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Introduction

Statistics is the bookkeeping of information

Language is about communication

Communication implies a message

A message is only useful if it is “surprising” to some extend

That is, the receiver must be uncertain about the content
of the message

Information and probability quantify uncertainty

Information is the more fundamental concept
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Introduction

Probability is

A measure of the frequency of outcomes

A measure of chance given what is known

A number between 0 and 1 (inclusive)

A measure of our knowledge (or ignorance)

Boring?

[Bavaud et al.(2005)Bavaud, Chappelier, and Kohlas] [Schneider(1999)] [MacKay(2003)]
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Introduction: Axioms

Probability: if E1, . . . ,En are possible outcomes of an
observation, then P(Ei ) is the probability of outcome Ei iff

1 0 ≤ P(Ei ) ≤ 1

2 P(E1 ∨ · · · ∨ Ei ∨ · · · ∨ En) = 1

3 Additivity: P(E1 ∨ E2) = P(E1) + P(E2)
where E1 and E2 are mutually exclusive.

4 Countable additivity:
P(
⋃n

i=1 Ei ) =
∑n

i=1 P(Ei ) for n = 1, 2, . . . ,N
where E1,E2, . . . are mutually exclusive.
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Introduction: Conventions

Take three observables: Color, Flower, and Place

The following conventions will be used:

1 P(C = Red): the probability of seeing a Red flower

2 P(C = Red ,F = Rose): the probability of seeing a Red
Rose

3 P(C = Red |F = Rose): the probability of seeing a Red
Flower, given that the flower is a Rose

4 P(C = Red ,F = Rose|P = Flower Shop) ≤ 1

5 P(Red ∨ Blue) = P(Red) + P(Blue)
Basic sum rule for probabilities

6 P(C ,F |P) = P(C |F ,P) · P(F |P) = P(F |C ,P) · P(C |P)
The basic product rule for probabilities
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Probability distributions

Useful distributions, called Probability Density Functions (pdf)

Uniform distribution, discrete and uniform

Poisson distribution

Normal (Gaussian) distribution

Zipf distribution

Mean value, µ, is called Expected value
µ = E [x ] =

∫ +∞
−∞ x · P(x)dx

Distribution width is called Standard Deviation which is
defined as σ =

√
E [(x − E (x))2]
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Probability distributions: Uniform Discrete

N, equally probable and equally spaced values {E1, . . . ,En}
(possibly if N →∞)

Each category, Ei , has the same probability

P(Ei ) = 1/N

Example: Dice {1, . . . , 6} and coins {Head ,Tail}
Most basic distribution

Default if only the number of values is known

Mean µ =
1

N

∑N
i=1 Ei =

1

2
(E1 + EN)

Variance σ2 =
1

12
(EN − E1)

2

http:

//en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29,

http://gwydir.demon.co.uk/jo/probability/diceinfo.htm

http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29
http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29
http://gwydir.demon.co.uk/jo/probability/diceinfo.htm
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Probability distributions: Uniform Continuous

Equally probable values in interval [a, b]

Pdf (x) =
1

b − a
Most basic distribution (continuous case)

Default if only the range is known

Mean µ =
a + b

2

Variance σ2 =
(b − a)2

12

http:

//en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29

http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
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2

Variance σ2 =
(b − a)2

12

http:

//en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29

http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
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Probability distributions: Poisson

Pdf (k;λ) =
e−λλk

k!
k: count, λ: rate

Rare events occuring with a fixed rate λ

Mushrooms per meter of forest, typing errors per page,
radio-active decay

Average and variance are identical µ = σ2 = λ

Default if only an average is known

http://en.wikipedia.org/wiki/Poisson_distribution

http://en.wikipedia.org/wiki/Poisson_distribution
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Probability distributions: Normal or Gaussian

Pdf (x ; µ, σ) =
e
−(x−µ)2

2σ2

σ
√

2π

x : observable

µ: Average

σ2: variance

General measurements

Many physical and physiological measurements, counting

Default if both an average and a variance are known

A sum of a large number of independent variables is
approximately normal (under certain conditions)

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Normal_distribution
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Probability distributions: Zipf

