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Fast Approximation of Kullback-Leibler Distance
for Dependence Trees and Hidden Markov Models

Minh N. Do

Abstract—We present a fast algorithm to approximate the
Kullback-Leibler distance (KLD) between two dependence
tree models. The algorithm uses the “upward” (or “for-
ward”) procedure to compute an upper bound for the KLD.
For hidden Markov models, this algorithm is reduced to a
simple expression. Numerical experiments show that for a
similar accuracy, the proposed algorithm offers a saving of
hundreds of times in computational complexity compared
to the commonly used Monte-Carlo method. This makes
the proposed algorithm important for real-time applications,
like image retrieval.
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I. Introduction

Hidden Markov models (HMM) and their generalized
versions on dependence tree structures [1] have become
powerful tools in speech recognition [2] and signal process-
ing [3]. Their successes come from their effectiveness in
modeling large classes of natural measurements using a
small set of parameters. Furthermore, there are fast al-
gorithms to evaluate and train these models for given data
sets.

In certain problems, we would like to measure the dis-
tance between two statistical models. For example, this
distance can be used in evaluating the training algorithm or
classifying the estimated models [4]. In an image retrieval
application, where each texture pattern is efficiently rep-
resented by a wavelet-domain hidden Markov tree model
[5], the search is performed by comparing the distances be-
tween the model of the query image and the model of each
candidate image. The Kullback-Leibler distance (KLD) or
the relative entropy arises in many contexts as an appro-
priate measurement of the distance between two models.
The KLD between the two probability density functions f
and f̃ is defined as [6]:

D(f‖f̃) =

∫

f log
f

f̃
. (1)

For dependence trees and hidden Markov models, the
probability function is very complex, and practically it can
be only computed via a recursive procedure – the “for-
ward/backward” or “upward/downward” algorithms [2],
[1]. Thus there is no simple closed form expression for
the KLD for these models. Commonly, the Monte-Carlo
method is used to numerically approximate the integral in
(1). This is done by rewriting (1) as

D(f‖f̃) = Ef [log f(X)− log f̃(X)].
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With this, one can randomly and independently generate
a set of sample data x1, x2, . . . , xN based on the model
density f(X) and then approximate the KLD by:

D(f‖f̃) ≈
1

N

N
∑

n=1

[log f(xn)− log f̃(xn)]. (2)

Typically, for an accurate approximation of D(f‖f̃), N
has to be large, which can be prohibitively expensive in
certain applications. Furthermore, due to the “random”
nature of the Monte-Carlo method, the approximations of
the distance could vary in different computations.

In this paper, we propose a fast algorithm to approxi-
mate the KLD between two dependence tree models or two
hidden Markov models. In fact, the algorithm computes an
upper bound for the KLD. For general dependence trees,
the proposed algorithm has computational complexity sim-
ilar to computing one density in (2), and thus it is much
faster compared with the Monte-Carlo method. For hid-
den Markov models – a special case of dependence trees,
the algorithm is reduced to a simple expression.

II. KLD between Dependence Tree Models

Denote D(w‖w̃) as the KLD between two probability
mass functions w = (w1, . . . , wJ ) and w̃ = (w̃1, . . . , w̃J )

D(w‖w̃) =

J
∑

i=1

wi log
wi

w̃i

. (3)

Our results are based on the following key lemma which
was stated for mixture of Gaussians in [7].

Lemma 1: The KLD between two mixture densities
∑J

i=1 wifi and
∑J

i=1 w̃if̃i is upper bounded by

D

(

J
∑

i=1

wifi‖
J
∑

i=1

w̃if̃i

)

≤ D(w‖w̃)+
J
∑

i=1

wiD(fi‖f̃i), (4)

with equality if and only if wifi
∑

i wifi
= w̃if̃i(x)

∑

i w̃if̃i(x)
, for all i.

