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Abstract

Within spontaneous speech there are wide variations in the articulation of the
same word by the same speaker. Some words become extremely reduced while
others seem to stand out more strongly in a phrase or sentence. This thesis
explores these variations in articulation from two different but, arguably, related
perspectives, prosodic structure and redundancy.

I argue that the constraint of producing robust communication while efficiently
expending articulatory effort leads to:

1. An inverse relationship between language redundancy and care of
articulation

2. The need for a strong ’checking’ signal

The inverse relationship improves robustness by spreading the information more
smoothly across the speech signal leading to a smoother signal redundancy profile.
Checking in contrast leads to a more robust signal by ensuring that errors are
detected and corrected.

I argue that smooth signal redundancy and a checking signal could be imple-
mented by prosodic prominence and prosodic boundaries. Prosodic prominence
increases care of articulation and appear to coincide with unpredictable sections of
speech. In doing so prosodic prominence leads to a smoother signal redundancy.
Prosodic boundaries cause syllabic lengthening and, by bounding self contained
chunks of information (such as a word or phrase), signal that a listener should
have a meaningful section of speech as well as offering a location for a listener to
request clarification or re-transmission. In this way prosodic boundaries could be
regarded as a checking signal.

The work presented here concentrates on the issue of smoothing redundancy. In
order to explore this idea quantitatively, prosodic coding, metrics of language
redundancy (word frequency, syllabic trigrams and givenness) and of care of ar-
ticulation (normalised syllabic duration and vowel quality) are formulated and
applied to a large corpus of English spontaneous task-oriented dialogue.

Results confirm the strong relationship between prosodic structure and care of
articulation as well as an inverse relationship between language redundancy and
care of articulation. In addition, when an opportunity for a checking signal is
controlled for, in some circumstances language redundancy can predict up to 65%
of the variance in raw syllabic duration. This is comparable with 64% predicted
by prosodic structure. Moreover most (62%) of this predictive power is shared.

This leads to the conclusion that, within English, prosodic structure is the means
with which constraints caused by requiring a robust signal are expressed in spon-
taneous speech. Finally it is argued that, if redundancy is indeed a driving force
behind prosodic structure, notions of redundancy and predictability should be
more formally included into prosodic theory.
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Chapter 1

Introduction

We often don’t say the same word the same way in different situations. If we

read a list of words out loud we say them differently from when we produce them,

spontaneously, in a conversation. Even within spontaneous speech there are wide

differences in the articulation of the same word by the same speaker. Some

words become extremely reduced while others get longer and louder and seem

to stand out more strongly in a phrase or sentence. This thesis explores these

variations in articulation from two different but arguably related perspectives,

prosodic structure and redundancy.

1.0.1 Prosodic structure

Phoneticians and phonologists have studied ’suprasegmental’ effects, variation

that appears to occur at the phrase or word level, for many years and proposed

various theories of prosodic structure to account for them. They have shown

that these variations are not random but often extremely systematic. In general,

theories of prosodic structure concentrate on three distinct though clearly related

phenomena:

1. Prominence: Some parts of the speech stream stand out more than other

parts.

2. Boundaries: Speech is split up into chunks which are marked by supra-

segmental phenomena. (For example pauses, differences in tone, amplitude,

segmental duration and prominence.)

3. Information Giving: Changes in prosodic structure can alter the meaning

of the message. (For example altering the topic of a statement by changing

the prominence of certain words.)

1



Looking closely at the way prominence is realised in spoken language labora-

tory phonetics has found that prominent syllables are more clearly articulated

(e.g. van Bergem, 1988). That is, the segments tend to be longer, the spectral

characteristics are more distinct, they are louder and often marked with pitch

change. Words with such prominence also tend to be easier for human subjects

to recognise when excerpted from context.

In general:

prominence = more care of articulation = more noticeable = easier to recognise

1.0.2 Redundancy

Prosodic structure clearly affects care of articulation; however another factor,

redundancy, also appears to have a major impact (Lieberman, 1963; Hunnicut,

1985; Wright, 1997, amongst others). More common words and words you can

easily predict from context (more redundant) tend to be articulated less clearly.

For example the ’nine’ in the phrase ’a stitch in time saves nine’ is less clearly

articulated than the nine in ’the number you will hear is nine’.

Lindblom (Lindblom, 1990) in his H&H theory suggests that we put only as

much effort into articulation as required for the listener to understand. He argues

that we tend to under-articulate predictable (redundant) sections of speech and

over-articulate difficult to predict (less redundant) sections of speech.

This change in articulation can be manifested both as an overall postural setting

where the speech style becomes more careful overall and also locally where indi-

vidual words and speech sounds are more carefully produced. There is substantial

evidence that the phonetic effects we see in speech which are carefully articulated

as a whole are similar to the phonetic effects we see within a speech style when

an individual section of speech is carefully articulated. It is these local changes

which appear to reflect differences in redundancy.

1.0.3 Motivation and Hypotheses

So we appear to have two quite different factors controlling the care with which

we articulate speech. On one hand we have a complex prosodic structure which

allows prominence and the chunking of speech and on the other we have complex

interactions within the structure of language which makes some sections of speech

predictable and others less so.
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Unfortunately very little work has considered both these factors when examining

care of articulation. A major criticism levelled at the Lieberman (1963) work is

that prosody was not controlled for. This general lack of any prosodic control per-

sists in much of the work reporting a redundancy effect (see chapter 4). Similarly

work that has considered the impact of prosodic structure on care of articulation

has not taken even basic redundancy effects such as word frequency into account.

This thesis will try to disentangle these factors. It explores the relationship

between theories of prosodic structure, care of articulation and measurements of

redundancy in a corpus of spontaneous spoken language. In doing so it aims to

unite traditional phonological views of language structure with a stochastic, data

driven approach to language analysis.

I will argue that a relationship between redundancy and care of articulation is

desirable in speech because it leads to more robust communication. I will present

strong evidence that much of the effect of redundancy is implicitly represented

in prosodic structure (see chapter 6). This leads to the conclusion that prosodic

structure is the means with which redundancy effects are implemented linguisti-

cally within language (see chapter 2). In turn this suggests that redundancy can

be thought of as a reason why much prosodic structure is as it is within English.

I will finally speculate on the extent this may also be true cross-linguistically.

Understanding these variations in articulation is of great importance for both

engineers who wish to design effective speech recognition and synthesis software

and also psycholinguists and phoneticians who wish to understand the human

language system. Potentially such an investigation can help refine theories of

suprasegmentals and allow us to not only predict articulation variation in the

speech stream but use this variation to explore the internal state of a speaker’s

language system.

The central questions this thesis will address are:

1. Can we build an effective model of care of articulation that allows a quan-

titative analysis of large quantities of spontaneous speech? What are the

problems and limitations of such a model?

2. To what extent does a modern theory of prosodic structure account for such

changes in the care of articulation in contrast to some simple measures of

redundancy?

3. How much interdependency exists between redundancy measurements and

prosodic structure? Can concepts of predictability and prosodic structure

3



be integrated together to offer a stronger predictive framework of changes

in care of articulation.

1.1 Brief outline of Methodology: A Corpus Ap-

proach

Most studies of prosodic structure and care of articulation have been carried out

on carefully controlled read laboratory speech (for example van Bergem, 1988;

Moon and Lindblom, 1994; de Jong, 1995). Such an approach allows the careful

construction of the data set that a study wishes to explore so that any particu-

lar language feature can be carefully controlled for. In doing so the amount of

material that needs to be analysed to address a particular question is kept to a

minimum. Coding and measuring speech data by hand is a time consuming busi-

ness. The traditional laboratory approach is able to minimise time spent coding

and analysing while maximising the factors that can be studied so that cleverly

selected materials can expose interdependencies between factors. While this ap-

proach has been extremely successful in speech research there is also a need for

work based on more natural speech.

It has been shown that patterns in care of articulation vary significantly across

speech styles. Read speech, although similar in many ways to spontaneous con-

nected speech, is generally more carefully articulated (Fowler, 1988). Prosodic

structure also differs from that in spontaneous dialogue (Silverman et al., 1992).

This means that you cannot necessarily generalise results across speech styles.

Therefore, in order to address the main questions of this thesis we need to ex-

amine spontaneous speech. In turn, because spontaneous speech cannot be so

carefully controlled, to cover the many different prosodic and redundancy con-

texts a lot of spontaneous speech is required. The more speech we have to consider

the more impractical hand coding and hand measurement becomes and the more

we need to rely on automatic methods. This in turn introduces noise which means

yet more material is required.

This work is based on a large corpus of spontaneous task oriented dialogue col-

lected by the HCRC at the University of Edinburgh - the HCRC Map Corpus

(Anderson et al., 1991). The corpus, comprising of about 15 hours of sponta-

neous speech, 64 speakers and around 200,000 syllables, gives sufficient scope for

some hand coding as well as offering a very large data set with which to apply

automatic methods.
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In order to explore the relationships between care of articulation, prosodic struc-

ture and redundancy using quantitative techniques in this material it was nec-

essary both to define more clearly what these terms mean theoretically and, to

some extent, limit the scope of these terms to produce an operational metric.

Chapters 2,3,5 go into detail concerning the measurement and coding strategies

of these factors and the thinking behind them. A summary is as follows:

1.1.1 Redundancy

A trigram measurement over syllables, word frequency and givenness are used as

redundancy measurements. Chapter 2 goes into some detail concerning the issues

in arriving at and using redundancy measurements.

1.1.2 Prosodic Structure

Chapter 3 discussed problems in applying prosodic coding to speech material,

gives an overview of the theoretical background behind the coding used and goes

into detail concerning the methodology of applying this coding to a large corpus

of spontaneous speech.

1.1.3 Care of Articulation

A very large number of factors can be used to examine care of articulation. In

this study vowel spectral clarity and syllable duration were used as operational

measurements. (Chapter 5)

1.2 Structure of the Thesis

Chapter 2 introduces the concept of redundancy and addresses the question of

why redundancy might be linked to care of articulation. Chapter 3 reviews liter-

ature in the areas of prosody and presents the coding system used to represent

prosodic structure in this work. Chapter 4 reviews work that has looked at care

of articulation in terms of prosodic structure and work which has looked at care

of articulation in terms of redundancy. This chapter also goes into some depth

concerning the acoustic factors which are connected with carefully articulated

speech. Chapter 5 describes the method used in this thesis for measuring care

of articulation in terms of syllabic duration and the spectral quality of vowels.

5



Chapter 6 presents results from the analysis of these materials looking at the

interrelationships between these measurements. Finally Chapter 7 discusses the

implications of these results, possible future work as well as some of the limitations

in the approach used here.

6



Chapter 2

Redundancy

2.1 Introduction

This chapter aims firstly to give a brief introduction to the concept of redun-

dancy and secondly to explore the reasons why redundancy might relate to care

of articulation and prosodic structure. The aim here is to give the reader the

necessary background for understanding the application of statistical techniques

for measuring redundancy as used in this thesis. This chapter does not attempt

to present a detailed appraisal of research in statistical language processing for

the following reasons:

1. To a large extent the statistical techniques used to measure redundancy in

this work are ’off the shelf’ and are relatively simple and uncontroversial.

2. Excellent textbook introductions to using statistical techniques in the study

of natural language (e.g. Charniak, 1993) and to approaches in corpus lin-

guistics (e.g. McEnery and Wilson, 1996) already exist.

The ideas that I will discuss in this chapter are fundamental to the approach of

my work. They form the basis of why I believe care of articulation is related to

redundancy as well as to prosodic structure. In order to explore these ideas it is

crucial that the terms used in my argument are clearly defined and explained. In

the first part of this chapter I will present these basic ideas. First I will discuss

the concept of redundancy in language and in the acoustics of language. I will

then consider how these notions relate to a noisy channel model of communication

and give a definition of the three different types of redundancy considered here,

language redundancy, acoustic redundancy and signal redundancy.
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I will then consider why prosodic structure, redundancy and care of articulation

should be inextricably linked given this framework. This in turn will lead to a

number of testable hypotheses which I will return to in chapter 6. In the final

part of the chapter I will describe in detail the method I use to represent and

measure redundancy throughout this work.

2.2 Historical Background

In 1948 Shannon (Shannon, 1948) published a mathematical theory of commu-

nication. Although strongly mathematical, his approach was also very general.

By expressing information in terms of choice or uncertainty it was possible to

formally measure information in terms of bits (the number of 1s or 0s required to

represent the information). In this way information theory can define how many

bits of information can be sent per second over perfect and imperfect channels and

it can specify how such information can be encoded efficiently. Parallels between

Shannon’s analysis of electrical communication and human communication were

quickly drawn (Miller and Frick, 1949). Other work has varied from mathemat-

ical observations such as Zipf (1949), who noted that the number of occurrences

of a word in a long text is the reciprocal of the order of frequency of occurrence,

to specific experiments in psychology such as McGill (1954) which attempted to

relate differences in entropy with a subject’s response to stimuli.

For a broad non-mathematical introduction to the concepts within information

theory and an overview of early psychology work related to information theory see

Pierce (1961). What follows here is a non-technical explanation of how some of

the concepts within information theory (in particular redundancy and the noisy

channel) can be related to speech and how such a perspective forms the basis of

the hypotheses examined in this work.

2.3 Redundancy

Redundancy means how predictable an observation is given its context. The more

predictable the easier it is to guess and the more redundant the information.

For example Lieberman (1963) used different contexts to produce high and low

redundant words. One much quoted example is: “A stitch in time saves ...” and

“The number you will hear is ...” to elicit redundant and non-redundant tokens

of the word nine (for a detailed examination of this and other laboratory work
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relating redundancy to care of articulation see chapter 4).

In order to formalise this notion of redundancy one could generate a numerical

probability that nine is the last word in these two sentences. This is non triv-

ial because of the many different factors that govern natural language. Without

being able to model all these factors it is not possible to generate the true nu-

meric probability of guessing the word. What Lieberman did was instead use the

response of human subjects to calculate probabilities. He asked 60 subjects to

guess the word and the number that were correct out of the total number was

used as the probability of predicting nine given these different contexts. However

such an approach is infeasible when dealing with very large data sets. In this

case, in order to produce a formal numerical probability of a word occurring it is

necessary to build a statistical model which can generate these probabilities.

All such formal measurements require a model and in all cases, when a formal

redundancy measurement is made, it is with regards to a model.

For example imagine throwing two dice. What is the most redundant result of

adding the two numbers produced? The answer is 7. This is because of the

thirty-six different possible outcomes six add up to 7 (1/6, 2/5, 3/4, 4/3, 5/2,

6/1) meaning the chance of the dice reading seven is about 16.67% whereas the

chance of it adding up to 12 (with only one outcome 6/6) is only about 2.78%.

Where is the model? The model is built on the assumption that each number on

each dice has an equal chance of appearing.

A model of this nature can be built from two perspectives:

1. We can argue that it is a good model of two dice because we believe there

is no more chance of one side appearing than any others when the dice is

thrown normally. This is a theoretically led model.

2. We can roll the dice and observe what happens. Then we can collect the

observations and build a probabilistic model from them. This is an obser-

vationally led model.

In practise most models are a combination of both approaches. A theoretical ap-

proach is first taken to build a prototype model which is then tested and adapted

with regard to observations.

In speech, where such observations are the acoustic signal, we may wish to sepa-

rate the acoustical observations from an underlying language model. For example

when looking at speech we might choose to separate the signal into words. To
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do this we need to connect the acoustic observations with a particular word. In

speech technology this is often carried out using a statistical acoustic model which

produces a set of probabilities of different words occurring given the signal and

a language model which given these different words calculates the most likely

sequence of words. Splitting the models up like this has a profound effect on the

meaning of redundancy in natural language.

2.3.1 Acoustic Models versus Language Models

In the dice example we know what the outcome of each dice throw is. Let’s

imagine that instead the person who rolls the two dice shouts out the sum that

is produced. We then have a set of acoustic observations which are connected

to an event. We can take these observations and build an acoustic model which

connects them to each word that is spoken. If for example you observe high

amplitude fricative noise which is mostly above 4Khz this indicates an /s/ has

probably been produced by the speaker. Given an ’s’ it is unlikely the dice

roller has rolled two, three, etc., and more likely they have rolled six or seven.

If in contrast you observe lower amplitude broader spectrum fricative noise this

indicates a ’f’ or a ’th’ has probably been produced by the speaker. Given this

then a three, four or five is more likely to have been rolled.

We now have two statistical models. One represents the likelihood of a particular

number appearing on the dice. This is, in effect, our language model because it

models the likelihood of different words appearing. The other, the acoustic model,

connects acoustic observations with these words. We can use the combination of

both models to make the best guess of what number was rolled and what the dice

roller said given the acoustic observations.

We can also calculate the redundancy (or predictability) of events and observa-

tions occurring with regards to these models. The result is a number of ’levels’ of

redundancy. We have the redundancy of the event ’seven’ occurring but also of

the sound ’s’ being produced given acoustic observations. We can combine these

measures of redundancy in the same way as we can combine the statistical models

to produce the final signal redundancy.

There is no limit on how much we might want to divide these two models further.

In statistical natural language processing it is possible to build different models

for the different features of language. For example redundancy in the sentence

“I’m going to the beach” can be calculated with regards to a probabilistic model of
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making that statement given some situation (e.g. it’s a sunny day), with regards

to the syntax (e.g. more likely than “going I beach”), with regards to the lexicon

(e.g. “beach” is a more common word than “zanja”1), with regards to the sounds

(e.g. ’b’ is a more common sound than ’ch’), and with regards to the acoustic

observations (e.g. we wouldn’t expect a fundamental frequency over 250Hz).

The fact we can calculate the redundancy of an event given a model does not of

course mean the model is a good one or that the redundancy value it produces

reflects the underlying system that produced the event. This is especially true

in natural language where there is a great deal of dependency from one event to

the next. Unlike the dice example, where our model regards each dice throw as

independent, in language each word we produce, each sound, each message is very

much dependent on what has gone before and what is expected to come after.

As I will explain in the next section, variation in redundancy at the level of the

language model (language redundancy) has some important implications with

regards to communicating in a noisy environment. These implications can help

explain why prosody might be used for checking and why language redundant

sections of speech might be attenuated by prosody.

2.3.2 Noisy Channel

Introducing noise into the signal has important considerations on the need for

redundancy both in terms of smoothing redundancy over the whole signal (the

signal redundancy) and in terms of introducing checks which are built into the

signal (see below). To clarify what is meant by a noisy channel imagine a crowd is

watching the dice roller roll his dice and they are shouting random encouragement.

The noise they are making will degrade the acoustic observations and thus make

the chances of guessing the correct number from the acoustic observations worse.

The effect this will have on different sounds is different. ’f’ is normally quieter

than ’s’ so this random noise is more likely to make ’f’ indistinguishable from some

other sound than ’s’. Computing the redundancy of each event for the observer

is now a combination of:

1. The likelihood of the event (the language model).

2. The likelihood of the acoustic observations representing this event being

degraded by the random noise (the noise model).

1An irrigating canal according to Chambers English Dictionary
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3. The likelihood of these degraded acoustic observations being associated with

the event (the acoustic model).

A certain amount of redundancy in a noisy channel environment is a good thing.

This is because it offers protection to loss of information. It is also good for such

redundancy to be smooth in the signal so that the signal will degrade gracefully.

Graceful degradation can be thought of as the relationship between loss of data

in the message and loss of information carried by the data. An example of poor

degradation is the loss of one binary instruction in a computer program. If one

instruction is lost the entire program could well fail. An example of more graceful

degradation would be the loss of a few random characters from a text file. The

text file would probably still contain most of the useful information. A smooth

signal redundancy profile can be regarded as not putting all your eggs in one

basket; by distributing the information evenly a critical error is less likely to

occur (see Pierce, 1961, chapter 8).

However an alternative approach to dealing with a noisy environment (and in

some cases a more efficient one) is to build checks into the communication (also

see Pierce, 1961, chapter 8). Rather than have a passive receiver which may fail

to correctly decode the message the receiver and the transmitter have a built in

structure of checks. Typically the transmitter sends a chunk of message and the

receiver responds with an ’okay I received this’ message. If the message is not

received correctly then it is resent. Using checks complicates redundancy. We

now not only need to send the message but also the checks. We therefore need

to add a model representing these checks to the system. The structure of these

checks needs to be predictable so that the checks themselves are unlikely to be

missed in the noisy environment.

Both smoothing signal redundancy and checking could be associated with prosodic

structure. The first because prominence, by making speech more distinct, affects

its acoustic redundancy, the second because prosodic boundaries, by affecting the

duration of speech, could act as a checking signal at the end of each prosodic

constituent.

2.3.3 Dealing with Checking

The same arguments I use to justify the need for smooth signal redundancy can

be used to justify the existence of a checking signal. However, although I go on

to present evidence for the smoothing of signal redundancy I do not advance any
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model of checking or present any evidence of the existence of checking signals.

As discussed briefly in section 2.6.2.3 and in more detail in section 7.3 such a

model would require significant research in itself. The approach taken in this

work is instead to accept that checking may occur and include this possibility in

the hypotheses advanced in section 2.5. By controlling for the sites of a possible

checking signal it is possible to address the central issue of this work, smooth

signal redundancy, without requiring a checking model.

Despite this pragmatic approach, checking is still an important part of the frame-

work used in this thesis. For this reason, the way a checking model may integrate

with prosodic structure, smooth signal redundancy and care of articulation will

be discussed at a theoretical level (see section 2.5).

2.3.4 Three Different Types of Redundancy: How Can
Prosodic Structure, by Controlling Care of Articu-
lation, Smooth Redundancy?

As discussed earlier redundancy only has a meaning with regards to a model.

In language we can build different models for different levels of structure. The

two models I have mentioned are the language model which is the likelihood of a

word, syllable or phoneme appearing in the speech stream and the acoustic model

which is the likelihood of specific acoustic observations being connected with a

word, syllable or phoneme. For example, the likelihood of ’to’ following ’going’

might be included in a language model. In contrast the likelihood of the word ’to’

being associated with 100ms of sound with most of the vocalic energy between

0 to 2500Hz with peaks at 310Hz, 870Hz and 2250Hz (typical formant values of

the vowel /u/) might be included in an acoustic model.

The combination of these two models produces the final or signal redundancy in

the speech stream. So we have three different types of redundancy. In order to

avoid confusion let’s look more closely at what I mean by these types of redun-

dancy which I have termed language redundancy, acoustic redundancy and signal

redundancy.

• Language Redundancy: This is the conventional use of the term redun-

dancy which is used in work such as Lieberman (1963). It refers to how

predictable a word, syllable or phoneme is given its context. All references

to redundancy in this work, except where specifically noted, are to this con-

ventional meaning. All the metrics I present later in this chapter are trying
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to measure this type of redundancy.

