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Abstract

In 1995 our department was involved in two projects in the field of continuous speech
recognition. The main aim of these two strongly related projects was the development of
basic technology that can be used to build advanced telephone-based systems for providing
information about public transport. A short description of the work carried out within these
projects is provided in thepresent article.

1. Introduction

During the last decade the performance of spoken dialogue systems has improved
substantially. At the moment, the quality of these systems seems to be able to support a
number of simple practical tasks in small and clearly delimited domains. As a result, much
effort is spent nowadays to develop prototype telephone-based information systems in
different countries. These systems are reminiscent of the well -known Air Travel Information
System (ATIS) task that has been a focal point in the American ARPA-project. In Europe two
MLAP (Multi -Lingual Action Plan) projects concerning public railway informationhavebeen
carried out, viz. RAILTEL and MAIS. These projects differ from the ATIS task in that they
aim to construct truly interactivesystems, accessibleover the telephone.

There are many reasons why information about public transport is a suitable domain
for testing spoken dialogue systems, of which only some are mentioned here. First of all , the
domain can be limited in ways that are obvious for a caller, which is a necessary requirement
to reach a sufficient performance level. In the Dutch system that we are developing, the
domain is limited by restricting the information to travel between train stations. Furthermore,
there is a large demand for information about public transport. For instance, in the
Netherlands there is one nationwide telephone number for information about public transport.
This number receives about 12 milli on calls a year, of which only about 9 milli on are actually
answered. At the moment, all calls are handled by human operators. A substantial cost saving
would be achieved if part of these calls could be handled automatically. Moreover, automatic
handling would probably reducethenumber of unsuccessful calls.

In the Netherlands ‘public transport information’ is virtually identical with
‘multi -modal from address-to-address information’ . The human operators who provide the
service must access a large database that contains the schedule information of all public
transport companies in the country. Especially the fine-meshed local transport networks pose
substantial problems, e.g. when specific bus stops must be identified. The complex dialogues
that may be required to disambiguate destinations on the address level are far beyond what
can be achieved with existing speech recognition, natural language processing, and dialogue
management technology. Therefore, we have limited the domain of our experimental public
transport information system to information about travels between train stations. However,
we intend to enlarge that domain gradually, e.g. by adding metro stations in Amsterdam and
Rotterdam, andby adding tram stops or themajor inter-regional buses (Interliners).
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2. General description of the system

The starting point of our research was a prototype developed by Phili ps Research Labs
(Aachen, Germany). This automatic inquiry system can give information about the schedules
of the German railways. Here we will only give a short description of the system. Further
details can be foundin Oerder and Ney (1993), Steinbisset al. (1993), Aust et al. (1994), Ney
and Aubert (1994), Oerder and Aust (1994), Aust et al. (1995), Steinbiss et al. (1995).
Conceptually, the Spoken Dialogue System (SDS) consists of four parts (in addition to the
telephone interface):

1. theContinuous Speech Recognition (CSR) module,
2. theNatural LanguageProcessing (NLP) module,
3. theDialogueManagement (DM) module, and
4. theText-To-Speech (TTS) module.

In the CSR module acoustic models (HMM' s),language models (N-grams), and a lexicon are
used for recognition. In the current version monophones are modelled by continuous density
HMM' s.However, it is also possible to use diphones or triphones as basic units. In the future
we will investigate whether the performance of the system can be improved significantly by
using context-sensitivemodels.

The lexicon contains orthographic and phonemic transcriptions of each word.
Currently, there is exactly one phonemic transcription for each word. Using only one
pronunciation variant is not optimal, since words are often pronounced in different ways.
Therefore, we are now investigating how pronunciation variation can best be handled within
the framework of this SDS (seeSection5).

