CG Amsterdam
Rob.van.Son@hum.uva.nl
Introduction

Large Speech Corpora aim at
• Natural Interactions
• Field Recordings by Volunteers
• Large Amounts of it (*Months*)
• Internet Distribution

Solutions
• Minidisc Recorders
• Compressed Storage
• Compressed Distribution

Question:
How much Phonetics can be done on Decompressed Speech?
Methods

SPEECH:
125 Segmented sentences, read and retold
8 speakers, 4 male and 4 female (*IFAcorpus*)
Recorded on 2 microphones to CD-audio

TEST CONDITIONS:
Microphone change: From HF condenser (Sennheiser MKH 105) to head-mounted dynamic (Shure SM10A)
Sony Minidisc: *ATRAC3* on Walkman MZ-R909
Ogg Vorbis (40 kbs): 1.0rc3, 45 kbs effective (factor 15.5)
Ogg Vorbis (80 kbs): 1.0rc3, 85 kbs effective (factor 8.3)
MP3 (192 kbs): *LAME 3.92*, 204 kbs effective (factor 3.5)

All compressed recordings aligned to within 0.5 ms of original

Analysis using *praat 4.0.16*:
• Pitch (*Simple*: Auto Correlation)
• Formants 1-3 (*Burg* algorithm)
• Spectral Center of Gravity
 (first spectral moment)

Compare *Decompressed* and *Original* Recordings
Use *Semitones* to Equalize Variances
Jump Errors

- Pitch can pick wrong (sub-)harmonic
- Formants can be mislabeled
- Results in large, "jump", errors that have to be handled
- Excluding differences larger than 9 semitones catches most of these jumps
Large Jumps in F_0-F_3
(# differences > 9 semitones)

Vowels
N=2415

- Microphone change
- Sony Minidisc
- Ogg Vorbis (40 kbs)
- Ogg Vorbis (80 kbs)
- MP3 (192 kbs)
Systematic Differences

Bit-rate 80 kbs and higher
- Pitch < 0.04 semitones
- Formants < 0.04 semitones
- CoG < 0.15 semitones

Bit-rate 40 kbs
- F2/F3 ~ 0.1 semitones
- CoG < 0.5 semitones

Microphone switch
- Formants < 0.5 semitones
- CoG < 5 semitones (!)
Root-Mean-Square Errors

• Systematic Differences are Ignored in this Study

• **Standard Deviation**

 \[\text{Standard Deviation} = \text{Root-Mean-Square Error} \]

• Discard Pitch and Formant Differences \(> 9\) semitones

 \(\text{not for CoG}\)

 \(>10\) standard deviations of the difference
RMS Errors in Pitch, Formant & CoG

Vowels

RMS error -> semitones

N ≥ 2322

F0 F1 F2 F3 CoG

Microphone change
Sony Minidisc
Ogg Vorbis (40 kbs)
Ogg Vorbis (80 kbs)
MP3 (192 kbs)
RMS Errors in F_0

(All Sonorants)

Manner of Articulation

<table>
<thead>
<tr>
<th>Vowels</th>
<th>Vowel-like</th>
<th>Nasals</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2322</td>
<td>785</td>
<td>786</td>
<td>3549</td>
</tr>
</tbody>
</table>

F_0 RMS error -> semitones

- Microphone change
- Sony Minidisc
- Ogg Vorbis (40 kbs)
- Ogg Vorbis (80 kbs)
- MP3 (192 kbs)
RMS Errors in CoG
(all continuants)

RMS error --> semitones

Vowels
Vowel-like
Nasals
Fricatives
Total

N = 2415 853 795 863 4926

Manner of Articulation

- Microphone change
- Sony Minidisc
- Ogg Vorbis (40 kbs)
- Ogg Vorbis (80 kbs)
- MP3 (192 kbs)
Cascaded Compression

Field situation:

• Record on Minidisc
• Transmit/Store/Distribute with 80 kbs Compression
• Archive with 192 kbs Compression

Simulated with:
 CD-audio (Original)
 -> Sony Minidisc
 -> Ogg Vorbis 80 kbs
 -> MP3 192 kbs
Cascaded Compression
Sony MD > Ogg Vorbis (80kbs) > MP3 (192kbs)

Pitch and Formants:
Weakest Link Determines RMS Error
(i.e., Sony Minidisc)

CoG:
Total Error = Sum of Component RMS Errors
Discussion and Conclusions

• Decompressed Speech can be used for *Pitch*, *Formant*, and Whole Spectrum (*CoG*) Analysis

• RMS error < 1 semitone (<6%)
 - Vowels < 0.7 semitone
 - Nasals < 0.3 semitone
 - Holds for Low bit-rates (40 kbs) for Pitch and Formants

• Repeated Compression

 Combined Error
 - Pitch & Formants: Weakest Link
 - CoG: *Sum* of Component RMS Errors
 Solution: (Partial) Translation of Formats, i.e., No Decompression

• CoG Strongly Affected by
 - Low bit-rates (40 kbs)
 - Repeated Compression
 - Microphone Choice