• Acoustic Redundancy: This is a less common use of the term redun-

dancy. As I discussed earlier a word is expressed in the acoustic signal as

a set of acoustic observations. Using these observations we can guess what

the word may be. The easier it is to guess the word the more redundant the

acoustic observations are. To a large extent our acoustic model is similar to

a speech recognition model which ignores any other factors except the acous-

tic signal. It does not make use of any predictabilities in the structure of

language, it simply looks at a set of signals and guesses what word, syllable

or phoneme they represent. This idea, that the acoustic signal is analysed

with regards to a probabilistic model is central to almost all modern speech

recognition technology. In the work presented here I do not present such

a model or deal with the implications of any such model other than in the

broad sense of saliency and discriminability. The more salient and the more

discriminable the less likely noise will degrade the signal and the easier it is

to guess the word, syllable or phoneme from the acoustic observations. The

easier it is to guess the identity of the language unit from such observations

the more redundant these observations are. By looking at acoustics in this

way saliency equates to acoustic redundancy.

• Signal Redundancy: Signal redundancy is the final redundancy in the sig-

nal which is a combination of the language model and the acoustic model.

This is the final redundancy that any recognition system faces which knows

something about the structure within language as well as the structure in

the acoustics of speech. Because signal redundancy is the combination of

these two previous models and because it is good for signal redundancy to

be smooth to combat noise this leads to my central hypothesis. For signal

redundancy to tend to smoothness requires that sections of speech which are

very language redundant will tend to be sections of speech which are less

acoustically redundant and thereby less salient and distinctive. The con-

verse will also tend to be true. This is illustrated in figure 2.1. The graph

shows the language redundancy, acoustic redundancy and combined signal

redundancy of the phrase “okay, starting off we’re above a caravan park”.

The least language redundant syllables “star” in “starting” and “park” also

tend to be more acoustically redundant. By combining these values the

standard deviation reduces from 1 to 0.65 suggesting a smoother less vary-

ing signal. In this way care of articulation can smooth signal redundancy
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and prosodic structure (by controlling care of articulation) can contribute

to a robust noise resistant signal. The extent to which this occurs is an

open research question that this thesis seeks to address as there is also evi-

dence that checking and psycholinguistic constraints could undermine such

a relationship (see section 2.5).

2.4 A Theoretical Relationship Between Redun-

dancy and Care of Articulation

The need for a smooth redundancy pattern when transmitting in a noisy envi-

ronment is directly at odds with the complex compositional structure of natural

language. To start with the frequency of different words varies leading to con-

centrations of high and low redundancy. For example the word ’the’ is very high

frequency whereas ’zanja’ is not. Parts of words vary enormously in how pre-

dictable they are. In general the second syllable of a two syllable word is a lot

more predictable than the first syllable when you know the identity of the syl-

lable that precedes it. Complex syntactic structure means that many words are

predictable simply in order to produce grammatical sentences. There is indeed

enormous redundancy in language but it is concentrated in certain areas of the

message.

However, in general, within spoken language (ignoring visual cues) acoustic ob-

servations are the only clue to the contents of the message. The final redundancy

of the message is the combination of the models representing the linguistic events

(the language model) and the acoustic model (the model which maps parametric

acoustic observations onto these linguistic events). Speakers may not be able to

alter the redundancy of the message to make it smooth at the level of the lexicon

and syntax but they can alter the acoustic signals produced and thus the final

redundancy of the signal.

If, in the dice rolling example, the speaker didn’t want to lose their voice they

might only shout the less predictable dice results. By making the acoustic ob-

servations for ’seven’ less distinct and for ’twelve’ more distinct the final signal

redundancy of these messages changes. This is because the final signal redun-

dancy is a combination of the language redundancy (in the dice example ’seven’

is more frequent and thus more redundant than ’twelve’) and acoustic redundancy

(the more distinctly articulated the more acoustically redundant the speech).

15



Smoothing Signal Redundancy

5 'k1 'st# tIN 'Qf 'wi #R @ 'bVv '@ 'k{ r@ v{n 'p#k

Syllables

R
ed

un
da

nc
y

Language Redundancy

Signal Redundancy

Acoustic Redundancy

Figure 2.1: Smoothing signal redundancy: The graph shows the language
redundancy, acoustic redundancy and combined signal redundancy of the phrase
“okay, starting off we’re above a caravan park”. The x axis lists each syllable
in CELEX DISC format (see appendix A) and the y axis shows the change in
redundancy. No scale is used for redundancy because all language and acoustic
redundancy measurements were normalised. The language redundancy was cal-
culated on the basis of the trigram syllabic model described in section 2.6.2. The
acoustic redundancy is, more controversially, calculated by normalising the nor-
malised duration measurement (the k score described in chapter 5). The acoustic
redundancy used here is purely for demonstrative purposes as this work does not
offer an acoustic model on which to calculate it properly. However as we can
see, the least language redundant syllables “star” in “starting” and “park” also
tend to be more acoustically redundant (in this case longer). By combining these
values the standard deviation reduces from 1 to 0.65 suggesting a smoother, less
varying signal.
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Altering the care of articulation would then be a direct means of making speech

a more efficient means of communication. This is because it makes better use

of articulatory effort. By over-articulating unpredictable sections of speech and

under-articulating predictable sections of speech the same overall effort leads to

a smoother signal redundancy profile which in turn makes speech more robust

in a noisy environment. (In chapter 4 we look, in detail, at laboratory results

which have shown that care of articulation is indeed reduced in many redundant

contexts.)

However the more checks we use in communication the less important smoothing

the redundancy in the signal becomes. We are left with an open question as

to the extent (or even if) care of articulation is indeed used to offset language

model redundancy and to what extent checks make this unnecessary. Secondly,

even if care of articulation does relate to language redundancy, this does not mean

that we are using language redundancy information directly when controlling care

of articulation. It is possible that prosodic structure, both as it is represented

implicitly in the lexicon and as it is realised in speech, may offer a linguistic

system to effect these changes.

2.4.1 Is Prosody Related to Redundancy?

There are a number of observations which suggest that prosody is related to

redundancy, and therefore, that prosody, both at a lexical and phrase level, may

be a linguistic means of smoothing signal redundancy.

Lexical redundancy is caused by the different internal structure and frequencies

of words. Prosodic structure at the lexical level appears related to these patterns.

1. Most open class words have metrically strong first syllables. It is the first

syllable which is the least language redundant.

2. Open class words are, in general, less frequent than closed class (or function)

words). Closed class words are often realised without lexical stress. Again

realisation of lexical stress appears to mirror predictability at the lexical

level.

3. Long words are spoken relatively more quickly than short words. Long

words have more redundant information in them. This is because often

with long words, once you hear the beginning part of the word the rest of

17



the word is very predictable. For example it is easier to guess the rest of

the word ’televi..’ as ’..sion’ than the rest of the word ’d..’ as ’..oor’.

We see a similar pattern at the phrase level with more informative and less redun-

dant parts of a phrase being accented while less informative and more redundant

parts of a phrase are de-accented.

“It is well known that accents tend not to be placed on elements that are repeated

or ’given’ in the discourse, or on elements that are vague or generic. For adherents

of the radical FTA (focus-to-accent) view, this fact is a clear illustration of the

general principles governing accentuation in any context: the speaker assesses the

relative semantic weight or informativeness of potentially accentable words and

puts the accent on the most informative point or points in a sentence.” (Ladd,

1996, p175).

However these prosody/redundancy relationships are far from simple at either the

lexical and phrase level. Firstly many words do not have stressed initial syllables.

This suggests that even if a direct redundancy/prosody relationship exists it is a

tendency rather than a rule. Secondly, as Ladd (1996) points out, there are cases

at the phrase level when a simple accent/informative relationship does not occur

as well as many examples of other languages where such a relationship appears

to be absent.

Lengthening at the end of phrases (e.g. Price et al., 1991) also appears to under-

mine any simple relationship between redundancy and prosodic structure. The

ends of phrases are generally more predictable from context and thus more lan-

guage redundant than the beginning phrases. In general prosody appears to at-

tenuate redundant sections of speech yet here we have areas of speech which are

in fact more redundant and prosodic structure seems to be making them longer2.

The extent such boundary effects can be attributable to the checking described

in section 2.3.2 remains an open question.

I will now consider how we can test the ideas discussed here more formally.

2.5 Hypotheses

The argument linking language redundancy, prosodic structure and care of artic-

ulation can be summarised as follows:

2Some care must be exercised when describing saliency or care of articulation purely in terms
of lengthening. In chapter 4 this question is addressed in detail.
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• Speech is an example of transmission over a noisy channel. In order to be ef-

ficient and robust the final redundancy in the signal (the signal redundancy)

needs to be as smooth as possible.

• Care of articulation modifies the acoustic signal in terms of distinctiveness

and saliency. By doing so care of articulation modifies redundancy in terms

of an acoustic model (the acoustic redundancy).

• Redundancy in terms of the language model (the language redundancy) is

far from smooth because of the constraints of semantic, syntactic and lexical

compositionality.

• Signal redundancy is the combination of language redundancy and acoustic

redundancy. To make signal redundancy smooth, acoustic redundancy com-

pensates for extreme variation in language redundancy. Assuming there is

a limit on the overall articulatory effort which can be expended the result is

a tendency to poorly articulate language redundant sections of speech and

to carefully articulate non language redundant sections of speech.

• There is a lot of evidence that prosodic structure not only affects care of

articulation but does so in a way which seems associated with patterns in

language redundancy.

• This leads to the hypothesis that, in order to achieve smooth signal redun-

dancy linguistically, prosodic structure, as one of its functions, implicitly

encodes much language redundancy variation both lexically and post lexi-

cally in terms of lexical stress, accent and boundary lengthening.

Put more bluntly:

The Smooth Signal Redundancy Hypothesis

Prosodic structure smoothes signal redundancy by controlling care of

articulation.

Two arguments can be made to support the idea that prosodic structure would be

a good means of encoding an inverse relationship between language redundancy

and care of articulation.

1. Computing language redundancy is non trivial. Calculating the overall re-

dundancy of a section of speech on the basis of lexical, syntactic, semantic

and pragmatic factors is hard. In addition many of these statistics remain
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independent of each other. It would seem sensible to encode such statistics

into a simpler linguistic form especially at a lexical level. By using prosody

at the lexical level the effects of word frequency and structure on redun-

dancy can be encoded in terms of lexical stress and syllabic structure. In

turn, effects caused by structure at the phrase level can be modelled using

prosodic structure at that level, such as adding phrasal stress to semantically

unpredictable open class words. The overall result would be to approximate

the highly complex statistical patterns in language into simpler, prosodic

building blocks.

2. Results from psycholinguistic experiments (see chapter 3) suggest that prosodic

structure has psychological validity. By this I mean that naive human

subjects can detect prosodic structure such as number of syllables, phrase

boundaries and different levels of prominence. The extent that human sub-

jects are directly aware of redundancy patterns in language is less clear.

However the claim that prosodic structure encodes language redundancy requires

some qualification. There is considerable evidence that prosodic structure is also

used as a form of chunking and checking. As Nooteboom points out “These

(prosodic) cues... organize the message into chunks that are easily processed by

the listener...” (p668 Nooteboom, 1997). There are two factors which need to be

considered here:

1. Psycholinguistic processing factors such as memory, articulatory buffer size,

and lexical access time will effect how long an utterance can be and what

is a manageable chunk of speech.

2. Robust communication can be achieved by checking. Prosodic structure

may fulfil this function by acting as a “I have finished did you receive

something sensible” signal.

Both these factors could confound the Smooth Signal Redundancy Hypothesis. It

is possible that restrictions on the human processing of language do not mirror

redundancy in language. This would force chunking which was not predicted by

redundancy. This is left as an open question. The aim in this work is not to

present a psycholinguistic model of language production but to clearly establish

whether redundancy, prosodic structure and care of articulation are linked and

if so to what extent. The issue of checking is, however, more central to the ar-

guments presented here. In this chapter I have argued that signal redundancy is

20



smoothed because it makes speech communication more robust in noisy environ-

ments. Yet checking can also fulfil this role. Therefore checking must be taken

into account as a possible confounding factor in this work and considered in any

analysis.

This leads to a weaker hypothesis:

The Smooth Signal Redundancy Hypothesis: Weak Version

Prosodic structure smoothes signal redundancy by controlling care of

articulation except when it acts as a checking signal

In order to examine this hypothesis we need to address the following questions:

1. To what extent does prosodic structure relate to and thus arguably control

care of articulation? To what extent is any such control lexical or post

lexical?

2. To what extent does language redundancy relate to care of articulation?

3. Does prosodic structure account for this relationship? If not, to what extent

does language redundancy relate to care of articulation independently of

prosodic structure?

4. To what extent does a checking signal confound the smooth redundancy

hypothesis?

To help clarify these different arguments it is useful to compare what could be

regarded as a traditional view of prosody with the models suggested by these

hypotheses. Figure 2.2 is taken from Shattuck-Hufnagel and Turk (1996) and

shows a traditional view of prosody. Here a whole set of different factors are

controlling how prosodic structure is expressed in terms of phonetics.

In contrast figures 2.3 and 2.4 show how the strong smooth redundancy hypothesis

and weak smooth redundancy hypothesis could be modelled. Rather than having

a set of different factors affecting prosodic structure you have only language re-

dundancy, and in the weak hypothesis as shown in figure 2.4 also checking. These

two factors are then encoded into prosodic structure in order to make the signal

redundancy smooth and the communication robust.

Despite the apparent fundamental differences in these models they can be related

to each other. In figure 2.5 the traditional prosodic model is amalgamated with

the weak smooth redundancy hypothesis.
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Figure 2.2: One view of the role of the prosodic component of the grammar (taken
from Shattuck-Hufnagel and Turk, 1996, page 237).

In fact such an amalgamation is not quite as simple as it seems. In figure 2.2

the arrows represent the processes in a production model. For example, if a

major syntactic boundary is produced the language system adapts the prosodic

structure accordingly. In figure 2.3 and figure 2.4 the arrows represent more

general conditioning processes. For example, lexical stress, a prosodic factor, will

tend to be word initial because of redundancy factors. This is a result of the

evolution of the lexicon and the English prosodic system, not a direct production

model. In contrast, at the phrase level, prosodic factors, such as the location

of phrase breaks and accent placement, are being conditioned by redundancy

factors in a more similar way to the factors that are shown to condition prosody

in figure 2.2. To what extent these factors directly alter prosodic structure during

production and to what extent the phonology of prosodic structure has already

evolved to take such factors into account is more unclear. For example, a sense of

familiarity may be sufficient to cause de-accenting without the need to calculate,

online, the actual redundancy of the repeated word in that context given the

dialogue structure.

Despite these complexities the diagrams do help illustrate the potential relation-

ship between a redundancy based model and a traditional model. Many of the

effects attributed to the different factors in the traditional prosodic model can be

22



Communication
Robust

Sm
oo

th

R
ed

un
da

nc
y

Si
gn

al

Prosody

Language Redundancy

Acoustic Redundancy

Signal Redundancy

Figure 2.3: Strong smooth redundancy hypothesis.
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Figure 2.4: Weak smooth redundancy hypothesis.
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Figure 2.5: How the weak smoothing signal redundancy model could be amal-
gamated with more traditional views of prosody (based on the figure Shattuck-
Hufnagel and Turk, 1996, p237). (Rate is shown outside language redundancy
because rate is more closely linked to acoustic redundancy. In general the faster
information is produced the less redundant it is. However the complex interaction
between rate change and prosodic structure make it difficult to define exactly how
such a relationship should be represented in the diagram).

regarded as contributing to language redundancy. For example:

• Function words are often very redundant from a syntactic perspective.

• Open class words are less predictable from a syntactic perspective but some

times very predictable from a semantic perspective.

• The longer a section of speech the more predictable the end will generally

become.

• In addition factors such as the matching up of prosodic boundaries and

syntactic boundaries could be regarded as instances of checking.

However there are examples of changes in prosodic structure which are not easily

attributable either to redundancy or checking. For example it is possible to phrase

the sentence “Sesame Street was brought to you by the Children’s Television
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Workshop” as either one intonational phrase or two with either a phrase break

before ’by’, or after ’by’. In all three cases we are dealing with the same string

of words with arguably the same syntax and semantics. Thus in all three cases

language redundancy should be the same. Yet we have a variation in prosodic

structure. Such variation suggests that prosodic structure cannot be completely

conditioned by language redundancy.

In order to test the hypotheses represented by these diagrams we need to examine

the relationship between prosodic structure, care of articulation and language

redundancy. The more prosodic structure predicts the same changes in care

of articulation as language redundancy, the more convincing the argument that

prosodic structure is there to effect these changes. The first step in any such

quantitative analysis is to produce metrics of the factors we wish to examine. In

the next part of the chapter I will discuss the problems that exist in measuring

redundancy and give details of how redundancy is measured in this work.

2.6 Measuring Redundancy

To explore the questions raised in the previous sections we need to be able to mea-

sure redundancy at different levels. Such levels could vary from the redundancy

of a phoneme to the redundancy of a statement in a discourse. As previously

stated any formal measure of redundancy at any level requires a model. There

are however some difficulties in generating statistical models of natural language.

1. There is enormous interdependency in language. Unlike throwing a dice the

production of each word is extremely dependent on words that have gone

before and words that will follow. In many cases these interdependencies

are ’long distance’. For example in the sentence, ’The man, who was wear-

ing a red raincoat, crossed the road.’ there is a relationship between man

and crossed although there are six words in between. To further complicate

matters the constraints on what words can or cannot be used in a par-

ticular location depend on pragmatic, semantic and syntactic constraints.

Formulating such constraints in terms of probability theory is non-trivial.

2. Natural language is sparse. Even with a massive sample of language (mil-

lions), words that we can easily recognise and produce may not appear in

the sample. For example in the written part of British National Corpus,

(Containing over 89 million tokens), the word zanja does not occur. This
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sparsity is even more pronounced for statistics that represent the chance of

words co-occurring.

In order to address the first problem we will use three simple models of redun-

dancy. Rather than suggest any of them offer a true picture of the complex

redundancy profile of natural language I will argue they offer a solid basis with

which to compare articulation and prosodic factors with redundancy measure-

ments. The models address three different factors which contribute to the overall

redundancy in natural language:

1. Word frequency: One of the easiest measurements to make and one of the

factors most clearly associated with differences in predictability in language.

See section 2.6.1 for a detailed description.

2. Trigram Syllabic Frequency: This measurement examines relationships be-

tween syllables within words and between syllables across word boundaries

by predicting a syllable on the basis of the previous two syllables. See

section 2.6.2 for a detailed description.

3. Reference: The number of times something has been talked about. This

offers a higher level redundancy at the semantic, pragmatic and discourse

level to compare with the other two measurements. See section 2.6.3 for a

detailed description.

The main requirement of these measurements is that they reflect, to some extent,

true redundancy in natural language. They also have the advantage of being

simple measurements that relate to prosodic patterns. Word frequency relates to

prosody in that frequent function words are often unstressed. Trigram syllabic

measurements relate to prosody in the preference for word initial lexical stress

on the least redundant first syllable of a word. Reference redundancy relates to

prosody in a tendency for ’given’ referents to be de-accented. They also give a

broad coverage of several different levels of redundancy. Trigram syllabic mea-

surements act within and across the word level. Word frequency acts at the word

level. Reference redundancy acts at a semantic and discourse level.

The problem of sparsity (see section 2.6.2) was dealt with by using a combination

of large corpora, mathematical smoothing techniques and in the case of reference

by focusing only on a small easily defined data set. Below I will describe in detail

the methodology used to make each separate measurement.
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2.6.1 Word Frequency

The HCRC Map Task does not have a very large vocabulary (just over 2000

different words). The CELEX online dictionary was consulted to extract the

COBUILD frequency for each word (Baayen et al., 1995). These frequencies are

taken from the COBUILD corpus of the University of Birmingham. The 1991

version was used, corrected by CELEX and contained 17.9 million words from

different sources. The log of the raw string count was used as the word frequency

measure for each string. So for example ’canoe’ was given a different value to

’canoes’. The sheer size of COBUILD and the relatively small vocabulary size of

The HCRC Map Task meant that coverage was extremely good with 93% of all

syllables appearing in a word with a frequency score. The words not represented

were mostly composed of disfluencies and cliticized forms (such as ’gonna’).

For a detailed account of the relationship between word frequency and care of

articulation see chapter 4 section 4.5.4.

As I will explain in chapter 3 the syllable was used as the primitive data point

in this analysis. Each syllable was coded for prosodic values, care of articulation

metrics and the three redundancy values. For word frequency this meant that

syllables in the same word were given the same value (for example the ’moun’

syllable as well as the ’tain’ syllable in ’mountain’ were both given the same

value).

2.6.2 Syllabic Trigram Probability

2.6.2.1 What are n-grams?

Charniak says of n-grams:

“One of the least sophisticated but most durable of the statistical models of

English is the n-gram model. This model makes the drastic assumption that only

the previous n - 1 words have any effect on the next word. While this is clearly

false, as a simplified assumption it often does a serviceable job. A common n is

three (hence the term trigram).” (Charniak, 1993, p39)

N-grams are one of the most frequently used statistical models of natural lan-

guage. As Charniak points out this is because, despite their simplicity, they often

do a ’serviceable’ job. N-grams capture some of the interdependency between

words. In a word trigram model, although only the previous two words are taken

into account when calculating the probability of a new word this is sufficient to
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capture a lot of structure. For example, trigrams give the probability of ’go to’

being followed by a determiner such as ’the’, of ’to the’ being followed by a noun

such as ’beach’ and ’the beach’ being followed by the end of the sentence. The

effect is to make ’go to the beach.’ Much more likely than ’go to beach the.’ Thus

although the trigram model does not know about the syntactic structure of noun

phrases it can model them quite effectively.

N-gram models are generated by counting co-occurrences of three words. If for

example the count showed 2000 instances of ’go to the’, 1000 instances of ’go to a’

and 1000 other instances of ’go to ...’(something else) then given ’go to’ ’the’ has

a probability of 0.5 of following ’go to’, ’a’ of 0.25 and everything else of 0.25. In

this example this makes ’the’ the most redundant token to follow ’go to’ because

it is the most likely.

Sparse data presents a serious problem for n-gram models. The bigger n the more

serious the problem. Let’s say that in the data we look at there are no examples

of the words ’Princes Street’. If we are using the model and come across this co-

occurrence in other data we can make no assumptions as to what may be likely

to follow it. There is also a problem if we only have one example of ’Princes

Street’ such as in the sentence ’I like Princes Street.’ If we then use our model

to examine the sentence in new data ’Princes Street is the main shopping street

in Edinburgh.’ Our model gives a probability of zero of ’is’ following ’Princes

Street’ simply because it has not been exposed to this trigram. Even a very large

corpus of data cannot cover all trigram probabilities. There are just too many

words and many are just too infrequent.

Fortunately statistical techniques can be applied to raw n-gram data to smooth

probabilities caused by rarely occurring tokens. In this work the CMU-Cambridge

toolkit was used to calculate probabilities. This toolkit comes with a number of

these techniques built in. One of these techniques, Good-Turing discounting,

can be used to estimate and modify trigram probabilities which are unreliable

or absent because of a very small number of observations. In the Princes Street

example Good-Turing would adjust the probabilities. Because the number of

observations of ’Princes Street’ was very low, unknown trigrams such as ’Princes

Street is’ are given small probabilities based on unigram and bigram probabilities.

At the same time the high probability of predicting the word following the sole

example of ’Princes Street’ (end of phrase in this example) is reduced (see section

2.6.2.3).