The output of the CSR module, and thus the input to the NLP module, is a word
graph. The NLP’s task is to decide which path through the word graph has to be chosen. The
NLP does not choose this path by looking at the acoustic likelihoodof the path alone. It also
uses application-specific knowledge in the form of a concept bigram and syntactic unit
counts. The goal of the NLP module is not to find a parse for the complete utterance, but to
look for sequences of concepts in the word graph. The concepts it looks for are defined in a
stochastic attributed context-freegrammar (ACFG) that describes the utterances which must
be understood.For instance, the entry “<departure_station> ::= (121) from <station_name>”
is a part of the ACFG and is one of the many entries that define the concept
<departure_station>. It denotes that if a path through the word graph exists with e.g. the
utterance “ from Amsterdam” in it, it should be interpreted as a statement indicating that the
departure station is Amsterdam. Of course the same holds for the names of other cities
present in the lexicon. A similar definition exists for the related concept <arrival_station>:
“<arrival_station> ::= (248) to <station_name>”. The numbers (121) and (248) are the
syntactic unit counts for these concept definitions. They state that these syntactic units
occurred 121 and 248 times, respectively, in the corpus on which the NLP was trained. The
concept bigram in the NLP describes the frequency of occurrence of ordered pairs of
concepts, just as a standard language model bigram does for ordered pairs of words. The
combination of concept bigram values, syntactic unit counts, and the acoustic likelihoodof
thephonemes decides which path through theword graph is most likely in this application.

The DM takes care of gathering all the necessary information to perform a database
query. It does so by asking specific questions to the caller. The DM needs to know the
departure and arrival station, the departure or arrival time and the date on which the caller
wants to travel. The opening question of the DM is “From which station to which station do
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you want to travel?”. If the caller answers “I want to travel from Nijmegen to Amsterdam
tomorrow” the NLP sets the values for departure_station := Nijmegen, arrival_station :=
Amsterdam, and date := tomorrow. The DM will then ask “At what time do you want to
travel from Nijmegen to Amsterdam tomorrow?”. It thereby asks for the information it is still
missing to do a database query. At the same time it gives the caller feedback about what the
NLP did understand. If the NLP made a mistake, the caller can correct the system, e.g. by
saying: “No, I want to travel the day after tomorrow”. If the caller does not correct the system,
the DM decides that the NLP did understand the concepts departure_station, arrival_station,
and date correctly. These concepts are then frozen. This means that the caller can no longer
change their values. If the DM has all the information it needs, it will do the database query
and report to the caller what connection(s) it found.

The information found in the database (and all other feedback mentioned above) is
presented to the caller by means of speech synthesis. Language generation is limited to the
concatenation of fixed phrases or by inserting the right words in open slots in carrier phrases.
Speech synthesis is accomplished by concatenating pre-recorded phrases and words spoken
by a female speaker.

3. The two projects

The lion' sshare of the work described below has been carried out within the framework of
two projects. A short description of these projects is given in this section. Because it is
difficult to say exactly which part of the work is done in which project, we will only give a
global description of the work carried out in each project.

3.1 MAIS

The European MLAP project MAIS (Multilingual Automatic Inquiry Systems) started on
December 1st, 1994, and ended on December 1st, 1995. The MAIS consortium consisted of
one technology provider: Philips Research Labs (Aachen, Germany); two public transport
companies: SNCF (French railways) and NS (Dutch railways, later associated to the Dutch
public transport information service, OVR); and three universities: RWTH (Aachen,
Germany), IRIT (Toulouse, France), and KUN (Nijmegen, the Netherlands). The goals of the
MAIS project were:
[1] to specify the requirements for an automated multilingual public transport information

system that can be accessed over the telephone by the general public;
[2] to specify assessment procedures which can be used to measure users' satisfaction with the

service; and
[3] to provide Dutch and French versions of the CSR, NLP, and DM modules, which could

eventually be used to build laboratory demonstrators of train timetable information
systems for these languages.