Proof: Using the log-sum inequality [6] (p.29)

D

(

∑

i

wifi‖
∑

i

w̃if̃i

)

=

∫

(

∑

i

wifi

)

log

∑

i wifi
∑

i w̃if̃i

≤

∫

∑

i

wifi log
wifi

w̃if̃i

=
∑

i

wi log
wi

w̃i

+
∑

i

wi

∫

fi log
fi

f̃i

= D(w‖w̃) +
∑

i

wiD(fi‖f̃i),
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Consider a statistical dependence tree T , where at each
node n in the tree there is a hidden state variable Sn and
an observation variable On (Figure 1). Denote ρ(n) to be
the parent of the node n and C(n) to be the set of children
of the node n. Furthermore, denote Tn to be the subtree
of all nodes with the root at n and OTn

to be the set of
all observation variables attached to these nodes. Node 1
is assigned to the root of T , and thus T1 = T .

observation

state

PSfrag replacements

1

ρ(n)

n

Tn

Fig. 1. A dependence tree model.

The state variables Sn have discrete value in the set
{1, 2, . . . , J} and follow a Markov model, where the state
transition probability is defined on the edges of T as

P (S1 = i) = πi,

P (Sn = j | Sρ(n) = i) = a
(n)
ij . (5)

The observation variables have emission probabilities
conditioned only on the state of the same node

P (On = o | Sn = i) = b
(n)
i (o), (6)

where b
(n)
i (.) can be either a probability mass function

(pmf) for discrete models or a parameterized probability
density function (pdf), usually a mixture of Gaussians,
for continuous models. Therefore, the set of parameters

θ =
{

πi, a
(n)
ij , b

(n)
i (.)

}

1≤i,j≤J, n∈T
completely specifies a de-

pendence tree or hidden Markov tree model.

At each node n, we define β
(n)
i to be the conditional

probability function of the subtree observation data which
has root at the node n given its state is i, that is

β
(n)
i (oTn

) = P (OTn
= oTn

| Sn = i, θ), i = 1, . . . , J. (7)

For a leaf node n, we have

β
(n)
i (on) = b

(n)
i (on). (8)

From the definition of the dependence tree model, if we
fix the state Sn = i of a node n, then the observation On

and its subtrees OTm
for each m ∈ C(n) are independent

(refer to Figure 1). This leads to the following key induc-
tion relation

β
(n)
i (oTn

) = b
(n)
i (on)

∏

m∈C(n)

J
∑

j=1

a
(m)
ij β

(m)
j (oTm

) (9)

This equation is the heart of the “forward” or “upward”
algorithm [1] in which the probabilities β’s are computed
iteratively up the tree to the root where the probability of
the whole observation tree is computed as

P (OT = oT |θ) =
J
∑

j=1

πjβ
(1)
j (oT ). (10)

Based on this induction relation, we propose an efficient
algorithm to approximate the KLD between two depen-
dence tree models θ and θ̃.
1. Initialization: At each leaf node n of T , using (8) we
have

D(β
(n)
i ‖β̃

(n)
i ) = D(b

(n)
i ‖b̃

(n)
i ). (11)

For discrete models, D(b
(n)
i ‖b̃

(n)
i ) can be computed directly

as shown in (3) for the KLD between two pmf’s. For con-

tinuous models, where b
(n)
i and b̃

(n)
i are mixtures of Gaus-

sians, we can upper bound their KLD using Lemma 1 and
the following closed form expression for the KLD between
two d-dimensional Gaussians [7]:

D(N (.;µ,C)‖N (.; µ̃, C̃)) =
1

2
[log

det C̃

detC
− d

+ trace(C̃−1
C) + (µ− µ̃)T C̃

−1(µ− µ̃)]. (12)

2. Induction: Since given Sn = i, On and OTm
are inde-

pendent for all m ∈ C(n), applying the chain rule for KLD
[6] (p.23) to (9), we have

D(β
(n)
i ‖β̃

(n)
i ) = D(b

(n)
i ‖b̃

(n)
i )

+
∑

m∈C(n)

D





J
∑

j=1

a
(m)
ij β

(m)
j ‖

J
∑

j=1

ã
(m)
ij β̃

(m)
j



 .

Applying Lemma 1 to the last term in the above equation,
we obtain

D(β
(n)
i ‖β̃

(n)
i ) ≤ D(b

(n)
i ‖b̃

(n)
i )

+
∑

m∈C(n)



D(a
(m)
i ‖ã

(m)
i ) +

J
∑

j=1

a
(m)
ij D(β

(m)
j ‖β̃

(m)
j )



 .