However, even with a solution to the sparsity problem, the actual complex struc-
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ture of natural language can only be approximately modelled using n-grams.

What does Charniak mean by a ’serviceable job’?

Figure 2.6 shows an example of using trigrams to generate language. Rather

than word trigrams this example was produced using syllables as the units. For

example ’okay’ becomes two units ’o’ and ’kay’. The language is generated as

follows:

1. Start with two units (in this case ’o-kay’).

2. Choose a random location in the corpus and search through until you find

these two units.

3. Add the unit following them onto the string (In this example the first unit

found was silence).

4. Increment the two units you are searching for. (’o-kay’ becomes ’kay si-

lence’).

5. Go back to 2. Continue until you are bored.

If you compare this randomly generated trigram example with a real dialogue (See

Appendix B) you can see what Charniak means by serviceable. The generated

dialogue is gibberish but it is readable gibberish. There are some structural errors

but in all it does look a lot like dialogue. Compare this to an example of dialogue

produce by unigram syllables (Figure 2.7) and bigram syllable models (Figure

2.8). It is the combination of the simplicity of trigram models and the extent

they do model language that make them attractive and why such a model was

chosen to complement the other measures of redundancy in this work.

2.6.2.2 Why Use a Syllabic Model?

A syllable model was used rather than a word model for a number of reasons. The

use of the syllable as the primitive data point meant that a trigram model suffered

from less sparsity problems than a word trigram model. Although the number of

different syllables used in the maptask does not differ greatly from the number of

different words ( 1500 v 2000) in the British National Corpus which was used to

calculate syllabic trigram probabilities the difference is enormous ( 8000 different

syllables versus 90,000 different words). This led to two advantages:
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okay
right I’m there
no
okay just draw a couple of centimeter from the left
and you’ll pass
on the vertically
erm
do a wee bit from there
okay
yes
okay
north west
right above me bandit territory

Figure 2.6: Example of randomly generated map task using syllable trigrams.

Then a
I
The left
Oh
Erm tree it’s
No said
on got the
Just the should buv down said

Figure 2.7: Example of randomly generated map task using syllable unigrams.
(Syllables taken out of polysyllabic words are shown in italics with approximate
orthographic spellings).

Okay
because your page
It’s on I want to the
It’s about half way
A river to go past the white mountain of that there’s a dot there
You want to go east lake

Figure 2.8: Example of randomly generated map task using syllable bigrams.
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1. A much larger proportion of the 225,000 syllabic trigrams were represented

in the BNC corpus.

2. The probabilities gave a sense of within word and across word redundancy.

For example common phrases such as ’go to the’ would be represented as

well as the increased redundancy of syllables following the initial syllable in

a polysyllabic word.

Investigating the effects of word trigram models and comparing the results with

the syllabic trigram model would be an interesting exercise. However the aim here

was not to produce an exhaustive set of statistical models but a representative set.

By including word frequency and a syllabic model it was hoped that this would

represent differences at the word level but also at the syllable level. Representing

redundancy at the syllable level is important because the other metrics, prosodic

structure and care of articulation, are also represented at the syllabic level (see

chapters 3 and 5).

2.6.2.3 Method

In order to build the language model speech data from the BNC (British National

Corpus) Corpus was used. This consisted of over 10 million syllables taken from

speech produced by a wide variety of speakers in a wide variety of speaking

situations. Each word in the BNC speech corpus was looked up in the CELEX

online dictionary (Baayen et al., 1995) for phonemic content and syllabification.

For detail on the syllabification technique see chapter 3 section 3.3.1.1. Words

not found were marked as unknown.

This stream of syllables and silences was then used to build a trigram language

model using the CMU-Cambridge Statistical Language Modelling Toolkit (version

2) (Clarkson and Rosenfeld, 1997). The CMU-Cambridge Toolkit is a set of Unix

software tools to allow the construction and testing of conventional bigram and

trigram models. The model was constructed using back-off and Good-Turing

discounting.

Back-Off. Back-off is a process used to deal with unknown tokens or context

markers in a corpus. A context marker might be a full stop in a written

corpus or a silence in a spoken corpus. By using back-off you can decide not

to take into account information before the marked context when calculating

probabilities for a token after the marker. In effect the marked context
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becomes a boundary over which the trigram probabilities do not stretch.

Because of this boundary the first token following it does not have the two

token context that is required to calculate trigram probabilities. Thus either

a modified bigram probability is calculated for a known context marker such

as a ’sentence start’ or a unigram for an unknown context marker such as

an ’unknown word’ token. The advantage of using back-off and context

markers is being able to deal with unknown tokens (by ignoring them) and

to build into the model the domain over which trigram probabilities will be

considered. Looking back at figure 2.6 the trigram context produced better

formed output within each stream of phonation than across silences. This

is because the factors governing the production of words across silences

are more strongly affected by high level discourse factors which are not

modelled using this simple trigram technique. By using back-off at silences

it is possible to ignore these transitions and produce probabilities for the

more reliable ’within phrase’ contexts.

By using back-off I have explicitly avoided trying to use trigrams to find

phrase breaks on the basis of low transition probabilities. This demands an

explanation given that I have regarded checking at such boundaries as a po-

tentially confounding factor in this work. Instead of trying to build checking

into the stochastic model, potential checking locations are instead explicitly

marked by examining whether a pause occurs after the syllable. This allows

a clear separation between checking and smoothing which is important in

comparing the power of the weak and strong hypotheses discussed earlier.

I also felt that a good stochastic checking model would require considerable

investigation and was beyond the scope of the work presented here.

For further discussion on the issue of checking see chapter 7.

Good-Turing Discounting. As mentioned earlier one problem faced by tri-

gram models is sparse data. Even a very large corpus such as BNC will not

contain every example of every possible trigram. In order to produce better

estimates of the probabilities of infrequent or unseen trigrams it is neces-

sary to smooth the data. Good-Turing Discounting is the default smoothing

method in the CMU-Cambridge took kit. Discounting methods are also re-

quired in conjunction with back-off to produce estimates of probabilities

when data is unknown or missing. What Good-Turing does is to estimate

probabilities for unseen trigrams based on unigram and bigram probabilities

and to modify probabilities for examples where few examples exist (less than
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P( 5 | 000 ) = 0.0294142 logprob = -1.531443 bo_case = 2

P( k1 | 000 5 ) = 0.196258 logprob = -0.707173 bo_case = 3

P( st0 | 5 k1 ) = 1.07294e-06 logprob = -5.969426 bo_case = 3-2-1

P( tIN | k1 st0 ) = 0.188013 logprob = -0.725812 bo_case = 3x2

P( Qf | st0 tIN ) = 0.0474383 logprob = -1.323871 bo_case = 3

P( wi | 000 ) = 0.015397 logprob = -1.812563 bo_case = 2

P( 0R | 000 wi ) = 0.0350345 logprob = -1.455504 bo_case = 3

P( @ | 000 ) = 0.0145099 logprob = -1.838335 bo_case = 2

P( bVv | 000 @ ) = 0.00267014 logprob = -2.573467 bo_case = 3

P( @ | 000 ) = 0.0145099 logprob = -1.838335 bo_case = 2

P( k{ | 000 @ ) = 0.00102698 logprob = -2.988440 bo_case = 3

P( r@ | @ k{ ) = 0.155882 logprob = -0.807203 bo_case = 3

P( v{n | k{ r@ ) = 0.761092 logprob = -0.118563 bo_case = 3

P( p0k | r@ v{n ) = 1.36341e-05 logprob = -4.865375 bo_case = 3-2-1

Figure 2.9: Example of output from the CMU-Cambridge toolkit when applying a
syllabic trigram model produced using the BNC corpus and applied to the HCRC
map Task. Each phoneme in each syllable is represented using the CELEX DISC
set (see appendix A) where a single character is assigned to each phoneme. E.g.
5 is /@U/ k is /k/ 1 is /eI/ etc. The first line reads as follows: The probability
of /@U/ following a silence (represented as 000) is 0.0294142 the log probability
is -1.531443 and the back off is 2. Back-off is 2 because we have only a bigram
context as the token is preceded by a silence. Good Turing would have been used
to estimate this probability.

7) to take into account these unseen trigrams (See Clarkson and Rosenfeld,

1997, section 3.1.1. for details).

Once the language model was constructed it was then applied to the HCRC

Map Corpus in order to calculate syllabic trigram probabilities. The HCRC Map

Corpus was converted into a stream of syllables separated by silences. For detail

on the syllabification technique see chapter 3 section 3.3.1.1. These syllables

where then fed into this model and the probabilities were calculated. See figure

2.9 for the output for the phrase ’okay silence starting off silence we are silence

above silence a caravan park’.

2.6.3 Reference Redundancy

As I argued above the intention of these redundancy measurements was not to

produce a complete model but to produce adequate coverage of some main fac-

tors in redundancy. The word frequency measurement together with the syllabic

trigram measurement both give a degree of coverage at the lexical and syllabic
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level. In order to contrast and compare results with these ’low level’ factors it was

also felt necessary to include a higher level factor which represented redundancy

at a more structural and semantic level.

In the dialogues that compose the HCRC Map Task speakers commonly refer to

items that are drawn on the map several times. For example:

GIVER: Have you got a rope bridge?

FOLLOWER: Uh-huh I’ve just up to sort of.

GIVER: Uh-huh. So if you start just drawing... drawing a line up...

towards the rope bridge.

FOLLOWER: Up towards going diagonally across to the rope bridge.

GIVER: Uh-huh. Just going up then veering off to the right,...

up to the rope bridge.

FOLLOWER: ’kay.

GIVER: Then you’re going to go across the rope bridge.

FOLLOWER: Right, okay. So I draw a line through the rope bridge.

GIVER: Uh-huh. You’re going to go through that.

FOLLOWER: Okay.

(Taken from dialogue Q4NC1 move 47-61 from the HCRC Map Corpus.)

The first reference to rope bridge is in the question ’Have you got a rope bridge?’.

Rope bridge is then mentioned several times throughout this snippet of dialogue.

The more ’rope bridge’ is referenced the more predictable these references become.

The first reference or ’introductory mention’ is the least redundant because it

is the most difficult to predict from context. In contrast, as the rope bridge is

discussed, the following mentions become more predictable from discourse context

and thus more redundant. Mentions to referents do not always have the same

form. For example the final mention of rope bridge in this snippet of dialogue is

’You’re going to go through that.’ where that is referring to the rope bridge.

Repeated mention relates strongly to the concept of ’Givenness’. Given infor-

mation is information shared by listener and talker. The concept of ’Givenness’

and its treatment in discourse literature varies. Halliday (1967) uses the term

with specific references to de-accenting and the ordering of information within

an ’information unit’. Chafe (1974) uses ’Given’ in a more restrictive sense re-

34



lating it specifically to what is foreground in the listeners consciousness. Clark

(e.g. Clark and Clark, 1977) suggests that ’Given’ information is information that

both listener and speaker agree upon (for an overview of these views see (Brown

and Yule, 1983, chapter 5).

In this work it is mention which is coded as a redundancy measurement. The

extent a mention is ’Given’ relies more strongly on questions of what is happening

in the speakers’ minds as well as complex structure at the discourse level. How-

ever, in general, the more a reference is mentioned the more ’Given’ it becomes,

the easier it is to predict and thus the more redundant it is. Although mention

is a crude measure of such information status, in this work, as a contrast to the

lexical and syllabic measures, it serves as a metric of redundancy at the discourse

level. As with the other models of redundancy it is used here as an approximation

to the actual predictability of language and is not put forward as a theoretical

account of this predictability.

There is extensive evidence that mention, whether reflecting ’Givenness’ or not,

is strongly related to prosodic structure in terms of de-accenting (see chapter 4

section 4.5.6) and to changes in articulation (see chapter 4 section 4.5.3).

2.6.3.1 Method

Reference coding was carried out on the HCRC Map Corpus by members of

the dialogue group. The final coding was then thoroughly checked by another

coder. Only references to landmarks printed on either of the maps were coded.

Elliptical references and references to parts of landmarks were ignored. The order

of mention was established by sequential time of mention within the dialogue.

The result was a set of just over 31,000 syllables coded for mention out of the

total 200,000 or so syllables in the HCRC Map Corpus. Of these 1553 had also

been hand coded for prosodic structure.

2.7 Summary

This thesis explores the idea that redundancy relates strongly to articulation.

This chapter has discussed the term redundancy and its relationship to statistical

models as well as the importance of a noisy channel model of communication.

In order to examine relationships between redundancy and care of articulation

three different metrics of redundancy have been presented. The aim of these
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measurements is not to present a theoretical model of redundancy in language

but rather to approximate such redundancy. The metrics cover redundancy at

the syllable level (syllabic trigram probability), at the word level (log of word

frequency) and also at the discourse level (order of mention of referents). These

measurements will give a representative, robust and simple measure of redundancy

allowing a large scale quantitative corpus analysis.
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Chapter 3

Prosodic Structure

3.1 Introduction

In this chapter I will review current literature and theory in the area of prosodic

structure. I will then relate this to the approach used in this thesis. Finally I

will describe the coding scheme and the methodology I used to describe prosodic

structure in this work. This review will concentrate on work carried out on

English. Research in other languages, except where directly relevant to English

is beyond the scope of this thesis.

Including prosodic information in this work allows the exploration of the key

question of this thesis:

• Does prosodic structure smooth signal redundancy by controlling care of

articulation?

It will also allow us to look at a number of secondary questions including:

1. How accurate is automatic prosodic coding given word segmentation com-

pared to hand coded prosodic coding?

In order to code the large corpus of spontaneous speech used in this study

automatic prosodic coding was carried out as well as hand coding. An

evaluation of this automatic coding is presented in chapter 6.

2. Do results from spontaneous speech support laboratory results with regard

to the effect of prosodic structure on care of articulation?

As we shall see in chapter 4 the majority of the work examining the relation-

ship between prosodic structure and care of articulation has been carried

37



out on read speech. This thesis contributes to the field by examining these

relationships over a large corpus of spontaneous speech.

There is clear laboratory evidence that prominence and constituent boundaries

affect care of articulation both in terms of duration and spectral clarity (Price

et al., 1991; Beckman and Edwards, 1990; van Bergem, 1988, amongst others).

Because this work relates prosodic structure directly to the surface structure in

speech there is a need to examine these prosodic factors and to discuss prosodic

theory relevant to them. For a clear introduction to many of the issues in prosodic

theory outside the scope of this thesis I refer the reader to Ladd (1996), Couper-

Kuhlen (1986), Hogg and McCully (1987) and to review papers by Shattuck-

Hufnagel and Turk (1996) and Nooteboom (1997).

3.2 What is prosody?

Although a universally acceptable definition of prosody has been elusive (Shattuck-

Hufnagel and Turk, 1996) there is much consensus on what we are dealing with

when we are dealing with prosody.

Prosodic phenomena can be summarised as:

• Being described by at least four acoustic parameters including:

Duration, Amplitude, F0 and Pause. Other acoustic parameters such

as spectral clarity and spectral tilt also appear to be related to some extent

(van Bergem, 1988; Sluijter, 1995; Campbell and Beckman, 1997). None of

these acoustic parameters have a simple mapping onto prosodic structure

for a number of reasons:

1. A direct mapping is confounded by phonetic context, identity and

inter-speaker differences. For example different phones are produced

with different amplitudes by different speakers.

2. The same prosodic result, such as an increase in perceived prominence,

can be achieved by using different parameters. For example a speaker

could make a word seem more prominent by either lengthening it or

by making it louder.

3. Different prosodic constituents affect the same acoustic parameters.

For example accenting a syllable will make it longer but so will a

phrase boundary. Thus lengthening may be an indication of a number

of different prosodic influences.
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• Affecting domains larger than a single phonetic segment. Prosodic

acoustic parameters appear to signal constituent boundaries and promi-

nences. These acoustic cues can extend over domains larger than a single

segment or even single syllables. For example, an accent on the first syllable

in a bisyllabic word affects the length of the subsequent syllable (Turk and

Sawusch, 1997; Turk and White, 1999).

• Requiring a degree of abstraction in its definition. Different segment

types are affected in similar ways. For example phrasal stress increases

duration of a syllable whatever the contents of that syllable. In addition

laboratory results suggest (Wightman et al., 1992; Price et al., 1991) that

differences in the duration of the rhyme of a syllable can be explained by a

hierarchical set of constituents with the edges of smaller constituents lining

up with the edges of larger constituents.

In order to put modern work in context I would like to first clearly adopt Shattuck-

Hufnagel and Turk’s (Shattuck-Hufnagel and Turk, 1996) working definition of

prosody and give a brief description of the key terms and concepts in prosodic

research.

The definition of prosody proposed by Shattuck-Hufnagel and Turk is:

“(1) Acoustic patterns of F0, duration, amplitude, spectral tilt, and segmental

reduction, and their articulatory correlates, that can best be accounted for by

reference to higher-level structures, and (2) the higher level structures that best

account for these patterns.” (Shattuck-Hufnagel and Turk, 1996, p196).

Key concepts to most theories include notions of constituents, hierarchical struc-

ture and prominence. A brief review of these concepts follows.

3.2.1 Constituents

Constituents of various levels are posited within theories of prosodic structure.

The extent one constituent is made up of others, whether recursive constituents

exist and the number and type of constituents vary between different theories.

However a great deal of common ground exists. For example most prosodic

theory regards the syllable as a prosodic constituent. In general the following

constituents are referred to in theories of prosodic structure (From the smallest

to the largest):

• mora
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• syllable

• within word foot

• prosodic word/ clitic group

• phonological phrases (major and minor)

• intonational phrases (full and intermediate)

There is much agreement on the definitions and domains of moras, syllables, feet

and full intonational phrases. Prosodic words/clitic groups, phonological phrases

and intermediate intonational phrases however have been the subject of some

discussion. For a description of these different constituents and the role they play

in different theories see (Shattuck-Hufnagel and Turk, 1996). In general such

constituents are defined in several ways:

1. As the domain of phonological rules.

2. As the domain of an intonational tune or contour.

3. In some theories and for some constituents in terms of rhythmic prominence.

For example a foot is a sequence of a strong syllable followed or preceded

by a number of weak syllables.

Both phonetic and psycholinguistic evidence supports the existence of some con-

stituents. An example of phonetic evidence is phrase final lengthening at the end

of intonational phrases (Shattuck-Hufnagel and Turk, 1996). An example of psy-

cholinguistic evidence is the listeners’ preference for interrupting at constituent

boundaries (Shattuck-Hufnagel and Turk, 1996).

Different theories present different hierarchies of constituents where each con-

stituent is made up of smaller constituents (Hayes, 1989; Beckman and Pier-

rehumbert, 1986; Nespor and Vogel, 1986; Selkirk, 1978). For example Selkirk

(1978) proposed a strict hierarchical structure with intonational phrases as

the largest component in turn being made up of major phrases which in turn

are made up of minor phrases which in turn are made up of prosodic words

which in turn are made up of feet which in turn are made up of syllables.

Different constituents appear to have different effects on some acoustic param-

eters. For example boundary lengthening is greater at an intonational phrase
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boundary than at a minor phrase boundary. Also the relationship between con-

stituents and prominence vary. Beckman and Edwards (1990) suggest that differ-

ent types of prominence are associated with different constituents. In their theory

the prominence associated with a particular constituent is termed its head. For

example the head of an intermediate intonational phrase is a nuclear pitch ac-

cent. The work reported here does not explicitly link prominence with constituent

structure in this way but does look at several levels and types of prominence.

3.2.2 Prominence

Prominence can be regarded as the extent a sound or syllable stands out from

others in its environment. It is realised chiefly through three acoustic parame-

ters, pitch, amplitude and duration (Fry, 1958). The term stress is often used

to describe prominence. However the word stress is used in different ways by

different researchers and can vary from meaning the potential for a syllable to be

accented (lexical stress) to the realisation of such accenting (phrasal stress which

is normally associated with a change in pitch). It can also be used to describe

syllables which have longer durations and high amplitudes without any associated

pitch change. Cruttenden (1986) and Ladefoged (1982) use the term degrees of

stress and associate it with three phenomena:

1. Reduced versus Full Vowels, such as the /i/ in spongy /sp2nÃi/ in contrast

with the /@/ in after /2ft@/.

2. Lexical Stress, for example the 1st and 4th syllable in “MUL-ti-pli-CA-tion”

are lexically stressed. Here “MUL” is described as having secondary stress

and “CA” as primary stress.

3. Phrasal prominence, for example “beach’ in “I’m going to the BEACH”

which normally has a change in F0 associated with it as opposed to “beach”

in “I’m going to the NUDIST beach” which would normally be unaccented.

Cruttenden also makes a distinction between nuclear pitch accents and non-

nuclear pitch accents in English. In a normal intonational phrase a nuclear accent

(or sentential accent) will be the last accent before the end of the phrase. This

last accent often gives the impression of greater prominence than preceding pitch

accents. Cruttenden (1986) argues that we need to distinguish four different types

of stress:

1. Primary stress (Prominence caused by a nuclear pitch accent)
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2. Secondary Stress (Prominence caused by other pitch accents)

3. Tertiary Stress (Prominence caused only by lengthening and loudness but

no pitch change) For example a lexically stressed syllable which is realised

without a pitch accent.

4. Unstressed

Ladefoged in contrast ignores the lexical stress/non-nuclear phrasal stress distinc-

tion and adds vowel type also giving four types of stress:

1. Tonic Accent (Prominence caused by nuclear pitch accents).

2. Lexical Stress (Prominence caused by lexical stress).

3. Vowel type. (Prominence caused by a full as opposed to a reduced vowel.

For example Ladefoged would regard the /i/ in /sp2nÃi/ as more prominent

than the /@/ in /2ft@/ although neither are lexically stressed).

4. Unstressed

The higher levels of stress require stress at all lower levels. For example a pitch

accent must be associated with a lexically stressed syllable and a lexically stressed

syllable must have a full vowel.

In this thesis a combination of the factors described by Cruttenden and Ladefoged

will be adopted to describe prominence rather than the descriptions of promi-

nence, such as metrical grids and trees, adopted in metrical phonology (Hayes,

1989; Beckman and Edwards, 1990; Nespor and Vogel, 1986; Selkirk, 1978). To

a large extent this is a purely pragmatic approach as the factors described by

Ladefoged and Cruttenden are relative easy to encode for a quantitative analysis.

In addition to these traditional prominence factors, syllables will also be coded

for spillover (my term). Work in laboratory phonetics has shown that the effect

of a pitch accents extends beyond the syllable associated with the accent (Turk

and White, 1999; Turk and Sawusch, 1997). This increases duration in syllables

to the left and right of the accented syllable, although more spillover is found to

the right than to the left and it appears to be attentuated by word boundaries.

Thus in addition to prominence factors a syllable is also marked if it is directly

to the left or right of a pitch accent.
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3.3 A Practical Prosodic Coding Strategy

In order to quantify the effect prosodic structure has on any acoustic correlates

of articulatory care two questions must be resolved:

1. What factors in prosodic structure should be examined?

2. How should such factors be represented in a quantitative analysis?

Both practical and theoretical issues determine the response to these questions.