For aims [1] and [2] MAIS worked in close collaboration with the MLAP project RAILTEL.
Starting point for [3] was a prototype developed by Philips Research Labs (Aachen,
Germany), which already existed at the beginning of the project (see section 2). This
prototype could provide information about the schedules of the German railways. The work
described in Section 4.1 mainly took place within the framework of this project.
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As a follow-up of the MAIS project (and partly also under the PP-TST project
described below) we have worked on the improvement of the CSR and NLP modules, to a
level on which they can be used to implement an operational laboratory system for Dutch.
Such a system was needed in order to be able to collect task specific speech that can be used
to bring the modules to a performance level that might be sufficient for actual deployment. A
‘training database collection system’ has been available in the Dutch Public Switched
Telephone Network since December 1995.

3.2 PP-TST

The NWO Priority Programme ‘Language and Speech Technology’ (in Dutch: ‘Prioriteits-
Programma Taal- en Spraak-Technologie’, PP-TST) is a five-year project which started in
January 1995. The partners involved in this project are the Netherlands Organization of
Scientific Research (NWO, Den Haag), Philips Corporate Research (PCR, Eindhoven), Royal
Dutch PTT (KPN Research, Leidschendam), Nijmegen University (KUN, Nijmegen),
Institute for Perception Research (IPO, Eindhoven), Groningen University (RUG,
Groningen), and University of Amsterdam (UvA, Amsterdam).

The PP-TST aims at the development of advanced telephone-based information
systems. One prominent feature of this programme is its attempt to achieve scientific as well
as practical goals at the same time. The practical goal is to build a demonstrator of an
interactive spoken language information system that can give travel information about public
transport in the Netherlands. A number of increasingly powerful demonstrators are planned.
From a scientific point of view, original contributions are envisaged in robust speech
recognition over the telephone, natural language processing, and dialogue management in
information-seeking dialogues. In the area of speech recognition, the focus will be on signal
processing techniques to remove channel characteristics, on the one hand, and on explicit
modelling of pronunciation variation, on the other. As for NLP aspects of the system, three
approaches will be compared, viz. the AI-type approach presently implemented in the system,
corpus-based parsing, and parsing using a conventional wide-coverage grammar. On the level
of dialogue control it will be investigated how the communication with the user can be made
more effective and user-friendly.

4. Building a Dutch SDS

In order to build and train an SDS for a certain application, a considerable amount of data is
needed. For collecting these data Wizard-of-Oz scenarios are often used. However, within the
framework of the current projects a different approach was chosen, which consists of the
following five stages:

[1] make a first version of the SDS with available data
(which need not be application-specific)

[2] ask a limited group of people to use this system, and store the dialogues
[3] use the recorded data (which are application-specific) to improve the SDS
[4] gradually increase the data and the number of users
[5] repeat steps [2], [3], and [4] until the system works satisfactorily.
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4.1 The first version of the SDS

In Section 2 we provided a short description of the system developed by Philips Aachen. A
first version of the SDS was obtained by localizing this German system for Dutch. How this
was done is described in the present section.

4.1.1 CSR

The CSR component of the first version of the SDS was trained with 2500 utterances
of the Polyphone database (Damhuis et al., 1994; den Os et al., 1995). The whole database is
recorded over the telephone and consists of read speech and (semi-)spontaneous speech. For
each speaker 50 items are available. Five of the 50 items were used, namely the so called
phonetically rich sentences. Each subject read a different set of five sentences, selected so as
to elicit all phonemes of Dutch at least once. The more frequent phonemes are produced
much more often, of course. The speech recognizer used in this version of the system is a
monophone mixture density HMM machine. As a first approximation, we trained about 50
acoustic models; they represent the phonemes of Dutch, plus two allophones of /l/ and /r/.

Note that the first version of the CSR is trained with read speech (and not spontaneous
speech, as in the application) and that only very few sentences were related to the public
transport domain. In the intended application the speech will be spontaneous and related to
public transport information. Therefore, the data used to train the first version of the CSR
cannot be considered application-specific.