(13)

Here we denote a
(m)
i = (a

(m)
i1 , . . . , a

(m)
iJ ), which is the pmf

for the state of child note Sm given its parent state Sn = i.
3. Termination: Finally, applying Lemma 1 to (10)

D(θ‖θ̃) ≤ D(π‖π̃) +
J
∑

j=1

πjD(β
(1)
j ‖β̃

(1)
j ). (14)
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Tracing through the chain of inequalities, in effect, we
have a fast algorithm to compute an upper bound for the
KLD between two dependence tree models. The proposed
algorithm has the same computational complexity as com-
puting one density for a dependence tree model using the
“upward” algorithm [1]. Thus comparing with the Monte-
Carlo method (2), the proposed algorithm offers a saving
of N times, where N is the number of randomly generated
trees used in the Monte-Carlo method.

It can be proved1 that the above algorithm is equivalent
to applying Lemma 1 to the dependence tree models as
they were expressed as mixture of densities

P (OT = oT |θ) =
∑

sT

P (ST = sT )

(

∏

n∈T

b
(n)
Sn

(on)

)

, (15)

where the sum is taken over all J |T | combinations of states
sT on the tree T (|T | is the number of nodes on T ). Such
direct application of Lemma 1 to (15) is infeasible in prac-
tice due to the typically huge number of densities in (15).
Nevertheless, this equivalence provides an interpretation
of the result from the proposed algorithm. In particular,
applying the Bayes’ theorem to the equality condition of
Lemma 1, we conclude that the resulting upper bound of
the proposed algorithm is tight if and only if the posteriori

state probabilities of two models are the same

P (ST = sT |oT , θ) = P (S̃T = sT |oT , θ̃), for all sT , oT .
(16)

III. KLD between Hidden Markov Models

A special case of dependence tree models is the hidden
Markov model (HMM) which was shown to be useful in
many applications, especially speech recognition [2]. In
an HMM, the dependence tree T becomes a chain; that
is, except the last one, each node has exactly one child.

Furthermore, all the nodes share the same statistics: a
(n)
ij =

aij , b
(n)
i = bi, for all n. Number the nodes in the chain in

the obvious way: start from 1 and end at N for the last
node.2 The inductive relation (13) becomes

D(β
(n)
i ‖β̃

(n)
i ) ≤ D(bi‖b̃i) +D(ai‖ãi)

+

J
∑

j=1

aijD(β
(n+1)
j ‖β̃

(n+1)
j ). (17)

Denote di = D(ai‖ãi) +D(bi‖b̃i), D
(n)
i = D(β

(n)
i ‖β̃

(n)
i ),

d = (d1, . . . , dJ )
T , D(n) = (D

(n)
1 , . . . , D

(n)
J )T , and A =

{aij} to be the state-transition probability matrix. Then
(17) can be written in a compact form as

D(n) ≤ d+ AD(n+1). (18)

1The proof is omitted due to lack of space.
2Using the notation for dependence trees defined previously, for

HMM’s the quantity β
(n)
i

becomes P (On:N = on:N |Sn = i, θ). This
is slightly different with conventional notation in HMM literature,

which defines β
(n)
i

to be P (On+1:N = on+1:N |Sn = i, θ).

The initialization step (11) becomes

D(N) = (D(b1‖b̃1), . . . , D(bJ‖b̃J ))
T def

= e.

And the termination step (14) becomes

D(θ‖θ̃) ≤ D(π‖π̃) + πTD(1).

By applying (18) iteratively, we obtain

D(θ‖θ̃) ≤ D(π‖π̃) + πT

(

N−1
∑

n=1

A
n−1d+ A

N−1e

)

. (19)

Note that the KLD between two HMM’s depends on the
length N of the observation sequence. Therefore, typically
the following Kullback-Leibler divergence rate (KLDR) be-
tween two HMM’s is used:

D̄(θ‖θ̃) = lim
N→∞

1

N
D(θ‖θ̃). (20)

If we assume that the model θ is stationary, that is there
exists a stationary distribution vector ν such that νTA =
νT and

lim
n→∞

πT
A
n = νT ,

then by substituting (19) into (20) and taking the limit as
a Cesáro mean, we obtain

D̄(θ‖θ̃) ≤ νTd =

J
∑

j=1

νj

(

D(aj‖ãj) +D(bj‖b̃j)
)

. (21)

The upper bound in (21) is a very simple expression that
can be computed directly on the model parameters and
requires about J2 operations.