From a practical point of view only factors that can be quantified reliably and

(considering the amount of material required for any analysis of redundancy) with

relative efficiency, can be included in this analysis. From a theoretical point of

view, as this work is not attempting to promote or undermine any particular

prosodic theory, only factors with which there is reasonable consensus will be

included.

In general research has shown that, apart from segmental identity and certain

segmental context effects, it is prominence and the boundaries of constituents

that have the strongest effect on speech acoustics (see van Bergem, 1988; Price

et al., 1991; Beckman and Edwards, 1990). Thus the coding strategy I used puts

a clear emphasis on describing prominence and boundary features.

In order to simplify a large scale statistical analysis a primitive will be adopted

as the standard data point. For example, in corpus linguistics such a primitive is

often the word, in phonetics the segment or phoneme. In this work, for reasons

detailed below, syllables will form the basic primitives that coding is applied to.

3.3.1 Issues in Coding Constituents

3.3.1.1 The Syllable

Every data point in my analysis represents an individual syllable with prosodic,

redundancy and care of articulation information associated with it.

The syllable was chosen as the primitive because it was the smallest easily us-

able constituent. The HCRC corpus is word segmented and as 70% of the words

are monosyllabic most of the syllabic durations have been measured by hand.

Thus, although autosegmentation was used to segment syllables in polysyllabic

words, most of the data analysed was unaffected by inaccuracies caused by au-

tomatic techniques. It was unrealistic, for this thesis, to hand-segment 15 hours
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of spontaneous speech into smaller constituents such as phonemes and autoseg-

mentation of constituents this small was regarded as too unreliable. Thus the

syllable offered a compromise between size and the amount of duration measure-

ment error caused by autosegmentation. In addition both redundancy and care

of articulation metrics could be applied at the syllable level (see chapters 2 and

5).

The syllable has formed part of most modern theories of prosody either explicitly

(Nespor and Vogel, 1986; Hayes, 1989; Selkirk, 1984; Couper-Kuhlen, 1993) or

implicitly as in the AM approach (Beckman and Pierrehumbert, 1986; Ladd,

1996).

Attempts to define syllables have fallen into two main areas:

1. Phonological Definitions: There are restrictions in what sounds may be

grouped together (for example /ng/ is not a permitted sequence of sounds in

the same syllable in English). Permissible and non-permissible relationships

between the constituents can be used to define the syllable (see Couper-

Kuhlen, 1986, chapter I section 3.22 for a review).

2. Phonetic Definitions: Syllables represent peaks in sonority. The sonority of

a sound is measured by comparing the acoustic intensity of a sound when

spoken with similar stress, duration and pitch. Vowels are more sonorous

that consonants and therefore become the nuclei of syllables (Ladefoged,

1982).

In this work a phonological definition, as implemented in the CELEX dictionary

(Baayen et al., 1995), is used to define each syllable. In general the syllabification

present in an isolated word is preserved when the word is articulated. However

there are examples of words which have different possible syllabifications (For

example ’predatory’ as ’pre-da-tO-ry/pre-dA-try’ or ’city’ as ’ci-ty/cit-y’. See

(Ladefoged, 1982, p220) for a discussion). In spontaneous speech when a large

amount of reduction occurs syllables can sometimes become squashed together or

completely removed. Different speakers can sometimes pronounce words with dif-

ferent syllabic structure. In the material this work considers, 70% of all syllables

appear in monosyllabic words, so although serious difficulties exist in defining the

notion of a syllable, in this case, syllabification was mostly carried out as part

of word segmentation. Where automatic syllabification was required a dictionary

based on the CELEX database (Baayen et al., 1995) was used to decide sylla-

ble boundaries. This syllabification was based on the primary pronunciation as

44



specified in Gimson (1977) and used the maximal onset principle (Clements and

Keyser, 1983).

The relationship between each syllable and other constituents was then coded as

a number of prosodic factors (see section 3.3.2 for a complete list).

3.3.1.2 Other Constituents: Break Index Coding

From an experimental perspective, Price et al. (1991) take a pragmatic approach

to the problem of defining boundaries and constituents by assigning a break in-

dex which represents the boundary strength between two words. By coding for

boundaries directly the concept of a prosodic hierarchy is accepted but without

the need to characterise the complex composition of the domains themselves.

Pause length, out breath and phrase lengthening can be directly related to the

break index (Wightman et al., 1992).

Using break index to represent boundaries and implicitly higher level constituents

is the approach I have used. I have not coded feet, prosodic words and clitic groups

explicitly, not because I am denying these may be part of the phonological struc-

ture but because I am investigating the surface structure rather than theoretical

differences in metrical phonology. Boundaries represented by break indices are

coded on the basis of the word segmentation already carried out. In general each

word is separated by a break index of 1. However in some cases words are heavily

run together, for example ’do you have’ might become ’dyuv’. When no sensible

word boundary could be assigned these run together words were treated as a sin-

gle word. In these cases a hand edited additional dictionary was used to assign

appropriate syllabification (see section 3.4.5.3) and the missing word boundaries

were regarded as a break index of 0. Break indexes 2-4 are used to represent

the boundaries of intonational phrases where 2-3 are used to mark intermediate

intonational phrases. This second level of intonational domain, the intermediate

intonational phrase (IIP) were proposed by Beckman and Pierrehumbert (1986)

to account for data in English and Japanese.

The overall result is a combination of prosodic facts associated with syllables

(for example whether within a monosyllabic word or not) and an impressionistic

boundary strength coded using the ToBI system (Beckman and Ayers, 1993).

Section 3.4 will give a detailed description of the methodology and the exact

coding carried out.
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3.3.2 Summary

Prosodic structure that this work will investigate is as follows:

1. Constituents

• Syllables form the basic building block for the analysis.

• Higher level constituents are coded as boundaries occurring after a

particular syllable.

• Word boundaries and cliticisation are coded as break index 0-1

• Intermediate intonational phrases are coded as break index 2-3

• Full intonational phrases are coded as break index 4

2. Prominence

• Nuclear accents are coded for presence or absence.

• Pitch accents are coded for presence or absence.

• Lexical Stress is coded for presence or absence.

• Whether the vowel in a syllable is full or reduced.

• Spillover: whether the syllable is directly to the left or right of an

accented syllable.

3.4 Prosodic Coding: Methodology

3.4.1 Introduction

3190 words making up 679 full intonational phrases from the HCRC Map Corpus

(Anderson et al., 1991) were coded using GlaToBI (Mayo et al., 1997), a variant

of the ToBI tone and break index coding system which was adapted for the

Glaswegian accent. Automatic techniques were then used to label nuclear accent

placement on these materials (see section 3.4.5) as well as syllabic structure,

lexical stress, phrase boundaries and word class for all materials in the corpus

(approximately 200,000 syllables).

3.4.2 ToBI

A ToBI variant was used for coding for the following reasons:
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1. ToBI is a well understood standard for prosodic coding which is used widely

by the speech community.

2. The variant used for the Glaswegian accent has already been defined and

evaluated.

3. The segmental style of coding made it easy to link features in the prosodic

coding with individual syllables.

The ToBI prosodic coding system was developed by a team of academics in the

U.S. in order to produce a common standard for coding intonation and prosodic

structure for large corpora of speech held in digitised form on computer (Sil-

verman et al., 1992; Pitrelli et al., 1994). The system itself was a compromise

between those researchers focusing in intonation/prominence and those focusing

on prosodic constituent structure. This led to a two tier coding system.

1. The tone tier codes changes in pitch which are associated with accents and

phrase boundaries. The system is based on an Autosegmental/Metrical

(AM) view of intonation (see Ladd, 1996, chapter 3 for a review). Phenom-

ena such as accents are made of up of strings of tone symbols combining

to produce accents and boundary tones. This tone level is heavily influ-

enced by Pierrehumbert’s intonational analysis of English (Beckman and

Pierrehumbert, 1986).

2. The break index tier codes the strength of boundaries between lexical items.

Break index values can also be combined to represent higher level structures

such as intonational phrases. This tier is based on work by Price and her

colleagues (Price et al., 1991).

In addition to ToBI coding other prosodic features were calculated automatically

for the whole corpus (about 200,000 syllables). Some of these prosodic features,

such as the notions of words, syllables and lexical stress are implicitly part of a

ToBI analysis.

3.4.3 GlaToBI

GlaToBI was developed at the University of Edinburgh by Matthew Aylett,

Jacqueline Kowtko, Bob Ladd and Paul Taylor in order to produce a ToBI like

coding system that could be applied to the HCRC Map Corpus. In this corpus
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most speakers spoke with a Glaswegian accent and a number of clear differences

in intonation between this accent and a standard British accent meant changes

were required to in order to use the ToBI system. Once an agreed system was in

place it was evaluated by Catherine Mayo. Details of the GlaToBI system and

its evaluation are presented in Mayo et al. (1997).

3.4.4 Method

Although GlaToBI was used for prosodic coding, only 2 items of information

were retained from this coding, the presence or non-presence of an accent and the

break indexes. Modifications adopted by GlaToBI affect accent and boundary

type rather than accent and boundary presence. Consequently none of these

modifications have any direct effect on the results in this thesis. However the

GlaToBI evaluation is important in that the coder who coded all the materials

used in this study was evaluated and he was found to be as competent as the

other two expert coders.

In all 3190 words making up 679 full intonational phrases were coded using

GlaToBI. The phrases were coded using Entropic’s Xwaves software. The coder

was able to listen to sections and parts of the speech as many times as required.

The speech had already been word segmented by phoneticians at the Centre for

Speech Technology Research at the University of Edinburgh. The coding was

carried out over a period of several months. Earlier coding was systematically

checked to ensure consistency was maintained. For polysyllabic words syllable

boundaries were determined automatically using autosegmentation and an online

dictionary (Baayen et al., 1995) using a syllabification based on the primary pro-

nunciation as specified in Gimson (1977) (see section 3.3.1.1 for details). The

output of this coding was a set of syllables marked for accentedness (yes/no)

and break index (0-4). Syllables marked as having a disfluent break index were

ignored.

The materials were taken from all 64 speakers in the map task (34 male, 30

female). Some speakers were represented more than others (e.g. 33 phrases were

the maximum for a speaker, 1 phrase was the minimum - mean 8, standard

deviation 6).

This hand coded prosodic information, together with the automatic measure-

ments described below, were the prosodic factors used in the comparison between

redundancy and care of articulation.
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3.4.5 Automatic Coding

3.4.5.1 Nuclear Accent Placement

Nuclear accents are regarded as the most prominent accent in an intonational

phrase. ToBI does not code nuclear accent placement explicitly but rather im-

plicitly in that, in English, the last accent before a phrase boundary is regarded

as the nuclear accent. Thus given a ToBI coded phrase it is possible to deter-

mine nuclear accent placement by examining accent and boundary markers. All

GlaToBI coded materials were automatically marked in this way.

3.4.5.2 Boundaries

The entire HCRC map task is word segmented and transcribed. In addition

words were tagged for word class. Syllabification and phrase boundaries were not

however explicitly marked.

Automatic phrase boundaries were placed after a stream of phonation when a

pause or non-phonated noise (such as an in-breath) occurred. These automatic

phrase boundaries were inferior to hand coded break indexes in that they would

posit a phrase boundary at locations of disfluency when one may not exist and

miss phrase boundaries marked with pitch change but no pause. The differences

between the hand segmented break indices and automatically determined break

indices are discussed in the results chapter (chapter 6). The advantage of these

measures is that they could be deduced for the whole corpus rather than the small

subset determined by the prosodic coding carried out by hand.

Syllable boundaries (for polysyllabic words) were determined using autosegmenta-

tion. This involved consulting an online dictionary containing a canonical phone-

mic representation for each word in order to establish the probably segmental

contents of each syllable. A hidden markov model (HMM) speech recogniser

(Young et al., 1996) with a model for each segment already trained from previous

speech was used to posit the likely boundaries of each phoneme. The syllabi-

fication as present in the dictionary lookup (see section 3.3.1.1) was then used

to determine likely syllable boundaries. Although these syllable boundaries were

not as accurate as the hand measured word boundaries the error was generally

within 30-40ms (see chapter 5). However errors could also be introduced if a word

was re-syllabified or a large percentage of the word was elided. It was decided

that given the small number of polysyllabic words in the corpus and, of these,

the small number of words that can have alternative syllabifications such errors
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would be rare and could be ignored.

3.4.5.3 Lexical Stress

Implicit to ToBI coding is a word segmented speech stream and the notion of

lexical stress. However within ToBI:

’The orthographic tier is arguably not part of any core prosodic analysis, except

inasmuch as the labels on this tier can be used to interface the transcription to

dictionary entries which do indicate such things as which syllable is likely to be

more stressed in each word, prosodic information which is otherwise not included

in the ToBI system.’ (Beckman and Ayers, 1993, section 1.1).

Consequently, as with syllabification, a dictionary was used to determine the

location of lexical stress. The dictionary was hand modified so that compounds

such as ’dyou’ and ’dyouhava’ were assigned appropriate lexical stress (dYOU

and dyouHAVa rather than DO-YOU and DO-YOU-HAVE-A). Secondary stress

was also marked and these values were associated with each syllable in the speech

stream. This process was carried out on all the syllables in the corpus rather than

just those which had been prosodically coded.

3.4.5.4 Word Class

Although not strictly a prosodic element, monosyllabic closed class words which

have a structural role in language, such as articles and auxiliaries, show different

prosodic behaviour. Often they do not carry pitch accents and often lose their

lexical stress in connected speech (for example ’the’ in ’go and see the doctor’

would probably be realised as /D@/ rather than /Di/. See (Cruttenden, 1986)

2.3). For this reason the word class for each word in the corpus was extracted

from a hand modified automatic syntactic parse and associated with the word.

Adjectives, non-auxiliary verbs, common and proper nouns were marked as open

class. All other words were regarded as closed class.

3.4.5.5 Automatic Marking Evaluation

Because all the automatic marking was carried out on the whole corpus a lot more

material was coded in this way allowing two analyses of the effects of prosodic

structure on redundancy and care of articulation. The first analysis was carried

out over the small set of hand coded materials augmented with some automatic
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coding (e.g lexical stress, syllabification). The second analysis was carried out

over the whole corpus with only automatic coding and approximations to hand

coded factors.

3.5 Summary

As mentioned earlier, when dealing with a large corpus practical considerations

are vital in any coding strategy. The strategy described here is the result of a

number of compromises:

1. The compromise between a phonetic/descriptive coding and a phonologi-

cal/interpretive coding.

2. The compromise between time consuming hand coding and fast but less

accurate automatic coding.

3. The compromise between complex detailed coding systems which are diffi-

cult to quantify and to code reliably but represent much depth and com-

plexity against simple coding systems where agreement is greater between

coders but does not capture much of the complexity we know exists.

The approach taken here has a number of advantages and disadvantages. The

advantage of the prosodic coding carried out here is that it balances hand coding

with automatic coding, uses simple prosodic features common to most modern

theories of prosodic structure and has been carried out on spontaneous connected

speech taken from a very large corpus. Some potential disadvantages include

the possibility of inaccuracies in hand coded and automatic coded materials and

the use of spontaneous materials which are only a subset of speech styles and

speakers.

A summary of the output of this coding is as follows:

3638 syllables hand coded for:

• accent placement

• break index

• nuclear accent placement.

• spillover.
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169464 syllables (including the materials above) automatically coded for:

• Syllabic position and total number of syllables in the overall word.

• Phrase initial or phrase final : In terms of immediately preceding or imme-

diately following a pause.

• Lexical stress: Whether lexically stressed or not determined from consulting

a hand checked dictionary.

• Vowel Type: Whether the vowel is reduced or full.
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Chapter 4

Care of Articulation: Literature
Review

4.1 Introduction

So far I have presented a framework for relating prosodic structure, redundancy

and care of articulation to each other (chapter 2), and considered basic terms in

redundancy (chapter 2) and reviewed prosodic theory (chapter 3). The result of

these discussions is to produce a practical solution to measuring language redun-

dancy and to coding prosodic structure. In this chapter we will focus specifically

on the acoustic characteristics of carefully articulated speech and, up until now,

what evidence has been presented that such speech is associated with prosodic

structure and redundancy. As we will see few studies have either taken redun-

dancy into account when examining effects of prosody or prosodic structure into

account when examining effects of redundancy. This thesis seeks to address this

omission.

In this chapter I will define the terms used to describe differences in care of

articulation and review the current literature that has investigated the effects of

prosody and redundancy on care of articulation.

In doing so we will address the following questions:

• How do we define care of articulation?

• How does this definition relate to concepts of hyperspeech, ’clear speech’

and intelligibility?

• What are the acoustic characteristics of carefully articulated speech in terms

of spectral and durational changes in vowels and consonants?
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• Can duration change alone be regarded as a strong correlate of carefully

articulated speech?

• How do prosodic structure and redundancy relate to these acoustic charac-

teristics?

4.2 Defining Care of Articulation

Before we can establish a link between prosody, redundancy, and care of articu-

lation we need to define care of articulation and some related terms.

In order to explain phonetic variation Lindblom (1990) in his H&H (hyper- and

hypospeech) theory presents the idea that differing degrees of articulatory effort

are used in different circumstances. Lindblom argues that a speaker assesses

the needs of a listener and balances the effort used in producing speech against

the need for producing speech which is sufficiently discriminable. In doing so the

speaker alters articulation in response to communicative and situational demands

along a continuum of hyper- and hypospeech.

Hyperspeech is carefully articulated speech. Sounds produced in hyperspeech are

easier to ascribe to individual phonemes, the variance within the production of

speech sounds is less and the effect of coarticulation and reduction are minimised.

Hypospeech in contrast is ’sloppy’ speech with more variance in the speech sounds

and greater coarticulation and phonetic reduction.

A number of laboratory studies have investigated the acoustic and articulatory

effects of hyperspeech and clear speech (Hanley and Steer, 1949; Freed, 1978;

Ferguson, 1977; Moon and Lindblom, 1994; Picheny et al., 1985, 1986; Uchanski

et al., 1996; Bond and Moore, 1994; Bradlow et al., 1996). These differences in

articulation appear to systematically occur in conjunction with prosodic factors

(Lehiste et al., 1976; Wightman et al., 1992; Price et al., 1991; Beckman and

Edwards, 1990; Cutler and Butterfield, 1990; Summers, 1987; de Jong, 1995; van

Bergem, 1988; Turk and White, 1999) but also in conjunction with changes in

predictability. Effects ascribed to predictability vary from those caused by word

frequency, word structure, and word context (Lieberman, 1963; Hunnicut, 1985;

Balota et al., 1989; Luce, 1986; Goldinger and Summers, 1989; Wright, 1997) and

also at ’higher levels’ involving semantic and syntactic redundancy such as the use

of referring expressions (Fowler and Housum, 1987; Fowler, 1988; Fowler et al.,

1997; Hawkins and Warren, 1994; Bard et al., 1995; Samual and Troicki, 1998;
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Shields and Balota, 1991). In sections 4.3, 4.4, 4.5 I will review this literature in

detail. First I will define some of the terms relevant to this work.

In this work my definition of care of articulation is similar to the definition of

hyperspeech:

Carefully articulated speech is speech which is articulated with more

articulatory effort than usual in order to produce speech sounds that

are more discriminable than usual.

To further elaborate on this definition I will begin by looking at the studies

which have specifically attempted to elicit hyperspeech and examined the acoustic

and articulatory effects of this carefully articulated speech. I will then examine

work that has associated these acoustic and articulatory effects with prosodic

factors and finally look at work which has looked at the relationship between

predictability and care of articulation.

4.3 The Acoustic and Articulatory Correlates of

Carefully Articulated Speech

Before looking at individual work we need to examine the differences between the

term hyperspeech and the terms ’clear speech’ and ’intelligibility’.

4.3.1 Clear Speech

Clear speech is a type of speech that has been hyper-articulated. In order to elicit

clear speech Moon and Lindblom (1994) asked subjects to read a list of words

as clearly as they could. In order to maintain this effect the subjects were peri-

odically interrupted by the experimenter who pretended the word had not been

understood and should be repeated. They then looked at the acoustic differences

between vowel sounds in a normally spoken control utterance in contrast to vow-

els in ’clear speech’ (see below for more details). Previous work in the acoustic

differences between normal speech and types of clear speech have included look-

ing at speech production in noisy environments (e.g. Hanley and Steer, 1949), the

way people adopt a style of speech sometimes referred to as ”Foreignese” when

speaking to non-native speakers with limited comprehension skills (Freed, 1978),

and the ”Simplified Register” or ”Motherese” that mothers use in communicating

with infants (Ferguson, 1977).
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Work on clear speech falls into two categories:

1. Work that concentrates on how clear speech differs from normal speech.

This work is primarily interested in how to speak clearly and looks at the

direct relationship between differences in articulation and intelligibility. Re-

searchers in this area are often interested how one may speak clearly for the

hard of hearing and how hearing aid technology could be improved to make

speech clearer and more intelligible.

2. Work which uses clear speech as an example of hyper-articulated speech.

This work doesn’t just look at the acoustic factors which characterise clear

speech but generalises these factors as characteristic of all hyper-articulated

speech. The assumption is that articulation varies along a scale of hypo/hyper

speech and that the clear speech style is, in general, more hyper-articulated.

Thus the same section of speech with the same prosodic context will be mea-

surably more hyper articulated in clear speech. However articulation also

varies within an utterance. Once the acoustic factors that characterise clear

speech are ascertained these factors can then be used to measure differences

in care of articulation within as well as across speech styles. Such factors

may be differences in amplitude, spectral characteristics and timing.

For example if the sentence ’The cat sat on the mat.’ is elicited as clear

speech we would find that the /æ/ vowels tend to be longer than in the same

sentence spoken in normal spontaneous speech because, in general, extended

length indicates more carefully articulated speech (see section 4.3.5). We

can also use this measurement within the utterance and compare differences

in vowel length between /kæt/ and /sæt/ and say whether one word or the

other has been more carefully articulated. Unfortunately there are problems

when comparing phonemes within an utterance in this way. We need to

know what length effects are purely due to phonemic context and normalise

for this. However, in principle, providing such normalisation is carried out,

we can use any factor that characterises clear speech as a potential metric

for care of articulation within an utterance.

Although work in ’clear speech’ concentrates on articulation, implicit to the term

clarity is that there is a listener who finds clear speech easier to understand than

unclear speech, that clear speech would, in general, be more intelligible. Work

by Payton et al. (1994) and (Picheny et al., 1985) confirm this. Because of the

relationship between intelligibility and clear speech, and the fact that significant
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laboratory studies have looked at the phonetic characteristics of intelligibility, it

is important to consider work on intelligibility with reference to care of articula-

tion. In the next section I will discuss the meaning of intelligibility, review work

in this area and discuss how results from intelligibility studies relate to care of

articulation.

4.3.2 Intelligibility

Intelligibility as a measurement has been used by, amongst others, Bard et al.

(1995) in the investigation of givenness, by Fowler and Housum (1987) also in the

investigation of givenness, and by Bradlow et al. (1996) in looking for sources of

its variability between speakers. The measurement of intelligibility is also used in

studies of hearing disability and in human factors (e.g. Moore et al., 1994; Payne

et al., 1994).

If something is easy for someone to recognise it is regarded as being intelligible, if

it is impossible to recognise it is unintelligible. Intelligibility is a measure of this

continuum including these two extremes.