Phonemic forms in the lexicon were taken from three different sources: (1) the names
of stations from the ONOMASTICA database (Konst and Boves, 1994), (2) the lemma forms
of other words from the CELEX database (Baayen et al., 1993), and (3) for words that were
not found in those two databases the phonemic forms were generated by means of our
grapheme-to-phoneme converter (Kerkhoff et al., 1984). Up to now, training and testing have
been done completely automaticly, i.e., no attempts have been made to improve recognition
rates by making the phonemic representations in the lexicon more homogeneous, nor by
investigating the optimal set of monophone models. Furthermore, as was already noted above,
there is only one phonemic transcription for each word, i.e., pronunciation variation is not
modelled. Therefore, recognition scores obtained so far must be considered as rough
indications of what can be obtained in an initial development job.

4.1.2 NLP

Since German and Dutch are quite similar from a syntactic point of view, for some parts of
the NLP it was possible to make a direct translation from German to Dutch. However, in
many other cases, such as time and date expressions, things appeared to be much more
complicated. To illustrate this point some examples are mentioned here. For instance, each
language has it own expressions for special days. In Dutch we have “koninginnedag ”
(birthday of the queen), “sinterklaas” (a festivity on December 5th or 6th), and “oudjaarsdag ”
(December 31th, literally: ‘old year day’). It is very common to say e.g. “de dag na
koninginnedag” (literally: ‘the day after queen’s day’). Thus, the system had to be taught to
recognize these expressions, which do not occur in German.
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Furthermore, in different countries people assign a different meaning to time
expressions like morning, afternoon, evening, and night. Because these concepts are used
very often to indicate approximate time of departure or arrival, they should be defined and
handled accordingly. For instance, in the German system ‘morning’ is interpreted as a time
between 00:00 and 10:00, while in the Dutch system it is interpreted as a time from 04:00 to
12:00. The time between 00:00 and 04:00 is usually referred to as ‘night’ in Dutch.

Apart from different notions of time expressions, there are also differences in the way
the German and Dutch databases are constructed. These two kind of differences interact, and
lead to the following problem (which we call the time-frame problem). In order to construct a
database query, the NLP must determine the date on which the caller wants to travel. It uses
the system clock and the caller’s information to do so. The system clock is the internal clock
of the computer on which the NLP software runs. It can provide the time and the calender
date. Let us call the date provided by the internal clock D. The German system uses a
database in which a day starts at 00:00 and ends at 23:59. These times fully coincide with the
beginning and the end of a calendar day. However, in the Dutch system a database is used for
which the day starts at 04:00 and ends at 03:59. This gives some tricky problems when you
want to interpret time-related expressions from the caller. For instance, if the system asks a
Dutch caller “when do you want to travel?”, and the caller answers “tomorrow”, the
interpretation of tomorrow depends on the time at which the answer is given. If the caller says
“t omorrow” between 04:00 and 23:59 (s)he really means tomorrow, i.e. the system should
interpret this as D+1. However, if (s)he says “tomorrow” between 00:00 and 03:59, a Dutch
caller usually means today and not tomorrow. Consequently, the system should not interpret
this ‘tomorrow’ as D+1, but instead as D. The special status of the time frame 00:00 - 04:00
in the Dutch system made it necessary to review all the interpretations of time and date
expressions in the original German system.

We were convinced that we could never figure out all the expressions Dutch people
could use in order to get information about public transport just by introspection. At the same
time, we did not have a large database available that could be used to look for all possible
expressions. Therefore, it was decided to proceed as follows: A preliminary version of the
grammar was made by translating some parts from German and by changing some other parts.
This part of the SDS was then tested independently of the speech interface with a keyboard
version of the dialogue system. People could log in on a system, type their questions on a
keyboard, and get the replies from the system on the screen. Because people are likely to
formulate their sentences differently when they speak or type, they were instructed to try to
formulate the sentences as they would do if they had to pronounce them.

In this way we were able to test the grammar and to gather some text material that
could be used to train the language model. It turned out that the sessions of the users with this
version of the NLP were extremely useful. On the basis of the log-files, many adjustments
were made to the system. A nice example is that in the original German grammar there are 18
ways to give an affirmative answer and 7 ways to give a negative answer. Based on the
log-files we have defined 34 affirmative answers and 18 negative answers for Dutch.