IV. Numerical Experiments

We use numerical experiments to evaluate the tightness
and the computational saving of the proposed algorithm in
comparison with the commonly used Monte-Carlo method
for computing the KLD. Due to the random nature of the
Monte-Carlo method, we run it for 1000 independent trials
to estimate the variation of the Monte-Carlo restuls and
the true KLD – chosen as the mean of these results.

First, we experiment with discrete HMM’s (DHMM’s),
where the pmf’s bi is represented by a stochastic matrix B.
Consider the following two DHMM’s:

π =
(

0.5 0.5
)

A =

(

0.9 0.1
0.2 0.8

)

B =

(

0.1 0.3 0.6
0.2 0.1 0.7

)

π̃ =
(

0.5 0.5
)

Ã =

(

0.7 0.3
0.4 0.6

)

B̃ =

(

0.3 0.5 0.2
0.6 0.2 0.2

)

(22)

Figure 2 shows the approximation results of the KLDR
D̄(θ‖θ̃) of the above two DHMM’s using two different meth-
ods. The results from the Monte-Carlo method vary sig-
nificantly unless the length N of the randomly generated
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Fig. 2. Approximation results of the KLDR between two DHMM’s
in (22).

sequence is large. In this case, we see that the proposed al-
gorithm has similar accuracy with the Monte-Carlo method
that uses sequence of length N ≈ 100; and thus it offers a
saving of hundreds of times in computational complexity.

Next, we experiment with wavelet-domain hidden
Markov tree models [3]. In these models, wavelet coef-
ficients are organized into trees where edges link parent
and child coefficients across scales. The marginal distri-
bution of each wavelet coefficient is modeled by a mixture
of two zero-mean Gaussian densities, corresponding to two
states of being “small” or “large” in magnitude. The transi-
tion state probabilities model the persistent property where
large/small values of wavelet coefficients tend to propagate
through scales. To keep the model size manageable, we
assume model parameters are the same at each scale. Fol-
lowing are examples of trained model parameters for the
vertical wavelet subbands of the “Lena” (θ) and “Barbara”
(θ̃) images using Daubechies’ 8-tap filters and 3 decompo-
sition levels.

π =
(

0.69 0.31
)

A
(2) =

(

0.99 0.01
0.22 0.78

)

A
(3) =

(

0.99 0.01
0.32 0.68

)

σ
(1)
1 = 11.8, σ

(1)
2 = 67.1

σ
(2)
1 = 4.1, σ

(2)
2 = 29.3

σ
(3)
1 = 2.8, σ

(3)
2 = 10.3

π̃ =
(

0.63 0.37
)

Ã
(2) =

(

0.98 0.02
0.20 0.80

)

Ã
(3) =

(

0.99 0.01
0.22 0.78

)

σ̃
(1)
1 = 24.6, σ̃

(1)
2 = 74.8

σ̃
(2)
1 = 6.9, σ̃

(2)
2 = 31.9

σ̃
(3)
1 = 3.1, σ̃

(3)
2 = 14.8

(23)
Figure 3 shows the approximation results of the KLD

D(θ‖θ̃) of the above two models. Again we see that the
proposed algorithm offers comparable accuracy with the
Monte-Carlo method that uses N ≈ 100 randomly gen-
erated trees. Furthermore, the tying of dependence tree
model parameters at each level greatly simplifies the com-
putational complexity of the proposed algorithm, to about
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Fig. 3. Approximation results of the KLD between two wavelet-
domain hidden Markov tree models in (23).

15L multiplications and 8L additions, where L is the num-
ber of wavelet decomposition levels [5]. This makes the
proposed algorithm crucial for the retrieval application.

V. Conclusion

We present a fast algorithm to approximate the
Kullback-Leibler distance between two general dependence
tree models. The algorithm uses the “upward” procedure
to compute an upper bound for the KLD and has compu-
tational complexity similar to computing one density for a
dependence tree model. For hidden Markov models, this
algorithm is reduced to a simple expression, which is eval-
uated directly on the model parameters. Unlike the com-
monly used Monte-Carlo method, the proposed approxima-
tion is deterministic. Numerical experiments show that for
the same accuracy, the proposed algorithm offers a com-
putational saving of hundreds of times compared to the
Monte-Carlo method.
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