Different experiments have used different methods to measure intelligibility. Fowler

and Housum (1987) excerpted words of interest from their context and played

them to the subjects at the rate of one every five seconds. The subjects wrote

down what they thought the word to be and also how confident (between 1 and 5)

they felt concerning the choice they made. Bradlow et al. (1996) asked subjects

to transcribe whole sentences and chose five key words from each sentence. The

sentence was scored as correct if all five key words were transcribed correctly.

Bard et al. (1995) also excerpted words in the same way as Fowler and Housum

but also added noise to the recording to make the words less easy to recognise.

In all three methods the transcriptions for the same utterances were pooled.

The accuracy of transcription over all subjects is then regarded as a measure of

intelligibility.

Clear speech and intelligible speech are related. For example: One of the con-

clusions reached by Bradlow et al. (1995, p201) is ”...female speakers, who tend

to have more precise articulations, also have higher overall intelligibility scores

than males.” This term ’more precise articulation’ is close to the concept of ’clear

speech’. Fowler and Housum (1987, p489) also make reference to the acoustics

of intelligibility. ”...talkers aim to provide an acoustic signal for a word that

is sufficiently informative for listeners to identify the word.” Implicitly it is not
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the choice of word or choice of sentence structure that is being examined here

but the information in the acoustic signal resulting in differences in intelligibility.

Intelligibility variation is being regarded as articulatory variation. Thus, when

measurements of intelligibility are made within lexical item and within speaker,

intelligibility variation reflects differences in articulation and the resulting acous-

tic change in the word. The interest in this change is spurred by the fact it

appears non-random and related to discourse structure. This acoustic variation

appears to be there for a purpose.

Because of the close relationship between hyper-articulated clear speech and

speech which is more intelligible results from studies examining intelligibility have

a bearing on work presented here. I will therefore include descriptions of some of

this work below when looking at the acoustic properties of carefully articulated

speech. However, when relating results from intelligibility studies to acoustic and

articulatory studies of clear speech care is required. Often noise is added to the

token that is used in an intelligibility experiment. The effect of this noise might

well interact with the speech acoustics. For example if a fixed level of noise is

used phonemes with higher amplitudes such as low vowels will be less affected.

In contrast if noise is added dependent on the amplitude in the signal consonants

such as plosives will retain more of their characteristic structure. Another prob-

lem in interpreting intelligibility results is a ’ceiling’ and ’floor’ problem in the

measurement. A word can only get so intelligible that all subjects recognise it or

so unintelligible that no one can recognise it. Acoustic and articulatory measure-

ments in contrast may continue to change even when a word’s intelligibility falls

outside these bounds.

4.3.3 Carefully Articulated Vowels in Clear Speech and
Intelligible Speech

In 1963 Lindblom put forward a target undershoot model of vowel articulation

(Lindblom, 1963) (for more detail on the actual modelling process used see chap-

ter 5 section 5.4.2.3). In this study Lindblom suggested that each vowel had a set

of spectral targets that the articulators attempted to produce. If the duration of

the vowel was reduced it became impossible for the tongue to reach the correct

position in time and the spectral target was undershot. Further studies produced

conflicting results with regards to this model. Some studies found no undershoot

(e.g. Fourakis, 1991), others found that undershoot appeared to be speaker de-

pendent (Flege, 1988) while yet more confirmed Lindblom’s basic theory while
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presenting a more complex model of the undershoot phenomena (For example

Broad and Clermont, 1987; van Son, 1993).

In response, Lindblom (1990), in his H&H theory, suggests that speakers can use

different degrees of articulatory effort when producing speech. An explanation

for inconsistencies in the results cited above could be that such differences in

articulatory effort were not controlled for. When speakers were asked to produce

tokens in a laboratory environment it is difficult to establish how much effort they

made in trying to produce ’good’ tokens.

In order to examine this problem Moon and Lindblom (Moon and Lindblom,

1994) specifically elicited speech which was hyper-articulated. In contrast to

normal read speech this ’clear speech’ was the result of the experimenter asking

speakers to repeat a token because it was not understood. They used contexts for

each vowel that would intensify formant transitions (see below for more detail)

and they found evidence that:

• Vowels in clear speech were longer and displayed less average undershoot.

• There were clear differences between the amount of undershoot exhibited

for different speakers.

• Tense vowels showed less duration independent undershoot than lax vowels.

The general effect of undershoot across a speech sample is for the spectral charac-

teristics of the first two formants of the vowels to exhibit reduction. For example

for the vowel /i/ the F2 value (averaged over speakers and different word lengths)

was 223 Hz lower in citation speech in contrast with clear speech (Moon and Lind-

blom, 1994) in a /wVl/ context. Over five speakers and four front vowels this

reduction was significant in all but two cases out of twenty. Because F1 and

F2 values will generally have less extreme values in these contexts, if a two di-

mensional space described by F1/F2 is plotted, they group more strongly in the

central area. This tendency to move towards the centre of the vowel space is

termed centralisation and the tendency for less extreme F1/F2 values for a vowel

is termed spectral reduction. Moon and Lindblom also found differences in vowel

duration between clear and citation speech varying from 9 ms to 109 ms (from

6% to 40% reduction) depending on speaker and vowel type.

Moon and Lindblom’s results for clear speech reinforce results from Picheny et al.

(1986) and Bond and Moore (1994) who examined the acoustic characteristics of

clear and conversational speech. In this study, amongst other effects (see below),
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vowels exhibited more spectral reduction (F1 ≈60Hz, F2 ≈200Hz) and shorter

segmental durations (≈10-100ms, 10%-60% reduction) in conversational speech.

Bradlow et al. (1996) also report that in more intelligible speech the vowel space

is more spread out than in less intelligible speech. This implies that less vowel

reduction occurs in intelligible speech. As demonstrated by Moon and Lindblom

(1994) this can either be a result of longer segmental duration or of increased

articulatory effort or both.

All the studies reported above used speech read in a ’normal conversational’

manner as a contrast to the clear speech. Very little work has been carried out

on genuine spontaneous speech. Sotillo (1997) when examining intelligibility of

spontaneous speech tokens found that differences in vowel duration significantly

related to intelligibility of spontaneous tokens and were significantly longer in

carefully produced citation forms.

To summarise, for clear speech, vowels generally have more distinct spectral char-

acteristics and are longer (Picheny et al., 1986; Bond and Moore, 1994; Bradlow

et al., 1996; Moon and Lindblom, 1994; Sotillo, 1997). However what this means

for particular instances of vowels is less clear.

Vowel identity as noted by Moon and Lindblom (1994) has a measurable effect on

changes in duration and spectral characteristics between clear speech and normal

citation speech. Furthermore as I will discuss later (in section 4.4) prosodic factors

also have a very important effect on both duration and spectral characteristics.

4.3.4 Consonants in Carefully Articulated Speech and In-

telligible Speech.

Research in the acoustics and articulation of consonants is complicated by the

sheer variety of acoustic cues and articulatory mechanisms for producing non-

vocalic sounds. For example the spectral structure and the variation over time in

the speech signal is completely different between an /s/ and a /b/. Therefore work

investigating the effects of hyperspeech on consonants has tended to concentrate

on particular cues or particular examples of articulation.

Recent work has examined differences in the release of obstruents (Picheny et al.,

1986; Bond and Moore, 1994; Bradlow et al., 1996; Sotillo, 1997), differences in

voice onset times in obstruents (Bond and Moore, 1994; Bradlow et al., 1996),

durational differences in the duration of interword /s/ (Bradlow et al., 1996) and

place assimilation of word final nasals (Sotillo, 1997).

60



The most widely cited work which investigated the acoustics of clear speech was

the study carried out by Picheny, Durlach, and Braida (1986). They looked at

obstruents in clear and conversational speech and found that word final stop

bursts were released more often and the RMS energy1 of obstruents is greater for

clear speech. Bond and Moore (1994) also found obstruents in more intelligible

speech tended to be released more often and had a more distinctive voice onset

time (VOT).

Looking at differences between spontaneous speech and carefully read speech

Sotillo (1997) found that stops were more likely to be deleted in spontaneous

speech. An examination of place of articulation change in nasals was more prob-

lematic. The difficulties of measuring differences in place of articulation using the

acoustics proved difficult and this part of the study remained inconclusive.

Because of the large number of speech cues involved in consonant recognition and

many different factors in consonant production the work described above leaves

many questions with regards to specific cues unexplored. It is also uncertain

how cues described above might be combined to give an overall measure of the

care of articulation in a whole word. These problems as well as the relative ease

of measuring duration has encouraged the use of durational measurements as

indications of clear or unclear speech.

4.3.5 Duration Differences in Carefully Articulated Speech

and Intelligible Speech.

Segments and words tend to be longer in clear speech than other speech styles

(Picheny et al., 1985, 1986; Uchanski et al., 1996; Moon and Lindblom, 1994;

Sotillo, 1997; Bond and Moore, 1994; Cutler and Butterfield, 1990).

This increase in duration has been noted on vowel durations (Picheny et al.,

1985, 1986; Uchanski et al., 1996; Moon and Lindblom, 1994; Sotillo, 1997; Bond

and Moore, 1994). This effect differs substantially between lexically stressed and

unstressed vowels in percentage terms and also appears to be dependent on vowel

type (Moon and Lindblom, 1994; Sotillo, 1997, see section 4.4). Consonants have

also exhibited lengthening. For example Picheny et al. (1986) show an increase

in the length of /s/ in ’pass’ in the context of the sentence “His quick world must

pass in a flag” when spoken as clear speech.

1RMS energy is root mean squared energy. For speech which oscilates around 0 this repre-
sents the average variance in the signal and thus amplitude over time. Thus obstruents with a
high RMS energy will have louder bursts.
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This duration increase is also noted on (non-phrase final) word final syllables

(Cutler and Butterfield, 1990) and over whole word durations (Picheny et al.,

1985, 1986; Uchanski et al., 1996; Sotillo, 1997; Bond and Moore, 1994) when

words are spoken in a clear speech style.

However examples exist of words which are longer and less intelligible. In data

examined by Bard et al. (1995) where intelligibility was measured between clearly

spoken citation forms and 2nd mentions of the same words in spontaneous speech

14% of the words which were shorter in the 2nd mention condition were actually

more intelligible than their citation controls.

Similarly duration change is not a necessary result of clear speech at the segmental

level. Lindblom specifically argues that distinctiveness is the primary characteris-

tic of hyper-articulated speech (Lindblom, 1990). Although lengthening tends to

occur as a side effect of more carefully articulated speech it can also occur when

care is not being taken. For example Flege (1988) showed that vowel undershoot,

although related to vowel duration, could be controlled differently by different

speakers. Some speakers can and do articulate carefully as well as quickly.

Also Bradlow et al. (1996) also showed that increasing the duration (110ms-

180ms) of a word initial /s/ in ’seems’ in the context of the sentence “The play

seems dull and quite stupid” led to more mis-recognitions of ’play’ (it being recog-

nised as ’place’) and that careful articulators exerted more control on segmental

timing making it shorter in this context.

I will return to issues in using duration as a care of articulation measurement in

the following chapter. Despite the points raised above the general consistency of

duration reflecting a general increase in care of articulation make it an attractive

care of articulation metric.

4.3.6 Summary

I have given a brief description of the key terms used in research that has examined

clear speech, intelligible and hyperspeech followed by an overview of current work

which has examined the acoustic differences between clear speech and other speech

styles. A great deal of consensus exists on general characteristics but less so when

using these characteristics predictively. In general clear speech has longer duration

and more spectrally distinct segments. Lindblom (1990) argues that control of

reduction is oriented to the listeners’ needs and that it is sufficient distinctiveness

that drives the extent speech is hyper or hypo-articulated.
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Before addressing the question of how predictability appears to affect care of

articulation in line with some of Lindblom’s predictions we will examine the

direct relationship between prosodic factors and the acoustic characteristics of

clear speech.

4.4 The Acoustic and Articulatory Effects of Prosodic

Structure

Howell and Bonnett (1997) point out:

“All the factors discussed by Picheny, Durlach, and Braida (1986) show that

prosody differs between clear and unclear speech. Stress appears to be particularly

important in interpreting the results of Picheny, Durlach, and Braida (1986), as a

word that receives high stress is usually found to have a higher pitch, its syllables

are lengthened, it is likely to be louder and will probably be a content word

rather than a function word. An unstressed word, on the other hand, will have

reduced vowels, and often final plosives are not released. Thus, all the differences

between clear and unclear speech that are discussed by Picheny, Durlach, and

Braida (1986) are associated with differences in stress.” (Howell and Bonnett,

1997, p96)

There is indeed much evidence to suggest that differences in the articulation and

acoustics of clear speech can be attributed to prosodic structure (Lehiste et al.,

1976; Wightman et al., 1992; Price et al., 1991; Beckman and Edwards, 1990;

Cutler and Butterfield, 1990; Summers, 1987; de Jong, 1995; van Bergem, 1988).

It should be noted that in the studies described in section 4.3 a detailed analysis of

the prosodic structure in terms of accenting and boundary tones was not carried

out. Prosodic structure was instead controlled implicitly through careful choice

of word identity and carrier phrase. The only exception to this was the work by

Cutler and Butterfield (1990, 1991). Here relationships between strong and weak

vowels as well as effects of f0 caused by accenting are considered, however, the

prosodic analysis did not extend to prosodic boundaries. This leaves open the

fundamental question:

Is prosodic structure the means with which we change the clarity of

speech?

As we will see there is persuasive evidence that this may be the case. In the

following section I will review current literature which investigates the effect of
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prosodic structure on duration change and segmental spectral characteristics.

For an overview of the terminology used in the following discussion on prosodic

structure and for a review of the broader issues within prosody see chapter 3.

4.4.1 Prosodic Boundaries

As mentioned in section 4.3.1 clear speech generally exhibits lengthening com-

pared to normally articulated speech. Clear speech also contains more and longer

pauses (Picheny et al., 1986; Cutler and Butterfield, 1990). Both lengthening

and pauses are also associated with prosodic boundaries (Lehiste et al., 1976,

Shattuck-Hufnagel and Turk, 1996 for a review, Wightman et al., 1992, Price

et al., 1991 among others).

Preboundary lengthening has been shown to occur at the end of an intonational

phrase (Lehiste et al., 1976; Wightman et al., 1992; Price et al., 1991; Beckman

and Edwards, 1990), at the end of intermediate intonational phrases (Wightman

et al., 1992; Price et al., 1991; Beckman and Edwards, 1990) as well as on word

final syllables in polysyllabic words (Wightman et al., 1992; Price et al., 1991;

Cutler and Butterfield, 1990; Beckman and Edwards, 1990).

The work by Wightman et al. (1992) deserves a more detailed description here

as it serves as the most commonly cited piece of work (together with Price et al.,

1991) supporting the notion of prosodic hierarchy based on boundary-related

lengthening. It is also of direct relevance to attempts to normalise duration

measurements which will be discussed in chapter 5.

The work was based on a corpus of read speech developed by Price et al. (1991).

The corpus consisted of 35 pairs of phonetically similar but syntactically ambigu-

ous sentences. The sentences were read by four professional news announcers.

These were then autosegmented and coded using seven levels of break index. The

first five of these levels (0-4) correspond to break indexes described in chapter

3. The remaining two, level 5 delimited a group of intonational phrases found

in long sentences and level 6 was reserved for marking sentence boundaries. The

durations of all phones were normalised both for segment identity and speaking

rate over the sentence (see Wightman and Ostendorf, 1991, for details).

The results showed that preboundary syllables were longer than similar syllables

in different contexts. This lengthening appeared to be limited to the rhyme of

the syllable and vowel length in particular showed significant lengthening between

break indexes 1 to 4. A significant effect was only noted between breakindex 0
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and 1 for stressed syllables and the authors suggested that differences between

break indexes 4 to 6 could be marked by pause rather than extended lengthening.

To what extent gross changes of duration in clear speech may be directly caused

by changes in prosodic boundaries remains unclear. No direct comparison has

been carried out between the prosodic structure in clear speech as opposed to

citation speech that I’m aware of. (Although studies of effects of speech rate on

prosodic structure have been carried out see Shattuck-Hufnagel and Turk, 1996

for a review and also Caspers, 1994).

4.4.2 Prominence

Prominence also has a direct effect on acoustic factors linked with clear speech

and careful articulation. Prominent syllables are longer (de Jong, 1995; Sum-

mers, 1987; van Bergem, 1988) and the vowels are less spectrally reduced (van

Bergem, 1988; de Jong, 1995). Prominence is also associated with less spectral

tilt (Campbell and Beckman, 1997), f0 transitions (e.g. Cruttenden, 1986; Ladd,

1996) and increased amplitude (de Jong, 1995).

Articulatory studies have also associated prominence with changes in articula-

tion. The duration, velocity and spatial extensiveness of jaw opening is increased

(Summers, 1987; de Jong, 1995) and the openness of the vocal tract increases

(Beckman et al., 1992). This results in increased acoustic power and more ex-

treme spectral features in vowels (de Jong, 1995). de Jong argues that this shift

in spectral features is made in order to increase perceptual clarity and is better

regarded as hyper-articulation than a simple increase in amplitude. This view

supports the acoustic findings of van Bergem (1988).

van Bergem (1988) carried out a detailed study on the effects of sentence accent

(phrasal stress) and word stress (lexical stress) on vowel reduction. The study

investigated 3465 vowels read by 15 male speakers. Both stress conditions had a

significant effect on the steady state formant frequencies (F1,F2) of the vowels as

well as on the vowel durations. He reports that lexical stress had a stronger effect

than phrasal stress. However this analysis deserves some explanation. van Bergem

treats phrasal stress as affecting the whole word thus allowing the context -[lexical

stress] together with +[word stress]. Usually phrasal stress is regarded as being

associated only with a lexically stressed syllable (Cruttenden, 1986; Ladefoged,

1982). In this more traditional view what van Bergem regards as -[lexical stress]

and +[word stress] can also be regarded as spillover over from the accented syllable
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onto a neighbouring unstressed syllable (see Chapter 3 and also Turk and White,

1999 as noted below).

Overall, prominence meant that the vowels were less reduced and longer. This is

the same effect reported by Moon and Lindblom (1994) for lax vowels. Ladefoged

(1982) argues that the reduced/full vowel distinction is a level of prominence (see

chapter 3 section 3.2.2). Tense vowels in unstressed syllables are often reduced

vowels. Thus the differences reported by Moon and Lindblom between tense

and lax vowels could be regarded as related to the effects of prominence at this

reduced/full level rather than as an effect of vowel identity.

Prominence and Boundary effects can’t, in fact be viewed in isolation. Turk and

White (1999) show that the domain of accentual lengthening is affected by word

boundaries. An accent placed on a syllable affects the syllable with which it is

associated but also has an effect on unstressed syllables within a word. This is

the similar to the effect reported by van Bergem (1988) (see above). This effect

is much stronger in a rightwards direction unless attenuated by a word boundary

where the effect is much smaller (see also Turk and Sawusch, 1997).

There is much evidence to demonstrate that prosodic boundaries and promi-

nence both affect the duration of syllables and segments. Both also occur with

f0 changes. Given this one may ask how we can tell the difference between a

boundary effect and a prominence effect. It is possible that other acoustic factors

such as reduction behave differently in a prominence as opposed to a boundary

context although this is yet to be established. Work carried out by Fougeron

and Keating (1997) suggest that boundary effects also include articulatory fac-

tors beyond increased duration which might suggest more careful articulation and

could possibly lead to more spectrally distinct segments. However in their study

a small amount of reiterant speech was used (e.g. ’nono no’ instead of ’ninety

nine’). This use of reiterant speech as well as the use of numerical sentences (e.g.

’ninety nine times ninety nine times ninety nine equals a lot’) may have affected

their results.

Overall given the wealth of prosodic factors and the large effect they appear

to have on the same acoustic factors examined in clear speech and care of ar-

ticulation there is a possibility that prosodic structure could account for these

changes. However as I will discuss below redundancy also has a strong effect on

these factors. To what extent can redundancy alone explain variation in care of

articulation?
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4.5 The Acoustic and Articulatory Effects of Re-

dundancy

As we have seen in chapter 2 patterns of redundancy and predictability in natural

language are complex. However, even given this, a number of studies have persua-

sively shown that more predictable sections of speech exhibit the same acoustic

reduction and shortening that is common in hypospeech and avoided in hyper-

speech. A criticism of this work, especially the much cited Lieberman (1963) is

the lack of prosodic controls.

4.5.1 An Informal Observation

Bolinger (1963) points out:

“The more redundant something is, the shorter it tends to be, and conversely:

’the factor of novelty is relevant to the prolongation’2. I note two manifestations:

the familiarity of a particular form or phrase, and the familiarity of a particular

combination. An example of the first is the fusion of polymorphemic words. The

relatively infrequent sugar loaf in my speech tends to be longer than the frequent

sugar lump. For me, the relatively new and unfamiliar robot is slower and more

disjointed at the syllable boundary than in rowboat, despite the fact that rowboat

contains two morphs and robot one. The fusion of highly frequent individual

verb-adverb phrases illustrates the same thing:...” (Bolinger, 1963, p7).

In this work no formal model of redundancy is appealed to and no formal pho-

netic laboratory study is carried out to establish the patterns of lengthening

Bolinger describes. However considerable evidence from laboratory studies does

indeed support Bolinger’s observation. One much cited study is that of Lieber-

man (1963). Here Lieberman establishes an index of redundancy for a number

of words in a different contexts by asking subjects to predict them from these

contexts and then explicitly excerpts the words and plays them to subjects to see

how intelligible they are.

4.5.2 Lieberman, Hunnicut and related studies

Lieberman (1963) used different contexts such as “A stitch in time saves ...” and

“The number you will hear is ...” to elicit redundant and non-redundant tokens

2(Sharp, 1960, p131)
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of a word (In the above example nine). The prosodic context was not explicitly

controlled for and in some examples could well have confounded the results. For

example, the prosodic context of the word budget in the two sentences ’A wise

and balanced budget is the core of good government’ and ’Robert Budget is in

jail’ could be significantly different. In the first it could be marked with a nuclear

accent and be followed by phrase boundary, in the second it is probably marked

with a non-nuclear accent and is less likely to be followed by a phrase boundary.

Lieberman used 60 native U.S. speakers to guess the word from the contexts

(in the nine example 85% guessed the word in the first context and 10% in the

second). Listeners were played these words and asked to write down what they

heard (in the above example 50% recognised the non-redundant token while only

33% recognised the redundant token).

The duration and peak amplitude of the words were also measured. Out of

nineteen pairs 10 were longer when less redundant, 6 remained the same length

and only 3 were longer in the redundant context. In terms of peak amplitude 9

were louder, 5 had the same amplitude and 5 were quieter when less redundant.

In all, 15 tokens out of 19 were easier to recognise when excerpted from less

redundant contexts.