Pdf (k; s, N) =

1

k sPN
n=1

1

ns

k: rank; s: exponent

N: number of elements

note logarithmic scales

Product of frequency and rank is constant: fi ≈ C · 1

ri

Word frequencies, city sizes, high incomes, earthquake
sizes

Default with power laws

For word frequencies, s ≈ 1

http://en.wikipedia.org/wiki/Zipf_distribution

[Dover(2004)][Kawamura and Hatano(2002)]

http://en.wikipedia.org/wiki/Zipf_distribution
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Bayesian probabilities

Incorporating knowledge

Probability is predicting outcomes from knowledge

Explicitely formulate knowledge as probabilities

Formalize the probability of a hypothesis

Destinguish a priori (knowledge) and a posteriori
(observations) probabilities

Determine the information content of a single observation
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Bayesian probabilities

P(Data, Hypothesis) = P(Hypothesis|Data) · P(Data)

= P(Data|Hypothesis) · P(Hypothesis)

⇔

P(Hypothesis|Data) =
P(Data|Hypothesis) · P(Hypothesis)

P(Data)

Express P(Hypothesis|Data):

As a function of the measurements

And the a priori probability of the hypothesis

Normalized by the a priori probability of the data

The normalization probability can often be ignored, as it
will be identical for all hypotheses
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Bayesian probabilities: Toy example

Where has Watson most likely been: Market, Garden, Meadow,
Park?

Watson caries a Yellow Buttercup

He divides his walks equally along these “places” (uniform
prior)

Which is most likely, obtaining a Yellow Buttercup in a
Market, a Garden, a Meadow, or a Park?

In formula:

argmax
p

P(p|Y ,B) = argmax
p

P(Y ,B|p) · P(p)

where p ∈ {Market,Garden,Meadow ,Park}
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Information and probabilities: Surprise!

Information is a quantification of surprise

Information depends on probability pi

A more surprising observation, ie, a lower pi , caries more
information

Information should be additive, two CD’s can carry twice
the information of one CD

Define information in observation Oi with probability pi as
h(pi ) = − log2 pi
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Information and probabilities: Uncertainty

The uncertainty is the average information content and is
called Entropy, H(p1, p2, . . . , pn). Entropy should be:

Independent of the labeling, ie, numbering, of pi

Decomposable, splitting a category in two gives:

H ′(p′1, p
′′
1 , . . . ) = H(p1, . . . ) + p1 · H(

p′1
p1

,
p′′1
p1

)

Continuous, a small change in the probabilities should
result in a small change in entropy

Monotonic, for a uniform distibution of n items, entropy
increases monotonically with the number of categories
n ≥ 1

⇒ H(p1, p2, . . . , pn) = −
∑n

i=1 pi log2(pi )

See chapter 1 of [Bavaud et al.(2005)Bavaud, Chappelier, and Kohlas]
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Information and probabilities

Probability distributions have entropies: Examples

Discrete Uniform distribution: H(
1

N
) = log2(N)

Continuous Uniform distribution [a, b]:

H(
1

b − a
) = log2(b − a)

Poisson distribution:

H(k;λ) = λ[
1

ln(2)
− log2(λ)] + e−λ

∑∞
k=0

λk log2(k!)

k!

Normal (Gaussian) distribution:
H(x ;µ, σ) = log2(σ

√
2πe)

Zipf distribution (CN,s =
∑N

k=1

1

ks
):

H(k; s,N) =
s

CN,s

∑N
k=1

log2(k)

ks
+ log2(CN,s)



Information in
Speech

Introduction
to Information
Theory

Introduction

Probability
distributions

Bayesian
probabilities

Information and
probabilities

Relative entropy

Compression

Markov Chains

Maximum
Entropy

Bibliography

Information and probabilities

Probability distributions have entropies: Examples

Discrete Uniform distribution: H(
1

N
) = log2(N)

Continuous Uniform distribution [a, b]:

H(
1

b − a
) = log2(b − a)

Poisson distribution:

H(k;λ) = λ[
1

ln(2)
− log2(λ)] + e−λ

∑∞
k=0

λk log2(k!)

k!