4.1.3 DM

For the bootstrap version of the system the German DM was translated literally into Dutch.
Some adaptations appeared to be necessary, though. For instance, the interface to the public
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transport database had to be modified. Furthermore, some changes were required in the
feedback to the caller. By way of illustration, in the German system train numbers are
mentioned because these appear to be important for the caller. However, this piece of
information is irrelevant in the Netherlands (people never refer to the train number) and was
therefore excluded from the feedback in the Dutch system.

As mentioned above, a database query is initiated only after all necessary information
is available. Before an information item is considered as known and frozen, the caller is given
explicit or implicit feedback about what the system thinks it has recognized. The caller can
then disconfirm erroneous items and replace them with correct information.

4.1.4 TTS

Many adaptations had to be made to the speech output module of the system, because only the
general approach from the German prototype could be copied. An inventory was made of the
phrases that together form the questions and replies the system should be able to produce.
Recordings were made of these utterances spoken by a female speaker. In the SDS these
recorded utterances are concatenated to generate the speech output of the system.

4.2 Improving the SDS

The first version of the SDS was put in the PSTN in December 1995. This version was
trained with DB0, i.e. the 2500 Polyphone utterances. A small group of people received the
telephone number of this system, and were requested to call it regularly. Their dialogues were
recorded. In this way the databases DB1 to DB5 in Table 1 were collected. These databases
are built up incrementally, which means that DB2 is a superset of DB1, DB3 of DB2, etc.

Table 1. Databases used during development of the SDS

Database utterances source duration (hours:min)

DB0 2500 Polyphone 4:42

DB1 1301 application 0:41

DB2 5496 application 3:47

DB3 6401 application 4:35

DB4 8000 application 5:55

DB5 10003 application 7:20

For every utterance in the databases an orthographic transcription was made manually.
Out-of-vocabulary words were detected automatically from the transcriptions. In this way
words containing typing errors were found as well. All these typing errors were corrected.
The out-of-vocabulary words were phonematized and added to the training lexicon, in order
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Figure 1. The average number of out-of-vocabulary words as a function of the number of
utterances in the database.
 

to make it possible to use all the collected data for training the system. However, not all new
words were added to the recognition lexicon. Only the words that were related to crucial
concepts of the application were included in the recognition lexicon.

The average number of out-of-vocabulary words is shown in Figure 1. On the
horizontal axis the number of utterances in the database is given (see Table 1). The vertical
axis is the number of out-of-vocabulary words divided by the number of utterances, i.e. the
average number of out-of-vocabulary words per utterance. It can be observed that the average
number of out-of-vocabulary words is small. Apparently, we succeeded in making a bootstrap
lexicon that contains most of the words used.

In Figure 1 one can also see that the average number of out-of-vocabulary words
decreases as the number of utterances increases from 1301 to 6401. In the beginning a fair
number of out-of-vocabulary words are found. However, as the same group of people is likely
to use more or less the same words to ask for information, the number of unknown words
decreases gradually. After DB3 (6401 utterances) had been recorded, the telephone number of
the system was made available to a larger group of people. It is conceivable that new people
will use new words. As a matter of fact, the average number of out-of-vocabulary words turns
out to increase first and to decrease again later on (see Figure 1).

Whenever a sufficient amount of new data was collected, language models and
phoneme models were trained again. The new models were compared to the old models (as
will be described below), and those which performed best were chosen. In the on-line system
the old models were replaced by the better ones.
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In the early versions of the system we detected some syntactic constructions that
where sometimes used by the callers but not handled correctly by the NLP. To improve the
NLP, these syntactic constructions were added to the NLP’s context free grammar.
Furthermore, the NLP was trained with the same data used to train the language model (the
bigram). During the training of the NLP the concept bigram model is constructed and the
number of occurrences of syntactic units in the context free grammar is counted and stored in
the NLP. As described above (see section 2), the concept bigram and the syntactic unit counts
are used in deciding which parse of the word graph is chosen.