Lieberman uses subjects to assess redundancy rather than calculating the re-

dundancy on the basis of corpus statistics but he nevertheless appeals to two

alternative models. The first, where only left context is given to the subject in

order for them to guess the word, and the second, where both left and right con-

text are given. In this work only the full context consistently reflected redundancy

in the materials. For 9 out of 14 contexts, left context did not provide sufficient

information for any of the 30 redundancy checkers exposed to this context to

guess the word. This highlights a problem with a psycholinguistic approach to

measuring redundancy. In many cases the chances of predicting a word from any

context is small because the lexicon is large. For example the chances of any of

the 30 listeners to guess that ’neither a’ is followed by the word ’borrower’ is low

(In Lieberman’s study none guessed the word given this context). However that

does not mean the redundancy from a left context is 0; it just means that it is

probably less than 0.03. A very large number of subjects would be required to

give results for small probabilities (sometimes in the tens of thousands!). This

also raises another objection to Lieberman’s study. Only four sentences were used

to establish the most redundant contexts and of these two were well known adages

(“A stitch in time...” and “Neither a borrower nor a lender be.”) and a third
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a fairly unusual compound (“witch hunts”). Given the highly redundant nature

of these contexts it is difficult to be sure they are representative of redundancy

effects in general.

In response to these criticisms Hunnicut (1985) followed up this study by looking

at a larger set of Swedish sentences (80 were used in the analysis) in wider contexts

(21 pairs were adages and 19 were text-type sentences). In this study care was

taken to match sentence structure between examples of high and low redundancy

contexts. This had the effect of producing similar prosodic contexts for both

words. However the sentences were quite long and no prosodic analysis was

carried out on the speech produced to establish that the prosodic context was

produced as assumed. Overall the results support the notion of high redundancy,

low intelligibility and thus implied poor articulation although only in the text-

type context.

Her conclusion was:

“The results of the current study indicate that the relationship of intelligibility

to redundancy is not clear. There may be dependency in certain conditions

but not others. The question that has been asked in this study, and also in

the Lieberman’s study, concerns the intelligibility of a word in isolation and its

dependency upon factors of redundancy in context. That is, redundancy is defined

as the percentage of essential information present in a sentence without the test

word. Then we can say that in the non-idiomatic, non-metaphorical sentences of

a reader, these results indicate that there is a clear intelligibility advantage for

words in lower-redundancy contexts.” (Hunnicut, 1985, p53)

The problems in using intelligibility as a metric are highlighted in this paper.

Blanket pink (speech like) noise was used to make the words harder to recognise.

It was found that the signal to noise ratio fell significantly towards the end of

the sentence. Thus the effect of added noise might have a much greater effect

depending on sentence position and confound intelligibility results.

The final results of these studies are interesting but inconclusive. This is partly

due to a number of non-trivial problems in this methodology:

1. Intelligibility measurements are noisy. Even with appropriate controls (which

were not used in these studies) ceiling effects and the need to mask words

with noise introduce serious fluctuations into individual results.

2. All materials are read. It is quite possible that tokens in spontaneous speech

reflect redundancy differently. For example they may already be too reduced
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to be affected any further.

3. The informal models of redundancy, although attractive because they can

systematically reflect subjects’ complete language knowledge also are strongly

affected by low probabilities and unusual contexts.

4. No control was carried out for prosodic structure, which, as I have outlined

above, is well known to affect articulation. Variations in prosody could

confound some of these results.

This thesis specifically attempts to address these problems. In the next chapter a

number of automatic measurements are developed to try and produce a consistent

approach to measuring care of articulation across a large corpus of speech. The

speech itself is spontaneous, running speech taken from a relatively normal dia-

logue situation and redundancy is explicitly and formally coded. Finally prosodic

structure is considered in detail and the relationship between its effects and those

of redundancy on care of articulation considered closely.

4.5.3 Given and New: Repetition Studies

These studies examine the effect of discourse structure on the way a word is ar-

ticulated. Fowler and Housum (1987) suggest that this variation in articulation is

used by speakers to signal differences between ’New’ and ’Old’ or ’Given’ informa-

tion. For example in the HCRC Map Corpus the following type of conversation

often occurs:

Do you have a disused monastery?

No.

Well you need to turn left under the disused monastery and then go south.

The first mention of disused monastery is an introductory mention. The speaker

has not mentioned this landmark earlier in the dialogue and so it is ’New’ in-

formation. The second mention, in contrast, is referring back to something the

speaker has already talked about and so this is ’Given’ information. Given and

New can be regarded as examples of redundancy at a ’higher level’ than, for ex-

ample, word frequency in that the redundancy in this case is also dependent on

semantic, syntactic and discourse knowledge.

In this situation according to Lindblom’s H&H theory we might expect an acous-

tically reduced form of the second mention because it is more readily inferable
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by the listener. This is the general finding; in spontaneous speech in the form of

monologue (Fowler and Housum, 1987; Fowler et al., 1997), in dialogue (Hawkins

and Warren, 1994; Bard et al., 1995; Bard and Aylett, 1999), read speech (Fowler,

1988), (Samual and Troicki, 1998)3 and when spoken from memory (Shields and

Balota, 1991). When no context existed to help predict the second mention

such as in a list context (Fowler, 1988) then no reduction was observed. Again

prosody was not controlled for in a majority of these studies. When it was (Bard

and Aylett, 1999; Hawkins and Warren, 1994) conflicting results were obtained

(see section 4.5.6).

In contrast to the studies described above ’Given’ versus ’New’ offers an easily

determined difference in redundancy together with a useful control. If the same

word is spoken by the same speaker differences caused by idiosyncratic articula-

tion and word identity are controlled. In general, when spontaneous speech was

examined this decrease in care of articulation for ’Given’ mentions is more marked

than in read speech (Fowler and Housum, 1987).

I will now turn to studies which have looked at redundancy and articulation with

regards to formal probabilistic models in terms of both the lexicon and also in

terms of phonemes.

4.5.4 Redundancy Caused by the Lexicon

Central to Lindblom’s H&H theory is the idea that language is produced with

a listener in mind and that speech should be sufficiently discriminable. Part of

the task of any listener is to decide what words make up an utterance. The

examples of redundancy discussed above considered the context surrounding the

word. However structure within the lexicon can also increase the redundancy of

individual words.

For example if you were told to guess a three letter word that had been randomly

found in a book the word ’the’ would be a sensible guess. ’the’ is the most

predictable word given this information and thus the most redundant. In general

more frequently used words are shorter and undergo more severe articulatory

reduction when produced (Balota et al., 1989). The most common words used in

English are function words such as ’the’, ’and’, ’to’. In spontaneous speech these

three examples, rather than produced /Di/, /and/, /tu/ are often produced as

/D/,/n/,/t/.

3Reduction was only found for children and adults who had good control of the production
situation.

71



The structure within a word, given the lexicon, also leads to redundancy. For

example, if you were told to guess a three letter word ending in ’at’ and begin-

ning with ’c’ or ’g’ you would guess ’cat’ because the word ’gat’ does not exist

in the normal lexicon. In contrast if the word ended ’ap’ you could choose ’cap’

or ’gap’. In the first example the c/g distinction is redundant in the second it is

not. Measuring this redundancy is non-trivial. As discussed in chapter 2 redun-

dancy is only meaningful with regards to a model. In terms of the lexicon there

is considerable debate concerning models of word recognition and the different

importance of different cues within a word. A detailed review of word recogni-

tion literature is beyond the scope of this work however a number of important

findings with regards to care of articulation will be discussed.

Pisoni et al. (1985) found that a word’s intelligibility was affected by the the neigh-

bourhood density : the number of phonologically similar words in the lexicon and

the relative frequency : the word’s frequency compared to its nearest phonological

neighbour. Words which had more competitors, in other words words with less

redundant phonemic distinctions were more intelligible and thus more carefully

articulated. Words which were relatively less frequent and thus less predictable

than words they could be compared with were also more intelligible.

More direct articulatory measurements reinforce this result. Goldinger and Sum-

mers (1989) carried out a study looking at differences in VOT between voiced/voiceless

minimal pairs. They asked subjects to read minimal pairs chosen from sparse and

from dense lexical neighborhoods. Each subject read each pair four times. They

found that the VOT difference between voiced/voiceless pairs was greater for

pairs taken from dense neighborhoods than from sparse neighborhoods. However

as Wright (1997) points out the study was flawed because the use of minimal pairs

made the subjects aware of the distinction being studied and could cause them

to exaggerate the contrast. Wright (1997) looked instead at vowel undershoot

in sparse and dense lexical neighborhoods. He took monosyllabic CVC words of

equal familiarity but varying in the density of their lexical neighborhoods. He

measured the F1 and F2 values in the central region of each vowel in Bark and

measured the Euclidean distance of each from the centre of the speakers’ vowel

space. He found a significant centralisation for the vowels from words taken from

sparse lexical neighborhoods (F (1, 480) = 130.92, p < .0001).

However in contrast Sotillo (1997) found, in a clear contrast with predictions

made by Lindblom’s H&H theory, that: “The degree of hypo-articulation... is

independent of any kind of assessment of potential lexical competition.” (Sotillo,
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1997, p270) when examining nasal assimilation. Sotillo (1997) carried out a per-

ceptual experiment to measure perceived nasal assimilation in tokens taken from

spontaneous task oriented dialogue. Sotillo found no significant effect of a close

competitor set (a similar notion to a dense lexical neighborhood) on the degree

of assimilation perceived. However the materials Sotillo used were spontaneous

speech tokens excerpted from dialogue. This contrasts with the read words used

in both the Wright (1997) and the Goldinger and Summers (1989) studies. It is

unclear the extent such differences in materials lead to these different results. It

is possible that normal spontaneous speech is already maximally reduced in many

contexts thus making tendencies observed in read speech difficult to detect.

Sotillo does, however, present evidence that hypo-articulation (d-deletion and

reduced vowel duration) is more prevalent in word offsets (which are more re-

dundant) than word onsets but with an important caveat. Different parts of the

word are more perceptually salient than others and hypo-articulation within the

word is not just dependent on internal word structure and redundancy within the

lexicon but also the acoustic identity of items within the word.

Even taking these complexities into account, assimilation per se does not neces-

sitate poor intelligibility. Shillcock et al. (1994) argue than many types of as-

similation, far from making words harder to recognise actually reduce the size of

the neighborhood density surrounding the word. In other words the assimilation

actually increases the amount of information in the word rather than reducing

it. For example the labial assimilation of ’t’ to ’p’ in batman results in smaller

competitor sets if the word is represented in the mental lexicon as ’bapman’.

A degree of caution is required however when dealing with such assimilations with

regards to a model of lexical access. It is unclear whether in actual spontaneous

speech the ’t’ becomes a ’p’ in the above example or whether it becomes some

sort of stop which could be characteristic of both a ’t’ and a ’p’. The effect on

redundancy is quite different in these two cases.

In all there is compelling evidence that regularities within the lexicon contribute

to redundancy and that these differences in redundancy affect care of articulation.

However there are several potential models of word recognition and it is therefore

difficult to characterise the precise nature of the redundancy that occurs within

a word. This, together with the difficulties comparing read speech studies with

studies carried out on spontaneous speech, mean that we are far from a clear

understanding of the precise relationships involved.
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4.5.5 Summary

Research in articulation and in intelligibility has consistently suggested that re-

dundancy affects care of articulation. In general if something is predictable from

context or from the lexicon then care of articulation is reduced. A number of

problems have been outlined in some of this work. In particular the lack of work

that looks at spontaneous speech in a normal communicative environment and

the lack of prosodic controls in the work discussed above. In the next section I

will consider some research that has specifically looked at whether prosodic struc-

ture can account for the redundancy effects noted in some of the work described

above.

4.5.6 Prosody, Intelligibility and Redundancy

Ladd states:

“...it is well known that accent tends not to be placed on elements that are

repeated or ’given’ in discourse...” (Ladd, 1996, p175)

This naturally raises the question of whether the intelligibility differences noted

in given/new studies are a direct consequence of accenting differences. Hawkins

and Warren (1994) and Eefting (1991) present evidence that this is indeed the

case. In contrast, Bard and Aylett (1999) show that accent change alone does

not explain intelligibility differences between given/new tokens as there is still

a significant intelligibility reduction between accented first and accented second

mentions. The differences in these results can be attributed to differences in the

materials examined. The result obtained by Bard and Aylett was that accent

change certainly did alter intelligibility but that in normal spontaneous dialogue

deaccenting doesn’t happen very often. 75% of the materials had no change

in accentedness. Differences in these results could be attributed to very differ-

ent sample sizes and means of eliciting the material. The studies described by

Bard and Aylett examined the intelligibility differences of 408 pairs of repeated

mentions produced by 64 speakers in task oriented dialogue. In contrast Eefting

(1991) used 16 target words read by a single experienced newsreader and Hawkins

and Warren (1994) examined 19 words produced by three subjects in a picture

description exercise.

Differences in styles of production (whether read speech or spontaneous, whether

monologue or dialogue), communicative setting and speaker differences make com-

parisons between studies difficult. Intelligibility studies are very resource intensive
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as are studies which involve the hand measurement of acoustic cues associated

with hypo-articulation. Thus in much of the work described above small amounts

of controlled material were necessarily used. To my knowledge no large scale study

examining differences in care of articulation and relating them directly to differ-

ent factors in prosodic structure and differences in redundancy has been carried

out. This work seeks to address this.

4.6 Summary

There is considerable variation in the care with which sections of speech are ar-

ticulated. Different acoustic measurements and differences in intelligibility have

been directly associated with these differences in care of articulation. By using

these measurements it has been shown that this variation is non-random and

systematically associated with both prosodic structure and differences in the pre-

dictability of language. The extent to which these two factors are independent

of each other remains unclear. This thesis will address this question. Firstly by

suggesting a framework to explain a prosodic structure/redundancy relationship

(chapter 2), secondly by coding and measuring prosodic structure, redundancy

and care of articulation over a large corpus of spontaneous speech (chapters 2,3,5)

and finally by carrying out a large scale quantitative analysis of these materials

(chapter 6).
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Chapter 5

Care of Articulation:
Measurement

5.1 Introduction

In the previous chapters I have presented a compelling case for exploring the

relationship between prosodic structure, redundancy and care of articulation.

Extensive evidence has been presented that both redundancy and prosody affect

care of articulation:

1. Sections of speech which are difficult to predict are generally articulated

more carefully than redundant sections of speech.

2. Prosodically prominent sections of speech are generally articulated more

carefully. Speech at prosodic boundaries tends to undergo lengthening

which is associated with careful articulation (chapter 4 section 4.3.5).

However the main question, the extent prosodic structure implicitly represents the

effects of redundancy and the degree redundancy exerts an effect independent

of prosodic structure remains unanswered. In order to address this question

using a quantitative framework we need to examine a considerable amount of

speech. The factors we need to consider are the prosodic codes, detailed in chapter

3, the redundancy measurements, detailed in chapter 2 and finally the care of

articulation measurements which are detailed in this chapter. Measuring care of

articulation for almost every syllable in 15 hours of speech is a significant research

task in itself. This task is addressed here.
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5.2 The Options

A good care of articulation measurement should conform to the following criteria:

1. There should be extensive laboratory work that associates the measurement

with careful or hyper-articulated speech.

2. In this work it should be possible to apply the measurement at the syllabic

level and to as many syllables as possible. This is because, as already

described in chapter 3 section 3.3.1.1, each data point in this work represents

a syllable.

3. For practical purposes the measurement needs to be largely automated. The

large amount of data considered here precludes any complex hand coding.

Two acoustic properties were measured, syllabic duration and vowel quality. For

each two different metrics were used:

Syllabic Duration. Raw syllabic duration is the first duration measurement.

However, as outlined below, syllabic content and context exerts a strong

influence on a syllable’s raw duration. Thus in addition to raw syllabic

duration a duration measurement based on a combined log segmental dis-

tribution model was also used. This second measurement is more complex

and tries to normalise duration to take into account the internal structure

of individual syllables (see section 5.3.2).

Vowel Quality. A measurement of vowel centralisation is the first vowel quality

measurement. This measurement reflected the distance of a vowel instance

from the centre of a speaker’s vowel space. The second measurement of

vowel quality was a target measurement. In contrast to the centralisation

measurement this metric measured how much a vowel instance undershoots

a vowel target in a vowel space generated from clearly articulated speech

(see section 5.4).

Syllabic duration and vowel quality were chosen because they both have consis-

tently been shown to be associated with carefully articulated speech (see section

4.3.5 and section 4.3.3 in chapter 4) and because the measurements complement

each other (see section 5.3.1 below). Duration is simple to measure but less

directly connected with care of articulation. Vowel quality is more difficult to

measure but more directly connected to care of articulation.
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The measurements offered potentially good coverage of the data as most syllables

have a vowel nucleus and all have a duration thus the measurements could be

applied to most of the syllables in this study.

5.3 Measuring Care of Articulation using Syl-

labic Duration

5.3.1 Does Longer equal More Careful?

In general more carefully articulated speech or ’clear speech’ is longer (see chapter

4 section 4.3.5). Word duration is greater in ’clear speech’ than when the same

word is spoken in spontaneous or citation speech (Uchanski et al., 1996). At the

phonemic level this increase in word duration can be ascribed both to:

1. Lengthening of individual phonemes. For example vowels, when taken from

the same contexts, are generally longer in clear speech than in citation and

spontaneous speech (Moon and Lindblom, 1994).

2. Less deletion and reduction. Segments such as word final /d/ in ’poisoned

stream’ have less tendency to be deleted (Bradlow et al., 1995).

Thus, in general, syllables with longer durations are more like ’clear speech’ and

thus are more likely to be articulated more carefully.

There are, however, two major problems with using syllabic duration as a metric

for care of articulation:

• Although lengthening tends to occur as a side effect of more carefully artic-

ulated speech it can also occur when care is not being taken. For example

(Flege, 1988) showed that vowel undershoot, although related to vowel du-

ration, could be controlled differently by different speakers. Some speakers

can and do articulate carefully as well as quickly. In other words, speakers

can mumble slowly; they just tend not to. Similarly an increase in dura-

tion does not necessitate an increase in care of articulation. Un-accented

phrase final syllables may well be examples of longer but not more carefully

articulated speech (see chapter 6 section 6.4.4.5)

For this reason it was felt that syllabic duration, taken by itself, was a

potentially unreliable measure of care of articulation, but, if analysed with

another measure of care of articulation that did specifically address the issue
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of distinctiveness, it offered a simple and effective global measurement. In

section 5.4 the alternative measurement of care of articulation, care of vowel

articulation, is discussed. By analysing data with both measurements some

of the weaknesses in a duration measurement are offset.

• Comparing duration change between different syllables, or even the same

syllable in a different context, is hard. A normalisation process is required

(see section 5.3.2). Otherwise it is difficult to argue that a specific syllable

is longer in a particular context than you might expect or that a different

syllable in the same context is lengthened in a similar fashion. If we cannot

predict syllabic duration change in this way then we cannot compare the

effect that prosodic structure and redundancy measurements have on this

metric.

A number of normalisation techniques have been explored (Campbell and

Isard, 1991; Aylett and Bull, 1998). The technique used in this work (de-

scribed below) is a compromise between simplicity and accuracy. There is

certainly potential to improve this normalised duration measurement but it

was felt that such work was a significant research task in itself and beyond

the scope of this thesis.

5.3.2 Comparing Syllabic Duration between Different Syl-
lables in Different Contexts

In order to compare duration change in different syllables it is necessary to gen-

erate a model of a syllable’s duration and then calculate the extent the actual

duration deviates from it. Because prosodic factors are explicitly part of the

analysis carried out here they do not need to be (in fact must not be) included in

the model. This leaves the following factors that might be accounted for in any

normalisation procedure:

• Number of segments. For example, if a syllable has five segments in it rather

than three we would expect this to significantly affect the duration.

• Phonemic identity. As the inherent duration of particular phonemes varies

(e.g. Klatt, 1976) we might expect that the different phonemes present in a

syllable would significantly affect the duration of the syllable.

Aylett and Bull (1998) present a number of different duration models that can

be used to normalise raw duration scores based on work by Campbell and Isard
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(1991). The basic model used a combined log distribution model of each phonemic

segment, and assumed that a change in the duration of a word is divided equally

among the segments of that word in terms of z-scores for each segment’s duration.

Therefore, the change between a word’s predicted duration and actual duration

could be measured in terms of a single z-score calculated for all of a word’s

segments. This value, called here the ’k-score’, was used as a measure of how

much a word had been ’stretched’ or ’compressed’ from a citation form.

The predicted duration, d, of any word may be expressed as:

d =
n∑

i=1

exp(µ(i)+kσ(i)) M (5.1)

where:
n = the number of phonemes in a word,
k = a constant function of average segment length,
µ = the mean log duration of a segment,
σ = the standard deviation of the log distribution of a segment’s duration
M = an optional multiplier which defaults to 1.

Aylett and Bull (1998) found that phonemic content, the fact ’beach’ is made up

of /b,i,Ù/, was not as important as syllabic context (see below) when normalising

duration. In Aylett and Bull (1998) it was found that syllabic factors such as:

• Whether the syllable was lexically stressed in the word.

• The position of the syllable in the word for example if it was initial, middle,

or word final.

• Whether the word was monosyllabic.

• The number of segments in the syllable.

were more effective at predicting prominence, when used to normalise duration,

than the actual phonemic contents of the syllable. This was particularly true

for long words where segments are significantly reduced. The syllabic context

was a fundamental factor in this reduction. More surprising was that combining

phonemic content and syllabic context information produced only a minor im-

provement in results and appeared to be worse at generalising duration change

across speakers and unseen data. This maybe because phonemic content is not

independent of syllabic context. For example the phoneme D occurs mostly as

“th” in the word “the”. Because of this the distribution calculated from a large

numbers of observations of D will underestimate the duration of this significantly
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in a stressed open class context e.g. the “th” in “mother”. This lack of indepen-

dence between phonemic contents and syllabic structure is widespread. Taking

the consonants s,k we find a marked difference in the frequency that syllables

containing them are of a particular segmental length. 53% of syllables containing

s are 2 or 3 segments in length whereas 73% of k syllables are this length and

an enormous 94% of D are 2 or 3 segments long. Because of syllabic structure,

vowel and consonant distributions are also markedly different. For example 74%

of syllables containing the diphthong aI (The ’i’ in ’bite”) are 3 segment syllables.

This lack of independence between phonemic content and syllabic structure (in

this case the number of segments in a syllable), together with the fundamental

importance of syllabic structure in word duration, means that generalising dura-

tional effects on the basis of syllabic context is more effective than generalising

durational effects on the basis of phonemic contents.

Phonemic identity could and, in the long term, should be used in such a duration

model. However gathering data not confounded by these other factors is difficult

and remains an avenue for further research. In this model each phoneme was

regarded as being identical with the same log distribution (µ=-2.7478 (64ms)

σ=0.5702 (-1 sd=36ms, +1 sd=113ms)) representing its characteristic duration.

The multiplier M depended on the number of syllables, whether the syllable was

lexically stressed and the number of segments in the syllable. In order to use this

model in this work it was necessary to ignore number and position of syllables

in a word and lexical stress so that the resulting k score would not confound

further analysis of prosodic factors which included this information. Therefore

the multiplier was restricted to modifying overall syllabic duration based only on

the number of segments in the syllable. The multiplier, calculated on the basis

of data collected from the ATR database (Campbell, 1993) by Campbell (1992),

regards three segments as the default and expects segments in longer syllables to

be reduced while in shorter syllables to be extended (See table 5.1).