Normal (Gaussian) distribution:
H(x ;µ, σ) = log2(σ

√
2πe)

Zipf distribution (CN,s =
∑N

k=1

1

ks
):

H(k; s,N) =
s

CN,s

∑N
k=1

log2(k)

ks
+ log2(CN,s)



Information in
Speech

Introduction
to Information
Theory

Introduction

Probability
distributions

Bayesian
probabilities

Information and
probabilities

Relative entropy

Compression

Markov Chains

Maximum
Entropy

Bibliography

Information and probabilities

Probability distributions have entropies: Examples

Discrete Uniform distribution: H(
1

N
) = log2(N)

Continuous Uniform distribution [a, b]:

H(
1

b − a
) = log2(b − a)

Poisson distribution:

H(k;λ) = λ[
1

ln(2)
− log2(λ)] + e−λ

∑∞
k=0

λk log2(k!)

k!

Normal (Gaussian) distribution:
H(x ;µ, σ) = log2(σ

√
2πe)

Zipf distribution (CN,s =
∑N

k=1

1

ks
):

H(k; s,N) =
s

CN,s

∑N
k=1

log2(k)

ks
+ log2(CN,s)



Information in
Speech

Introduction
to Information
Theory

Introduction

Probability
distributions

Bayesian
probabilities

Information and
probabilities

Relative entropy

Compression

Markov Chains

Maximum
Entropy

Bibliography

Information and probabilities
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Information and probabilities: Measuring

Information is the reduction of uncertainty

X
parameter

channel⇒ Y
observation

Entropy in X before the observation: H(X )

Entropy after the observation of value of Y : H(X |Y )

Average information gained through observing Y :
I (X |Y ) = H(X )− H(X |Y )

If there is no uncertainty left after observing Y , ie,
H(X |Y ) = 0: I (X |Y ) = H(X )

If X and Y are independent, ie, H(X |Y ) = H(X ), then
I (X |Y ) = 0

Always, H(X |Y ) ≤ H(X ) ⇒ I (X |Y ) ≤ H(X )

It is common to use H(·) as a synonym of I (·)

See chapter 1 of [Bavaud et al.(2005)Bavaud, Chappelier, and Kohlas]
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Relative entropy: KL(p : q) = H(p, q)− H(p)

KL(p : q) =
∑

i

pi log2
pi

qi

∨ ∫∞
−∞ p(x) log2

p(x)

q(x)
dx

discontinuous continuous

H(p, q) =
∑

i pi log2 qi : Cross Entropy

Kullback-Leibler distance

A non-symmetric divergence: KL(p : q) 6= KL(q : p)

Measures “distance” between prob. distributions

Information gain between Prior and Posterior distribution

Example: Word distributions as a distance between
document types

http://en.wikipedia.org/wiki/Kullback-Leibler_distance

http://en.wikipedia.org/wiki/Kullback-Leibler_distance
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Compression: Minimum size

Entropy, H(A) can be understood as the minimal number of
bits needed to fully specify A given a known production process

In an unknown process, K (A) replaces H(A) as the
information content

K (A): Minimum number of bits to reconstruct A

K (A) is the theoretical lower limit of compression size
C (A)

Practical (lossless) compression packages, C (A), eg, ZIP,
GZIP, BZIP2 etc. never reach this limit

K(A) is called the Kolmogorov complexity [Vitanyi(2005)][Chater and Vitanyi(2001)]
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Compression: Similarity metric

NCD(A,B) =
min{C (A|B),C (B|A)}

max{C (A),C (B)}

=
C (AB)−min{C (A),C (B)}

max{C (A),C (B)}

NCD: Normalized Compression Distance

Similarity by compression

Always C (AB) ≤ C (A) + C (B) (+constant)

Estimate entropy by suitable “long range” compression

K (text) ≤ C (text) in bits

http://www.complearn.org/ncd.html

[Chen et al.(2004)Chen, Li, Ma, and Vitányi][Vitanyi(2005)][Chater and Vitanyi(2001)]

http://www.complearn.org/ncd.html
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Markov Chains

Words and letters never follow each other at random

The simplest language “model” predicts the next word
based on the previous word

Markov chain: P(wi+1|wi ) =
P(wi+1,wi )

P(wi )

Can be extended to more words

Large amounts of text are needed to determine
P(wi+1,wi ) reliably

Example Markov text:
Step which one could go be grabbed. People to Do that
my the former Netscape brand’s fortunes that means
indent command to The user visible displays a.

http://en.wikipedia.org/wiki/Markov_chain

Generate texts: http://www.jwz.org/dadadodo/

http://en.wikipedia.org/wiki/Markov_chain
http://www.jwz.org/dadadodo/
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Markov Chains: Language models

With Markov chains, or N-grams, the probability of a sequence
can be calculated

What is the probability of encounting a sentence
(w1, . . . ,wn)?