Although the first bootstrap version of the system was quite useful as a tool for data
acquisition, tests performed recently show that some changes at the ergonomic level are
required. For instance, the concatenation synthesis should be improved, information about
complex journeys should be split into smaller chunks, and the caller should be able to
interrupt the machine (barge-in capability). Some of these improvements of the DM module
will be addressed in the near future.

4.3 Evaluating the performance of the CSR module

Part of the data collected with the on-line SDS was kept apart as a test database (500
utterances). The first test database was created by randomly selecting 500 utterances. The first
evaluations were done with this test database. However, after some time we found out that
this database was not well balanced, i.e. it contained a lot of utterances of a few speakers who
often used the system in the beginning. That is why we decided to create a second (more
balanced) test database, also containing 500 utterances. This database was used for later
evaluations. The total number of words and characters (i.e. phonemes) in each database is
approximately 1.700 and 10.000, respectively. The number of different words in test database
1 and 2 is 298 and 299, respectively. This means that test databases 1 and 2 are equally large.

The performance of the CSR module was evaluated for the whole word graph (WG)
and for the best sentence (BS) obtained from this word graph. Both for the word graph and for
the best sentence word-error rate (WER) and sentence-error rate (SER) were calculated. In
total this yields four measures that can be used for evaluation: WG-WER, WG-SER,
BS-WER, and BS-SER.

In section 2 it was already explained that the NLP looks for specific concepts in the
whole word graph, such as departure station, arrival station etc. Since these concepts are
words, WG-WER would seem to be the most relevant evaluation measure. However, it is not
necessary that the NLP recognizes every single word. Recognition of the above-mentioned
crucial concepts will suffice. Although WG-WER is probably a better measure of the CSR
performance, than the other three indices mentioned previously, it is obvious that it is not an
optimal measure. Indeed, the optimal measure would be a concept error rate for the word
graph. In order to provide complete information about the performance of the CSR, the
remaining three measures are also presented. The BS error rates give an idea of the quality of
the phoneme models and bigrams, because the probabilities of the phonemes and bigrams are
used to determine the BS from the WG. The SERs show how often the complete sentence is
recognized correctly.

Note that these results were obtained with a version of the system which was available
at the beginning of the MAIS and PP-TST projects. Thanks to the use of new features, the
performance of the CSR module has now improved. However, this improved version has not
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been used for the research described in the present article. Still, the research findings reported
here apply to the improved version too, because they concern basic aspects of the system.

The different databases were used to train language models and phoneme models. In
all cases the inventory of phonemes remained the same. Language models trained on
databases DBj will be called Lj. Phoneme models trained on database DBn will be called Pn.
In addition, phoneme models were trained on DB0 in combination with an
application-specific database DBm. These phoneme models will be called P0m.

With test database 1 the error rates for several versions of the system were obtained
(see Table 2). First, the phoneme and language models were trained with the Polyphone
material (DB0). The resulting error rates are given in column 2. DB1 was not used to train
phoneme models and a language model because the number of utterances in DB1 (i.e. 1301)
was too small.

Table 2. Performance level for different phoneme models (Pi) and language models (Lj).
Evaluation is done with test database 1.

System P0 + L0 P02 + L0 P02 + L2 P03 + L2 P03 + L3 P3 + L2 P3 + L3

WG - WER 20.59 18.36  6.72  6.94  6.94  6.94  6.94

WG - SER 40.00 36.60 16.00 15.20 15.60 16.20 15.40

BS - WER 39.87 31.45 14.73 15.43 15.70 16.41 14.84

BS - SER 65.00 54.20 28.00 29.00 28.60 26.00 26.40

Training the phoneme models on both the Polyphone data (DB0) and
application-specific data (DB2) reduces the error rates (compare column 3 to column 2).
However, a much larger reduction in the error rates is obtained by training the language
model on DB2 (compare column 4 with 2 and 3). The conclusion is that application-specific
data is much more important for training the language models than for training the phoneme
models. Other comparisons of performance levels with different databases confirmed this
conclusion.