Multipliers

Number of Segments 1 2 3 4 5+
M 1.60 1.14 1.00 0.93 0.87

Table 5.1: Multipliers for different number of segments in a syllable. For example
if a segment is in a three segment syllable the multiplier is 1.00, if it is in a four
segment syllable the multiplier is 0.93 (see equation 5.1). These multipliers are
derived from duration results presented by Campbell (1992).
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5.3.3 Summary

In this chapter I have put forward arguments for using a syllabic duration score

as a metric of care of articulation and described a means of calculating a nor-

malised score for each syllable in the corpus. Using such a metric raises two major

difficulties:

1. In some cases longer duration clearly would not indicate more carefully

articulated speech.

2. Current duration models are rough approximations and will introduce noise

caused by errors in the model.

We address the first problem by using this metric together with a metric specifi-

cally designed to measure care of vowel articulation (see sections 5.4.4.1.1,5.4.4.1.2).

By using two different approaches, vowel quality and duration, to measure care

of articulation some confidence can be ascribed to results that are returned by

both, and interest to results that differ.

The second problem is more difficult to address. In order to control for noise

introduced by the model a simple raw syllabic score (from here on termed DUR1)

was also used. By looking at the differences between this raw score and the nor-

malised score (from here on termed DUR2) in the final analysis we can get a

feeling for the extent the normalisation helps reduce or add noise. For exam-

ple, if prosodic factors are much better at predicting variation in DUR1 than in

DUR2 we would suspect that the normalisation process was not working very

well. Again, where both measurements predict the same behaviour, it is possible

to be confident concerning the direction and type of relationship.

5.4 Measuring Care of Articulation using Vowel

Quality

5.4.1 Introduction

Vowel quality relates to the spectral characteristics of a vowel. There is evidence

that, in carefully articulated speech, the quality of vowels is measurably different

from the quality of the same vowel spoken in a less careful context (such as in a

spontaneous speech style). See section 4.3.3 in chapter 4 for review.

In order to assess vowel quality we need to decide:
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1. What spectral characteristics we will use to characterise vowels.

2. Where or how, in the constantly varying spectral characteristics of normal

speech we will measure these characteristics.

3. What we will use as a reference point to compare these measurements to.

The approach taken here is as follows:

• Speech is pre-processed using:

1. An LPC based formant tracker.

2. A frequency to Bark transformation. This scale better reflects differ-

ences in the perception of frequency. Although the model described

here is a production model there is an implicit assumption that care of

articulation is connected to discrimination. This makes a perceptually

based scale more appropriate.

3. A parametric curve fitting algorithm to calculate the achieved F1 and

F2 targets of each vowel.

• These values are normalised and compared to a normalised model of a speak-

er’s vowel space based on the speaker’s citation speech. This comparison

produces two values:

1. A measure of how centralised each vowel is (see section 5.4.4.1.1).

2. A measure of how likely a vowel was produced as a carefully articulated

vowel (see section 5.4.4.1.2).

Much of this section is a fuller account of work already presented in previously

published papers. Two specifically concentrated on presenting the modelling tech-

nique (Aylett, 1996, 1998), another looked at the modelling technique from an in-

formation theory approach (Aylett, 1999), and (Aylett and Turk, 1998) presented

the evaluation of the care of articulation measurement based on the model. What

follows here is the most up-to-date account of this work.

Crucial to the approach used here is the acoustic model of each speaker’s vowel

production. Before looking at the methodology used to generate this model I will

first present a brief review of recent work carried out in this area.
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5.4.2 Acoustic Models of Vowel Production

The leading model in research on vowel production is that of target undershoot

in articulation (e.g. Lindblom, 1963; Broad and Clermont, 1987; van Son, 1993).

This approach takes formant values as the main means with which to describe

the spectral characteristics of vowels. The attraction of formant models is that

the first two formants can be related directly to the articulatory movement of the

tongue as it produces vowels. This allows the use of acoustic data to generate

articulatory models. Before discussing these undershoot models it is useful to

review the use of formants to characterise vowels. I will do so firstly in terms

of the resulting vowel space which is created in the two formant approach and

secondly in terms of formant transitions.

5.4.2.1 The Vowel Space.

Different vowels have different characteristic spectral qualities. Areas within the

spectrum of a vowel with relatively high energy frequency components (i.e areas

around these peaks) are termed formants. (For a more detailed definition see

Ladefoged, 1962). In vowels the frequency of formants, generally the first and

second formant (F1, F2), can be used to categorise vowels.

“For vowel sounds generally, and this is true of the English system, a significant

part of the information listeners use in distinguishing the sounds is carried by the

disposition of F1 and F2” (Fry, 1979, p78).

The higher the tongue in the mouth when producing the vowel the lower F1. The

further forward the tongue in the mouth when producing the vowel the higher

F2. So, for example, /i/ (in heed) which is a high front vowel (i.e. the tongue

is high and to the front when producing this vowel) has a high F2 and a low F1

while /6/ (in hod) which is a low back vowel (i.e. the tongue is low and to the

back when producing this vowel) has high F1 and a low F2. It is possible to plot

the F1 value against the F2 value of different vowels (See Figure 5.1a).

This two dimensional space can be referred to as the vowel space. The triangular

shape made by the three vowels /i, u, 6/ (heed, who’d, hod) is often referred to as

the vowel triangle. A scatter plot of F1/F2 values from vowels in citation speech

show how actual values produced relate to the vowel space. If the density of the

scatter is plotted as a third dimension, a 3D plot of the vowel space is produced

(figure 5.1b). In this plot the hills show locations of high density. In general

the values of F1 and F2 making up each hill will correspond to an example of a
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Figure 5.1: (a) The ‘vowel space’. A formant chart showing the frequencies of
the first and second formant for eight American English vowels. heed /i/, hid /ı/,
head /E/, had /æ/, hod /6/, hawed /O/, hood /U/ and who’d /u/. (b) A three
dimensional view of citation speech. A scatter plot of F1/F2 values from vowels
in citation speech show how actual values produced relate to the vowel space. If
the density of the scatter is plotted as a third dimension a 3d plot of the vowel
space is produced. No scale is marked as data is first Bark transformed and then
normalised.

particular vowel.

5.4.2.2 Formant Transitions

Vowels are traditionally described as having potentially both steady state and

transition regions. Formants do not remain at a static value within a vowel but

instead change value at the edge of the vowel and in the case of diphthongs

within the vowel. The transitions at the edge of a vowel reflect the articulation

of the surrounding phonemes. In fact these transitions play an important role in

consonant recognition. For an example of formant transitions see Figure 5.2.

A target model of vowel production assumes that the formant is moving towards

and away from an ideal value that describes this vowel. Thus the ideal target

value may not be reached depending on such factors as phonetic context, vowel

duration and care of articulation. If the ideal value is not reached then the

formant is said to undershoot the target (see section 5.4.2.3 for more detail on

target-undershoot models).

The effects of care of articulation on vowel quality described in chapter 4 section
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Figure 5.2: Formant transitions for (a) dId, (b) daed, (c) dUd. The figures each
show the spectrogram of the vowel. The second formant (F2) is marked by hand
with a black line to show the transition of the formant at the edges of the vowel.

4.3.3 can be explained by undershoot. In the studies that examined F1/F2 values

in carefully and less carefully articulated vowels it was found that the formants

in the central region of the vowel tended to be less extreme in less carefully

articulated speech and closer the centre of the vowel triangle. This centralisation

could be caused by the formant not reaching the extreme vowel target that it

would in carefully articulated speech. This occurs because the speaker makes less

effort to move the articulators to the extremes required to produce these ideal

values.

In order to find these representative F1/F2 values of vowels a method is required

to model the transitions described above. The method used in this work involves

fitting a parametric curve to the formant values and is described in detail in

section 5.4.3.2. This approach is based on target-undershoot models of vowel

production (e.g. Lindblom, 1963; Broad and Clermont, 1987; van Son, 1993) de-

scribed below.

5.4.2.3 Target-Undershoot Models of Vowel Production

The ideal F1/F2 values for a vowel can be described operationally as the F1/F2

values reached when a vowel is articulated slowly, clearly and in a context which

has little effect on the formants in the initial part of the vowel such as the vowel

(V) in /hVd/. The extent such ideal targets are speaker independent is compli-

cated by factors such as age, sex, f0 range, native language and accent. Individ-
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ual speaker characteristics aside, undershoot is also related to phonemic context,

vowel duration and, crucially for this work, care of articulation.

Let us first consider vowel duration effects. Lindblom (1963) showed that, in

general, the shorter the realisation of the vowel the greater the undershoot. Lind-

blom used several sentence frames to generate eight different Swedish lax vowels

in a /b-b/, /d-d/, and /g-g/ context of between 80 to 300ms. In order to elicit

these different durations he produced materials with the same vowel context in

different stress conditions. In order to control for these stress differences in the

carrier sentence Lindblom also used supplementary speech data of vowels spoken

in the same sentence at different speech rates.

Lindblom was able to model just under half the variance in the original speech

materials with the following equation:

Fno = k(Fni − Fnt)e
−ad + Fnt (5.2)

where:

Fno=frequency of formant n at the formant’s maxima or minima. This is where
the formant’s rate of change is 0 and normally corresponds to the value at around
the centre of the vowel.

Fni=frequency of formant n at the beginning of the vowel. This value depends
upon the surrounding consonants and each vowel.

Fnt=ideal vowel target for formant n. This target will be reached if the vowel is
long enough.

d=duration of the vowel in milliseconds.

k, a=constants which depend upon the surrounding consonants.

This equation was inspired by a damped mass-spring analogy (see Lindblom,

1983) where the effort required to move the articulators increases in order to

reach a target in less time. Figure 5.3 demonstrates the values predicted for

achieved vowel targets (the maxima or minima of the formant track) for F2 for

different vowel durations for three vowels /I,æ,U/. It is interesting to compare

these predictions with the values of F2 in figure 5.2. Despite the fact that this

speech is from a different, non-Swedish, male speaker the predictions for /I/ and

/æ/ are accurate within 50Hz. The predictions for /U/ are poorer possibly due

to a difference in the Swedish and English /U/.

The damped mass-spring analogy was extended to produce more complex equa-

tions to model the actual path of the formants in more complex and less symmet-
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Figure 5.3: Graph showing achieved formant target as modelled by Lindblom
(1963). As the vowel duration increases the achieved target gets closer to the
ideal target.

rical phonemic contexts by Broad and Clermont (1987). However as there is no

evidence of a linear relationship between the movement of the articulators and

the formant transitions, as van Son (1993) points out, the actual choice of the

function to model the formant transitions is one of convenience. Any function

that fits the data effectively could be used. For example van Son (1993) uses

instead Legendre polynomials to model the formant tracks. These functions are

able to model the flat topped hill shape often seen in formants as well as the more

complex curves seen in diphthongs.

The theoretical implications of these models are less clear. It has been shown

that local duration is certainly not the only factor to influence vowel undershoot.

Speaking style (e.g. Moon and Lindblom, 1994), speaking rate (e.g. Flege, 1988))
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and individual speaker strategy (Flege, 1988) also affect undershoot. This raises

the question of how intentional undershoot is. van Son concludes:

“...that the amount of vowel formant-undershoot is planned by the speaker.” (van

Son, 1993, p129)

He makes this claim on the basis that increased speaking rate, and therefore du-

ration alone, did not influence the vowel formant undershoot or time-normalised

track shape in his data. Results for individual speaker strategies and for speak-

ing style also suggest that undershoot is a choice rather than a by-product of

durational constraints.

However if undershoot is planned then this leads to a rather confusing use of

the terms undershoot and target. After all, generally a target is something you

intentionally try to hit. If undershoot is intentional then the speaker is not trying

to hit this ideal vowel target at all. Instead speakers are trying, and succeeding,

in hitting a vowel target which is more reduced. This is important in terms of the

work presented here because the model I present for measuring vowel undershoot

is based solely on such achieved targets. No ideal targets are used in this model.

The method used is purely observational. I first build a statistical model of what

achieved vowel targets look like in clearly articulated speech. I then compare

these achieved targets with achieved targets in spontaneous speech. The more

alike they are the more clearly articulated the vowels in spontaneous speech are

assumed to be. In fact not only are ideal targets ignored but even the vowel

identity is ignored. This is because, in spontaneous speech, we don’t really know

what vowel the speaker was trying to produce. Accent differences, use of schwa

and idiosyncratic pronunciation mean that the vowel produced by a speaker may

not even have meant to be the vowel suggested by a canonical pronunciation

retrieved from an online dictionary.

In a general sense the method used here to measure vowel quality follows the same

approach as that used in coding prosodic structure and measuring redundancy. It

is as simplistic as possible while taking into account generally accepted findings

in the literature. A summary of the results that underpin my approach are as

follows:

1. Care of vowel articulation is related directly to undershoot (Picheny et al.,

1986; Bond and Moore, 1994; Bradlow et al., 1996; Moon and Lindblom,

1994). We already have a general duration metric but undershoot has been

shown, in some cases, to be independent of duration. A measurement of
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undershoot offers a potential metric for care of articulation for the whole

syllable which will complement the duration measurements described in

section 5.3.1.

2. By using undershoot we are accepting a target based account of vowel artic-

ulation. However the extent we also assume ideal vowel targets underlying

such an account depends on how we measure the undershoot. For example,

a simple centralisation measurement does not assume such ideal targets.

An alternative metric based on target change between speech styles will be

presented in section 5.4.4.1.2. As with a simple centralisation measurement

this also avoids the problem of deciding what an ideal vowel target might

be.

3. Achieved targets will be defined, as by Lindblom (1963), as the minima or

maxima of a formant track. However ascertaining these achieved targets

in spontaneous speech is hard. I will describe the method for doing so in

section 5.4.3.2.

5.4.3 Measuring Care of Vowel Articulation: Methodol-

ogy

The method for calculating the target undershoot and centralisation measure-

ments can be split into four stages:

1. Pre-processing to extract the first two formants for each vowel in a clear

speech style.

2. Using curve fitting to estimate the achieved target for each of these vowels.

3. Building a model of the speaker’s clear speech from these achieved targets.

4. Comparing vowels from running speech with this model and producing a

numerical magnitude which reflects care of vowel articulation.

Intra-speaker differences were avoided by building a different model for each

speaker. In the HCRC Map Corpus (Anderson et al., 1991) every speaker reads

out a list of all the landmarks on his/her map after completing all the dialogues.

The subjects are asked to read this list twice, slowly and clearly. This citation

list forms the basis of the clear speech models.
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5.4.3.1 Pre-processing

The speech was recorded on separate channels for each speaker and digitised at

20 Khz (Anderson et al., 1991). The speech was then processed using:

Entropic’s LPC formant tracker. The output of the tracker is a value for F1

and F2 for every 10ms frame of speech.

Entropic’s F0 tracker. The output of the F0 tracker is the probability of voic-

ing for each 10ms frame of speech. This, together with autosegmentation,

is used to establish the location of vowels.

The Cambridge HTK toolkit. The Cambridge HTK toolkit was used to au-

tosegment each hand segmented word into a set of phones dictated by a

hand-modified online dictionary (see chapter 3 section 3.3.1.1). The output

of the autosegmenter was used to find the approximate location of each

vowel in the syllable. The output from the autosegmenter was also used to

generate approximate syllable boundaries in polysyllabic words.

Conversion to Barks. The F1/F2 values output from the formant tracker were

converted to the Bark scale. The transformation used to convert frequency

into Barks is an approximation suggested by Zwicker and Terhardt (1980).

It is a mixture of two arctan curves as follows:

z = 13 arctan

(
f

1000
0.76

)
+ 3.5 arctan

(
f

7500

)
(5.3)

Where z is a value on the Bark scale and f is the frequency in Hz.

The Bark scale represents the ability of the human ear to distinguish dif-

ferent tones at different frequencies (Zwicker, 1961; Zwicker and Terhardt,

1980). For example the human ear is more sensitive to tonal differences

between 1000Hz and 2000Hz than between 4000Hz and 5000Hz. The use of

the Bark scale has the effect of stretching the vowel space where the human

ear is most sensitive and contracting the space where tonal differences are

difficult for the ear to perceive. The Bark transformation was chosen over

the Mel, Koenig and ERB-rate scales simply because a simple mathematical

approximation was readily available. In fact all these perceptual scales are

fairly similar (see Rosner and Pickering, 1994, p16 for a review).
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Normalisation. The F1 and F2 values were normalised for each speaker to have

a mean of 0 and a standard deviation of 1. This has the effect of stretching

and squashing the F1/F2 dimensions so that nearly all the data falls within

a square of size -2.5 standard deviations to 2.5 standard deviations. This

made it easier to inspect and compare pre-processed output.

The voicing information, together with the segmentation information was used

to constrain which formant data to examine. Only formant tracks in voiced

speech (in this case with a probability of voicing of 0.99) and within an expected

vowel segment were used as input to the next phase of finding achieved targets.

This helped offset errors caused by the autosegmentation and ensured that only

formant data for reliably voiced speech was considered.

A problem encountered and not readily solved with the tools I had available was

that the formant tracker is based on an all pole LPC model and therefore had

difficulty in finding correct formant tracks in nasalised vowels. A second problem

was that the temporal positioning of the 10ms frames had a small but significant

effect on the formant values produced. Thus an identical section of speech with

the 10ms frames offset by say 5ms would not produce quite the same formant

tracks. A different formant tracker might well produce more consistent results

but one was not available for the work carried out here. As we will see, these pre-

processing problems contributed to some errors in the achieved targets calculated

by curve fitting (See the evaluation in section 5.4.3.3.1).

5.4.3.2 Finding Achieved Targets

A variety of mathematical functions can be used to model formant transitions.1

The most well known approach is that used by Lindblom (1963). Lindblom, in

proposing a target model for vowel production modelled the formant transitions

using exponential functions based on the mathematics of a damped spring (see

section 5.4.2.3). van Son (1993) gives a detailed review of the target/undershoot

model and its variations since 1963. He also discusses the use of Legendre poly-

nomials to model formant tracks (van Son, 1993, chapter 4).

In this work a simple parametric curve of the form y = ax2 + bx + c is used

to model formant tracks. The curve is fitted to the data on the basis of mean

squared error and the maximum or minimum of the curve is used as the vowel

1My implementation of this technique is based on a talk given by Steve Isard to the Phonetics
and Phonology group at Edinburgh university.
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Figure 5.4: Using a parametric curve to calculate the achieved spectral target of
a formant.

target or approximation to the steady state central formant value in the vowel

(see appendix C for details).

This method can be used to estimate the mid vowel formant targets by fitting the

best parametric curve to a number of formant values over a time window. The

maximum or the minimum of the curve can be regarded as the achieved spectral

target that this formant is heading towards or away from (see Figure 5.4).

A major problem in applying this technique to unsegmented speech is to decide

on how many points to use (or the window size) and whether such a window

should overlap. If windows do overlap or a number of window sizes are used, it is

necessary to choose between different values predicted by different curves for the

same point in time. See Figure 5.5 for an example of this effect using different

sized windows.

The method selected each target depending on how well the overall curve it

belonged to fitted the data by averaging the fit error by the window size (see

appendix C for details).

Figure 5.6 shows the result of applying this technique to the speech “you gotta

map”. The top part of the figure shows the results from the formant tracker for

F1,F2,F3 and F4. The lower part shows the targets estimated using parametric

curve fitting. The targets are normalised on the basis of the speaker’s citation

speech. Lack of voicing and poor autosegmenation have meant that targets were

not found for most of the /6/ in /g6t@/. The /u/ in /ju/ has an unusually high

F2 suggesting this was pronounced more as /jy/. This highlights the problem

of using expected vowel identity in any modelling process. In the approach used

here vowel identity is ignored.
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Figure 5.5: The effects of differing time windows on fitting parametric curves. An
intended target is calculated for each frame on the basis of the parametric curve.
As we can see different window sizes generate different curve fits. For each frame,
the curve that fits best over the window (with a bias to longer curves) is selected.

Figure 5.6: The result of applying the curve fitting technique to the speech “you
gotta map”. The top part of the figure shows the results from the formant tracker
for F1,F2,F3 and F4. The lower part shows the targets estimated using parametric
curve fitting for F1,F2 and F3 (F3 was not used in the modelling process). The
targets are normalised on the basis of the speaker’s citation speech.
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During this process, clear citation speech, which is to be used to produce a model

of clear achieved vowel targets, and spontaneous speech, which will be compared

against this model, were treated a little differently. The data we wish to use to

build the model needs to be as clean as possible, but, when calculating values

for spontaneous speech a value is required for as many vowels as possible. To

make the citation model as clean as possible only achieved target values that had

remained within 1 Bark for a minimum of 4 frames (40ms) were accepted. An

example of a vowel which wouldn’t meet this criterion is the /6/ in /g6t@/ in

figure 5.6. The vowel is just long enough but voicing and segmentation problems

meant targets were only assigned for two thirds of the frames. In contrast, for

the spontaneous speech any target, however transitory, was given a value.

Initially this process was carried out without any autosegmentation information.

In these models all voiced speech was included. Figure 5.8 shows an example

of the resulting density of targets in the vowel space for citation speech (a) and

for spontaneous speech (b). In these examples the long thin hills to the left

are not actually vowels but nasals. In contrast when the autosegmentation is

used to filter out non-vowel voiced speech the result is closer to the classic vowel

triangle. Figure 5.9 shows the result for citation speech (a) and spontaneous

speech (b). Despite problems with noise the citation speech does produce a

set of achieved targets which are clearly more distinct and more extreme than

the spontaneous speech where many targets are centralised and the distinct hills

representing individual vowels are merged one into the other.

Comparing figure 5.9a with figure 5.1b (The raw F1/F2 values from citation

speech) we see that the vowel spaces produced seem very similar. This is partly

due to the normalisation process. However if we look at individual vowels without

normalising the F1/F2 Bark measurements (for example see figure 5.7 for the /i/

vowel) we find that although the peaks of the raw and fitted distribution are very

similar there are differences in the spread of the data. The target fitting has

made the data more granular in low probability target areas and has increased

the concentration around the peak. This results in a lower standard deviation for

the data on the F1 dimension. In addition the points tend to be less centralised

(for /i/, low F1/high F2) suggesting the target fitting has indeed found the F1/F2

value that a vowel’s formants are moving towards. This results in a higher mean

for F2. Similar results are found for vowels located elsewhere in the vowel space,

for example /o/ and /æ/, where slightly less variance was noted and the means

where slightly shifted away from the central area of the vowel space. Over the

entire vowel space this resulted in a reduction of entropy (randomness) by 4%
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Figure 5.7: Comparison of F1/F2 values for the vowel /i/ with (n=125) and
without (n=128) target fitting.

suggesting a less noisy and more defined data set.

These results, together with the strong theoretical basis of an undershoot model,

make the target fitted vowels from each speaker’s citation speech useful for pro-

ducing a model of a speaker’s clear speech. In turn this model offers a potential

means of measuring the care of vowel articulation, by a speaker, over an individual

syllable in spontaneous speech (see section 5.4.4.1.2).