A human style language model is not known

Use N-gram Markov chains

P(w1, . . . ,wn) =
∏n

i=1 P(wi |w1, . . . ,wi − 1) (exact)

P(w1, . . . ,wn) ≈
∏n

i=1 P(wi |wi−N+1, . . . ,wi−1) (N-gram
approximation)
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Markov Chains: Perplexity

PX (Model) = 2HX (wi |W1...i−1)

HX (wi |W1...i−1) = −
∑
{W }

Pobserved(wi | . . . ) log Pmodel(wi | . . . )

HX (·): Cross Entropy

Perplexity: “average” number of choices for the next word

Matches observed with modelled word order

A better language model has a lower perplexity

For an N-gram Markov chain the perplexity is well defined

Using the model entropy io. the cross entropy estimates
the quality of the model on the training corpus
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Maximum Entropy

findp∗ = argmax
p∈C

H(p)

= argmax
p∈C

(
−
∑
x ,y

p̃(x)p(y |x) log p(y |x)

)

Which model, p∗, fits my data best and by what criterium?

Quantify all constraints (knowledge) and determine the set
of possible distributions p ∈ C

Determine the average entropy, H(y |x), over the observed
(measured) probabilities p̃(x)

The best distribution, p∗ has the highest entropy

[Berger()][Berger(1996)] [Berger et al.(1996)Berger, della Pietra, and della Pietra] [Maxent()]

[Roni Rosenfeld(1996)]
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Maximum Entropy: Kangaroo example

1
3 of all kangaroos have blue eyes and 1

3 are left handed

blue Left Handed
eyed true false tot

true x 1
3 − x 1

3
false 1

3 − x 1
3 + x 2

3

tot 1
3

2
3 1

How many are both blue eyed and left handed?

All 0 ≤ x ≤ 1
3 are possible

H(x = 1
9) ≈ 1.84 has maximum entropy

x = 1
9 is the only solution with uncorrelated eye color and

handedness
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Copyright c©2005,2006 R.J.J.H. van Son, GNU General Public
License [FSF(1991)]

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
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Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free
software—to make sure the software is free for all its users. This General Public License applies to most of
the Free Software Foundation’s software and to any other program whose authors commit to using it. (Some
other Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies
of the software, or if you modify it.
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For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.
Also, for each author’s protection and ours, we want to make certain that everyone understands that there is
no warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.
Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution and
Modification
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0 This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1 You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2 You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

1 You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

2 You must cause any work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.
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3 If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no
warranty (or else, saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program (or with
a work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3 You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

1 Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,
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2 Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

3 Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source along
with the object code.

4 You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.
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5 You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

6 Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

7 If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
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decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8 If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9 The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms
and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10 If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

No Warranty
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11 Because the program is licensed free of charge, there is no warranty for the
program, to the extent permitted by applicable law. Except when otherwise stated
in writing the copyright holders and/or other parties provide the program “as is”
without warranty of any kind, either expressed or implied, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose.
The entire risk as to the quality and performance of the program is with you.
Should the program prove defective, you assume the cost of all necessary servicing,
repair or correction.

12 In no event unless required by applicable law or agreed to in writing will any
copyright holder, or any other party who may modify and/or redistribute the
program as permitted above, be liable to you for damages, including any general,
special, incidental or consequential damages arising out of the use or inability to
use the program (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the program to
operate with any other programs), even if such holder or other party has been
advised of the possibility of such damages.

End of Terms and Conditions
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Appendix: How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author
This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it under certain conditions; type
‘show c’ for details.
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The hypothetical commands show w and show c should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than show w and show c; they
could even be mouse-clicks or menu items—whatever suits your program.
You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.
signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your

program is a subroutine library, you may consider it more useful to permit linking proprietary applications

with the library. If this is what you want to do, use the GNU Library General Public License instead of this

License.
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