Increasing the number of utterances in the database from 5496 to 6401 does not have
much effect on the level of performance (compare columns 5 and 6 with column 4). This
could be due to the fact that the amount of added utterances (i.e. 905 utterances) is small
compared to the size of the database. What is more important is that performance does not
deteriorate if the Polyphone material is left out when training the phoneme models (compare
columns 7 and 8 with columns 5 and 6, respectively). On the contrary, BS-WER is even
slightly better for phoneme models trained with DB3 (given in columns 7 and 8), compared to
phoneme models trained with DB3 and DB0 together. Therefore, we decided not to use the
data from the Polyphone database anymore for the current application.
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Table 3. Performance levels for different phoneme models (Pi) and language models (Lj).
Evaluation is done with test database 1 (column 2: old) and 2 (columns 3-5: new).

testDB old new

System P3 + L3 P3 + L3 P4 + L4 P5 + L5

WG - WER  6.94  8.87  6.81  6.69

WG - SER 15.40 17.80 14.40 13.80

BS - WER 14.84 15.27 12.93 14.02

BS - SER 26.40 25.40 24.20 24.60

At this moment test database 1 was replaced with test database 2. For phoneme models P3
and language model L3 the error rates obtained with test database 2 were higher than those
obtained with test database 1, except for BS-SER (see Table 3, compare columns 2 and 3).
However, increasing the size of the training database to 8.000 utterances led to a better
performance. The effect of increasing the database to 10.003 utterances was small. Evaluation
results for a third test database, and for a larger training database (consisting of 21.288
utterances) are presented in Strik et al. (1996).

5. Pronunciation variation and non-speech sounds

Apart from the work described in the previous section, some other research was carried out in
order to improve the SDS. In the present section we will only give a short description of some
issues related to modelling pronunciation variation and recognizing non-speech sounds.

In order to obtain the phonemic representations of the words in the lexicon, we first
checked whether these words were present in two existing databases, namely CELEX
(Baayen et al., 1993) and ONOMASTICA (Konst and Boves, 1994). Phonemic transcriptions
of the words that could not be found in these two databases were derived by using the
grapheme-to-phoneme conversion rules developed at our department (Kerkhoff et al., 1984).
The output of the rules was then checked and, if necessary, corrected by hand. There are
several reasons why a lexicon obtained in this way is not optimal for speech recognition:

1. since the phonemic transcriptions are obtained from different sources, they are likely
to be inconsistent;

2. for each entry in the lexicon only one pronunciation variant is stored, while in practice
people will pronounce words in many different ways;

3. the pronunciation variant present in the lexicon is not always the optimal one for
speech recognition (see e.g. Cohen, 1989).

For instance, the policy adhered to in the ONOMASTICA project was to limit reduction
phenomena to the bare minimum. As a result many of the station names are represented by
overly formal phonemic forms. By way of illustration, we will give some examples of
recognition errors which are most probably due to pronunciation variation (in our system and
in the examples below SAMPA is used as the computer phonetic alphabet).



140

In one dialogue a person did not succeed in convincing the SDS that he wanted to go
to a place called Geldrop. Although he tried several times, the system did not manage to
recognize the word, because the speaker in question did not say [GELdrOp] (the transcription
of Geldrop in the lexicon), but [GELd@rOp]. Although this is only a minor difference for
human listeners, who are expert speech recognizers, this example illustrates that a small
difference in pronunciation (i.e. insertion of a schwa) can have serious consequences for
automatic SDS (i.e. recognizing the wrong place name). Reduction processes, which are very
common in spontaneous speech, also caused several problems. For instance, many people say
something like [xujdAx] instead of [xud@ndAx] or [xuj@ndAx], which are more careful
pronunciations of the Dutch word “goedendag” (a greeting which literally means “nice day”) .
Another example of severe reduction is the pronunciation of Amsterdam as [Ams@dAm]
instead of [Amst@rdAm].

As spontaneous speech exhibits a considerable amount of pronunciation variation, the
speech recognizer' sperformance can be improved if the variation is properly taken into
account. For this reason part of our research on speech recognition is now concentrated on
modelling pronunciation. A first step in this direction consists in making an inventory of
possible pronunciation variants present in spontaneous speech. Although a large amount of
pronunciation variation in Dutch is described in the literature (see, e.g., Booij, 1995), we also
found variation forms which probably have not been described before (see Cucchiarini and
Van den Heuvel, 1996).

Besides modelling pronunciation variation, correct recognition of non-speech sounds
is also very important. We encountered many examples of this phenomenon, some of which
are mentioned here. One sentence “ja dat klopt” (‘yes, this is correct’) was followed by a long
interval of breath noise after the last word. The system recognized the words ‘dat’ en ‘klopt’
correctly. But the system also recognized the final bit of non-speech as speech, and thus
recognized: “nee dat klopt niet” (‘no, this is not correct’). This is exactly the opposite of what
was meant. Furthermore, non-speech sounds were found very often at the beginning of an
utterance. In many cases a speaker starts an utterance by inhaling. This inhaling noise is often
followed by a lip-smack. Some preliminary experiments revealed that modelling (and
recognizing) these non-speech sounds does improve the performance of the SDS.

6. Discussion and conclusions

In this paper we have described the development of a system that can be used for
automatizing part of an existing telephone-based service. An important characteristic of this
system is that it was derived from a prototype that had originally been developed for German.
Moreover, an alternative approach for collecting application-specific material was adopted,
instead of the usual Wizard-of-Oz scenario.

This alternative method appears to have considerable advantages. First of all, no time
is spent on building, testing, debugging, and implementing the WOZ simulation. Instead, the
real system is immediately realized. Consequently, the system used to collect the data is the
real system and not some imitation, the specifications of the data-collection system and the
final SDS are the same, and thus the properties of the signals collected for development (like
e.g. background noise, signal-to-noise ratio) closely resemble those of the signals the final
system will eventually have to handle. Furthermore, the whole application with all the
modules is used from the beginning, and not just one or some of its components. In this way
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practical problems pop up at an early stage and can be solved before the final implementation
takes place. Many of these practical problems are specific for the implementation of the SDS.
Therefore, most of them will not turn up when a WOZ simulation is used. In short, not all
findings and experiences obtained with a bootstrap version can be obtained with a WOZ
simulation. Finally, it is possible to collect speech material and to test, debug, and evaluate
the system at the same time.

However, one important disadvantage of this approach is that it requires that the first
version of the system should work well enough to be used for data collection. We succeeded
in making a suitable bootstrap for the following reasons. Firstly, because we could use the
German prototype as a starting point. Secondly, because we had knowledge about German,
Dutch, and this specific application. These three types of knowledge, together with the fact
that German and Dutch are not very different, made it possible to localize a substantial part of
the German prototype for Dutch. Thirdly, because speech databases, albeit not
application-specific, were available. They were used especially to train the phoneme models.
Finally, because we used the data collected with the keyboard version. These data, and our
knowledge of Dutch and this application, were used to develop the bigram and the NLP
module. It is possible that under less advantageous circumstances, this approach would be
less successful than it turned out to be in our case.

On the basis of our experience, we can therefore conclude that the bootstrap approach
was very successful. Furthermore, we found that phoneme models trained with data which are
not specific for the given application still perform reasonably well. However, this is not the
case for the language models. A large gain in performance was obtained when the language
models were trained with application-specific data. We also showed that the small test
databases used in our research succeeded in revealing the relative improvements obtained
with various versions of the system. However, the absolute numbers for the performance
levels differed between the two test databases. Therefore, it is probably better to use more
than one database for testing.

Finally, we are satisfied with the results of the tests so far. Our goal was to automatize
part of an existing service. In order to reduce the complexity of the task, we limited the
domain to information about journeys from one train station to another. So far, it seems that it
should be possible to automatize this part of the service. However, we are still improving the
system and the final field tests still have to be performed. In the near future we hope to be
able to report positive results on the final evaluation of the system.
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