A disadvantage of the process is the loss of data for very short vowels (less than

40ms). For the relatively well articulated citation speech this is not a serious

problem. For spontaneous speech this does raise some important issues which I

address in detail in chapter 6, section 6.4.4.2 and chapter 7, section 7.2.1.

5.4.3.3 Evaluation of Achieved Target Calculation

In order to ascertain the accuracy of the achieved targets calculated by the above

technique, 37 vowels were examined by two phoneticians and 180 by a single

phonetician. The 180 vowels consisted of 60 /i/, 60 /æ/ and 60 /u/. Half the

vowels were citation speech and half were spontaneous speech. The vowels were

taken from multiple speakers. The 37 cross labelled vowels represented a balanced

sample of the 180 vowels.

For each vowel the start time and end time were marked using a wide band
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Figure 5.8: Achieved targets found by parametric curve fitting for (a) clear voiced
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Figure 5.9: Achieved targets found by parametric curve fitting for (a) clear voiced
citation speech excluding non-vowels and (b) spontaneous voiced speech excluding
non-vowels.
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spectrogram and by listening to the speech. The spectrogram was also used to

assess the achieved target values for F1 and F2. The achieved target was regarded

as the point in the spectrogram that the formant appeared to be heading towards

or away from. Time constraints meant that a more detailed analysis of the spectral

envelope was not carried out.

5.4.3.3.1 Accuracy of F1/F2 Achieved Targets. In order to compare

values it was necessary to decide how to translate the series of achieved target

values produced for each 10ms frame of the vowel into a single value in order to

compare with the human judgements.

The values for each vowel were grouped into stable areas. By stable I mean that

the intended targets had not changed by more than 1 Bark from one value to

the next. Table 5.2 shows an example of such a grouping for a diphthong. The

vowels considered in the evaluation were all monophthongs and thus only the

largest group was used to represent the overall F1/F2 targets for comparison with

the hand measured results. (This grouping process was also used to generate the

COVA1 measurement, see section 5.4.4.1.1). The result of this grouping process

is to use the mode to evaluate the values rather than the mean.

These values were compared using linear regression with hand coded values. Re-

ported here is the percentage of the variation the automatic values predict in the

hand coded values together with the regression coefficient. Complete agreement

would give a percentage of 100% and a coefficient of 1. The advantage of this

method is that it takes into account the different variance of F1 and F2.

1. Comparisons between automatic values and two coders (37 vowels)

Citation Speech Spontaneous Speech Both
n=17 n=20 n=37

coef. agree coef. agree coef. agree
Auto/C1 F1 0.73 58% 0.85 92% 0.75 80%
Auto/C1 F2 0.71 67% 0.89 80% 0.78 72%
Auto/C2 F1 0.52 65% 0.85 94% 0.73 83%
Auto/C2 F2 0.73 68% 0.96 93% 0.82 78%

C1/C2 F1 1.09 91% 0.99 96% 1.01 94%
C1/C2 F2 0.98 98% 0.94 88% 0.96 93%

As we can see the hand coders (C1/C2) agree with each other better than

the automatic values.

2. All vowels compared with a single hand coder (180 vowels)
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Time (ms) F1 Target (Bark) F2 Target (Bark) Stable Groups
0 5.884604 13.375496 Group 1 - 30ms
10 5.884604 13.375496
20 5.884604 13.375496
30 5.884604 15.056014 Group 2 - 20ms
40 5.884604 15.056014
50 3.936561 14.975552 Group 3 - 60ms
60 3.980757 14.975552
70 3.980757 14.975552
80 3.980757 14.975552
90 3.980757 14.975552
100 3.980757 14.962492

Table 5.2: Grouping the vowel targets into stable groups. The values shown above
are targets in Bark for F1 and F2 for the diphthong /AI/. The table shows each
10ms frame regarded as being within the vowel according to autosegmentation and
voicing. The frames are grouped on the basis of target values remaining within
1 Bark. The middle group is probably noise, the two largest groups probably
represent targets for the two parts of the diphthong. In the evaluation of the
achieved target calculation (all monophthongs) the average targets of the largest
group was used as a comparison with human judgements. For calculating COVA1
(see section 5.4.4.1.1 the targets of the two largest groups were used. (Data taken
from Giver in dialogue Q4NC1 from ’right’ at 51.637 seconds.)
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Citation Speech Spontaneous Speech Both
n=90 n=90 n=180

coef. agree coef. agree coef. agree
Auto/C1 F1 0.71 66% 0.65 50% 0.67 58%
Auto/C1 F2 0.87 85% 0.85 83% 1.12 84%

Although agreement for F2 is reasonable the overall agreement of 58% for

F1 values is disappointing.

3. Raw error scores (Bark).

Citation Speech Spontaneous Speech Both
mean sd mean sd mean sd

F1 error -0.516 1.129 -0.127 0.627 -0.306 0.901
F2 error -0.208 1.979 -0.109 1.194 -0.037 1.587

The overall distribution of F1 has a mean of 5.073 and an sd of 1.688 Bark.

For F2 the mean is 11.235 and the sd 2.748 Bark.

Looking at the raw error scores we can see that the automatic method tends

to underestimate formant values from 0.127 to 0.516 Bark. The variance

of the error rate F1 is high considering the low standard deviation of F1

(1.688 Bark)

There are two sources of error that can account for these results. The first are

errors within the formant tracker (addressing errors at this level is beyond the

scope of this thesis) and errors at the level of the parametric curve fitting. While

hand coding the materials it appeared that the poor results for F1 were connected

with the formant tracker mistakenly regarding female f0 as f1 (A high female

voice may easily have an f0 of more than 200Hz). To investigate this I looked

at the agreement and coefficient between C1 and only automatic measurements

produced for male speakers. For F1 the results jumped to a coefficient of 0.82

and an agreement of 79% and for F2 a coefficient of 0.86 and an agreement of

90%.

The conclusion reached was that an improved formant tracker would have a sig-

nificant effect on these results.

However overall these results do need to be put in perspective. All the techniques

described here are automatic. Noise is an expected problem with such automatic

techniques especially when applied to spontaneous speech. It must be borne in

mind at every stage described here that, by using automatic techniques, I am able

to include 170,000 vowels in this study. It would take an estimated 8,500 hours

to hand code this number of vowels if it took 3 minutes to examine the F1/F2 of

each and this does not include time for coding the citation speech.
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5.4.3.3.2 Accuracy of Autosegmentation. Although only indirectly used

to calculate vowel targets this was regarded as a good opportunity to check the

accuracy of the autosegmentation carried out on the corpus. The results were as

follows:

Citation Speech Spontaneous Speech Both
mean sd mean sd mean sd

Start time error -25ms 15ms -23ms 14ms -24ms 14ms
End time error -16ms 16ms -10ms 19ms -13ms 17ms

As we can see the autosegmentation has consistently placed the start and end of

the vowel early. The high standard deviations show that the autosegmentation is

only really accurate to within 30-40ms.

Given that the average vowel length in this set is 89ms, this is not a very good

result. Fortunately for the work presented here the vowel segmentation is only

used as a filter to remove non-vowel voiced segments and as a means of splitting

polysyllabic words into syllables. In both situations, therefore, although poor

segmentation is unwelcome, it isn’t critical. The segmentation could certainly be

improved if a more complex model was used (a unigram model was used in this

work2) and if a substantial set of material was hand segmented in order to train

the segmentation model.

Finally, although a 30-40ms error is poor for segmenting individual vowels, in

terms of syllabic segmentation (the other main use of autosegmentation in this

work) this error is reasonably acceptable (≈15% error for polysyllabic syllables

as opposed to ≈50% error for the phonemes themselves).

5.4.3.4 Building Models of Carefully Articulated Vowels

The achieved targets, calculated for each speaker’s citation speech from voiced

speech excluding non-vowels (figure 5.9a), is then used to generate a model of

clearly articulated vowels.

5.4.3.4.1 Vowel Centralisation Metric. The simplest model and the one

used to measure centralisation is to regard the centre of the vowel space, or

the mean F1 and F2, as the most centralised and thus most poorly articulated

example of a vowel. The further away a vowel’s targets are from this central

region the more carefully articulated the vowel. In this work the mean F1 and

2For a detailed description of speech recognition methods for autosegmentation see the Cam-
bridge HTK documentation (Young et al., 1996)
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F2 were calculated from vowel targets in the speaker’s citation speech.

Looking at the vowel space generated by citation speech achieved targets (e.g.

figure 5.1b) we can see a number of problems with this metric.

1. The vowels are not oriented in a circle around the mean. This means that

some vowels will always tend to be clearer than others. For example, a well

articulated /i/ will always be further from the centre of the vowel space in

absolute terms than a well articulated /E/ (see figure 5.1a).

2. The vowel space is a complex space. A simple centralisation measurement

completely ignores this complexity. For example, looking at figure 5.1b we

can see some areas in the vowel space are quite empty and others quite

crowded. A simple centralisation metric ignores this structure.

However a centralisation measurement does have some advantages. It is simple,

assumes less, and does give a rough idea of how much undershoot might have

occurred. Also such a measurement can act as a control for the more complex

target undershoot model.

5.4.3.4.2 Target Undershoot Metric. For this more complicated measure-

ment we need to model the vowel space in much more detail. The basic idea for

this measurement is that some areas in the vowel space are more distinct and

preferred in clear speech. The more the achieved target of a vowel falls within

these areas the clearer the vowel is and the less undershoot has occurred in the

spontaneous speech.

One method of modelling the complex space is to fit a two dimensional histogram

over the top of the citation speech’s achieved targets. The more points that are

in each bin the more preferred the region. However the disadvantage of this

technique is that it is strongly affected by individual points especially in sparse

areas in the vowel space. One way of avoiding this problem as well as producing

a model which generalises well is to fit a continuous probability function onto the

data. In effect, we fit a number of hills to the data. A probability density function

(pdf) constructed from two dimensional Gaussian distributions can achieve this

and the EM (expectation maximisation) algorithm can fit this pdf to the data.
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5.4.4 The EM Algorithm

A two dimensional Gaussian curve resembles a hill. The north/south width of

the hill is the variance of the Gaussian in one dimension and the east/west width

is the variance in the second dimension. The location of the peak of the hill is

the mean of the Gaussian. A number of these Gaussians can be added together

to model a complex distribution. The expectation maximisation (EM) algorithm

will, given a specified number of Gaussians, fit them to a distribution. I will not

give a detailed account of the mathematical thinking behind the EM algorithm.

This has been treated in some detail in other statistics and maths literature. For

a clear and detailed account refer to (Bishop, 1995, chapter 2) or (Duda and Hart,

1973).

The algorithm works as follows:

1. Pick a number of Gaussians

2. Randomly place them on the distribution with random standard deviations,

random probabilities of occurring and random means.

3. While the fit continues to improve take the points that ‘belong’ to each

Gaussian and use them to recompute the means, standard deviations and

probability of occurring for that Gaussian. The fit is calculated by summing

the probability of the pdf producing every point in the data set.

The calculations that are required to run the algorithm are as follows.

Given a set of n points with vectors x, M Gaussians, the initial probabilities of

a jth Gaussian occurring P (j), a covariance matrix Σj and a vector of means µj ,

recompute new P (j), Σj and µj.

For the case where we allow no covariance between dimensions (in fact F1/F2 are

fairly independent) the covariance matrix has only the variance for each dimension

along the diagonal. To simplify the calculation this can be thought of as a vector

of standard deviations σj .

The formulae to recompute the parameters are as follows:

To recompute the new means:

µnew
j =

∑
n P old(j|xn)xn∑

n P old(j|xn)
(5.4)
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To recompute the new variances:

(σnew
j )2 =

∑
n P old(j|xn)(xn − µnew

j )2∑
n P old(j|xn)

(5.5)

To recompute the new probabilities of a Gaussian occurring:

P (j)new =
1

N

∑
n

P old(j|xn) (5.6)

Where:

P (x|j) = exp

{
−1

2
(x − µj)

T Σ−1
j (x − µj)

}
(5.7)

Taking Σj as the covariance matrix with σ2
j along the diagonals, this is the basic

equation for a Gaussian.

And where:

P (x) =

M∑
j=1

P (x|j)P (j) (5.8)

And using Bayes theorem:

P (j|x) =
P (x|j)P (j)

P (x)
(5.9)

The fit function being maximised is the average log likelihood of the data fitting

the distribution:

Fit =
1

n

∑
log(P (x)) (5.10)

The EM algorithm is an iterative algorithm that will reach a maximum fit al-

though the maximum fit it finds may only be a local maximum. This prob-

lem is general to all hill climbing algorithms such as the EM algorithm. The

number of local maxima depends on many complex interactions in what is a

multi-dimensional search space. The more local maxima the more sensitive the

algorithm becomes to starting criteria and the more likely it will find not the best
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Figure 5.10: Fit of models for different numbers of Gaussians. Fit is poor for too
few Gaussians but becomes more unstable and risks over fitting with too many.
20 Gaussians were chosen for the modelling process. (Fit is the probability of the
model generating the data set.)

solution but a secondary solution. The EM algorithm will find a fit for a set of n

Gaussians but in order to feel secure that this fit is a good fit it may be necessary

to run the algorithm a number of times from different random starting positions.

The algorithm is unsupervised. It is only necessary to specify the number of

Gaussians used in the model; it is not necessary to specify what the data points

in the distribution represent.

There are, however, two disadvantages. Firstly it is necessary to choose the

number of Gaussians in advance. On what basis do we choose this number?

Secondly how can we ensure the algorithm does not get stuck in a local maximum?

There is no theoretically bomb proof means of answering these questions. However

a pragmatic approach to the problem can produce interesting results.

If we examine the final fit using different numbers of Gaussians we can see in figure

5.10 that improvement appears to level off and become more unstable (probably

due to more local minima with models containing more Gaussians). This levelling

off together with an inspection of the actual density distribution we wish to model

can be used to estimate a good number of Gaussians. Models with a similar num-

ber of Gaussians behave in similar fashions so it is not necessary to be absolutely

correct. The number I chose for my model was 20 partly because that seemed a

sufficient number to model the data by inspection (figure 5.8a, figure 5.9a) and

because (as can been seen in Figure 5.10) the improvement appears to both level
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off and become more unstable after about 20 Gaussians.

In order to avoid local maxima it is necessary to run the EM algorithm a number

of times. The hope is that local maxima will generally be less stable than global

maxima and thus it would be very unlucky, using random starting parameters, to

find the same local maxima on several occasions. Over 10 trials the results from

the model appeared generally stable.

Figure 5.11 and figure 5.12 show the result of applying the 20 Gaussian mixture

model to the citation data with and without the non-vowel filter. Some care

must be taken when comparing these figures. In order to produce them each are

quantised over a 20x20 grid. If this grid is increased in the size, the detail in the

original data will appear to increase while the detail in the mixture model will

stay relatively unchanged. However, bearing this in mind, the mixture model has

fitted the original data with some degree of success. Although some hills have

been merged the advantage of the mixture model is that it both generalises and

smoothes the data. This helps deal with data sparsity in low probability areas

within the vowel space as well as allowing smooth transitions between high and

low probability areas. The degree the model fits the citation speech will vary

depending on random starting criteria and the type of structure present within

the data. However, providing the model represents the broad structure within the

citation speech, it can be used to assess care of articulation. This is because it is

the differences between the model and the spontaneous speech (see figures 5.8b

and 5.9b) which are important to the metric. Providing the model assigns high

probability to the peripheral vowel target areas in the vowel space it can function

as a clear speech model.

In general this is the case with these models. Even the rather poorly fitting

model shown in figure 5.12 is constructed of Gaussians with means located at

more extreme areas in the vowel space than the means of original citation targets

of individual vowels. At worst the model acts as a simple centralisation metric.

As we will see in chapter 6 a metric based on this Gaussian model appears to

do better than such a centralisation metric suggesting the additional structure

modelled by the Gaussians does help to give a better idea of where clear vowel

targets are likely to be.

5.4.4.1 Calculating the Care of Vowel Articulation Metrics

5.4.4.1.1 Vowel Centralisation Metric. For convenience this metric will

be referred to from here on as COVA1 (Care of Vowel Articulation 1). A major
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Figure 5.11: (a) Achieved targets found by parametric curve fitting for clear
voiced citation speech (as in figure 5.8) and (b) A 20 Gaussian model built using
EM.
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Figure 5.12: (a) Achieved targets found by parametric curve fitting for clear
voiced citation speech excluding non-vowels (as in figure 5.9) and (b) A 20 Gaus-
sian model built using EM.
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problem with calculating this metric is dealing with outliers. Because this is a

distance measurement, as with linear correlations, single outlying values will have

a disproportionate effect on the final value. Such values can occur at formant

transition points, for example in a diphthong when the target changes or at the

edge of a vowel when other voiced speech has been incorrectly segmented as

belonging to the vowel.

In order to deal with this problem the method used to group values in section

5.4.3.3.1 to evaluate the accuracy of achieved targets was used (see also table 5.2).

The two largest groups were selected to represent the overall vowel targets of the

vowel. If the smaller of these two groups was at least 25% of the size of the larger

group the vowel was regarded as possibly being a diphthong and both groups were

retained. If not, only the larger group was retained. By averaging the values in

these groups up to two values for F1 and F2 were produced.

These values are normalised with regards to the speaker’s vowel space. The effect

of this is to produce values which are z-scores for each F1/F2 measurement. The

Euclidean distance of the F1/F2 pairs are then calculated and averaged.

The overall calculation is as follows:

COVA1 =

∑n
i=1

√(
f1(i)−f1µ

f1σ

)2

+
(

f2(i)−f2µ
f2σ

)2

n
(5.11)

where n = 1 (monophthong) or n = 2 (diphthong), f1(i), f2(i) are the proposed

grouped target(s) for the vowel, fµ, fµ are the means of the speakers vowel space

and fσ, fσ are the standard deviation of the F1/F2 values in the vowel space.

5.4.4.1.2 Target Undershoot Metric. For convenience this metric will be

referred to from here on as COVA2 (Care of Vowel Articulation 2). This measure-

ment depends on the statistical model of a clear vowel space constructed from

citation speech for each speaker described above. This model maps out areas of

the vowel space which are desirable for clear vowels. In effect the clear vowel

targets are expressed in probabilistic terms. Rather than a single point we have

hills of probability which represent the achieved vowel targets in clear speech. In

order to calculate undershoot for each vowel we can produce a value which is the

probability of this clear vowel model producing those points. The more carefully

articulated the vowel in spontaneous speech the more likely it is that the clear

speech model could have produced it. Undershoot will have a tendency to pull
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the achieved targets of the vowel from spontaneous speech away from the hills

and towards the middle and less likely areas of the model.

This metric does not suffer from the same problem as COVA1 with regards to out-

liers. This is because spurious values will produce low probabilities (approaching

0), and, providing they do not occur frequently, will have only a marginal effect

on the overall score.

To calculate the probability that the vowel in spontaneous speech could have been

produced by the clear speech model we calculate the average log likelihood for

each 10ms frame in the vowel which has a valid achieved target.

COVA2 =
1

n

n∑
i=1

log(p(xi|M)) (5.12)

By using this method we have avoided the need to take into account vowel identity

or any set of idealised vowel targets. However there are some problems with this

measurement.

1. If a vowel in the spontaneous speech was more clearly produced than in the

clear citation speech the COVA2 value would be wrong and regard it as a

bad example of a vowel.

2. If a vowel was misproduced, so for example a lousy /i/ was produced as a

decent /e/ again the COVA2 value would be inaccurate.

3. No phonemic context is taken into account. This context could well medi-

ate the extent increased care of articulation can prevent undershoot. For

example in the syllable /dUd/ it is harder for the tongue to achieve the /U/

targets than in the syllable /bUb/ because it has to attempt to reach a /d/

target on the alveolar ridge.

The first problem does not appear to be critical if the citation speech is reasonable

quality. If you inspect the vowel spaces of the citation and spontaneous speech

(figure 5.8, figure 5.9) there really aren’t many examples of vowels which have

achieved targets more extreme than in the citation speech.

The second problem is ignored. If a vowel has the acoustic properties of a good

vowel then it is a good vowel. Without being able to read the mind of the

speaker we can never be sure what vowel was intended only what was produced.

For example in figure 5.6 it was noted that “you” was probably pronounced more
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like /yi/. In a Glaswegian accent this is perfectly possible. To say such an /i/ is

a bad example of a /u/ is prescriptive and not the approach taken in this work.

The third problem, phonemic context, is indeed a potential weakness and one

that it would be good to address in future work. In order to do so more citation

speech would be required to build the speaker’s model either so context effects

could be normalised out of, or, in some way, included in, the model.

In fact the main problem encountered in this work was the quality, type and

amount of citation speech available for each speaker. Some speakers did not

produce very clear citation speech. The corpus was not collected for the purposes

used here and although, in general, the citation speech is a lot more carefully

articulated than the spontaneous speech this cannot be guaranteed.

These doubts concerning COVA2 are addressed in two ways. Firstly the mea-

surement is used together with three other measurements of care of articulation,

DUR1, DUR2 and COVA1. Secondly a perceptual evaluation of COVA2 was

carried out to see how predictive it was from a psycholinguistic perspective.

5.5 Evaluating COVA2

Although COVA2 is based on a production model it is assumed that poorly

articulated vowels sound unclear to listeners. If COVA2 is measuring care of vowel

articulation then you might expect these measurements to agree with human

listeners when asked to judge vowel quality. To test this assumption a perceptual

experiment was carried out.

5.5.1 Method

32 subjects (23 British English native speakers of which 12 had a Southern British

accent, 7 were Northern British, 3 were Scottish and 1 Irish together with 4

North American English native speakers and 5 non-native speakers) were played

90 vowels excerpted from spontaneous speech together with 90 matched fillers

taken from citation speech and asked to rate their ’goodness’ using magnitude

estimation. Magnitude estimation is a technique often used in psychophysics

to validate and construct scales of physical sensations. The main advantage of

magnitude estimation over more traditional rating scales or visual analogue scales

is that the scale used to measure subjects’ response does not affect the response.

In magnitude estimation a subject decides on their own scale based on the first
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stimulus and uses that first response as a yardstick to measure all others. In order

to compare results between subjects the responses are log transformed.

For example, the first /i/ vowel is played. The subject decides this sounds like

a good vowel and decides that a good vowel is scored at 10. The subject then

hears the next /i/ vowel and decides it sounds twice as good as the previous

vowel and scores it as 20. The third /i/ vowel is played and the subject decides

it sound nearly but not as good as the first vowel and scores it with a 9. The

only restriction on the scores is that they must be positive and non-zero. By

allowing the subjects to decide on their own scale they can always score a vowel

that sounds better or worse than the ones they have already heard. For a clear

and concise introduction to magnitude estimation see Lodge (1981).

The vowels used all had durations between 90-110ms, had their amplitude nor-

malised and were excerpted from the HCRC Map Corpus (Anderson et al., 1991).

Segmentation was achieved by combining word segmentation done by hand with

phonemic auto-segmentation carried out using the HTK toolkit (Young et al.,

1996) and hand corrected entries from the CELEX online dictionary (Baayen

et al., 1995). The vowels represented 3 vowel types (one from each corner of the

vowel triangle), 3 levels of COVA2 (high, medium, low) as calculated using the

model described. Each cell of ten stimuli had a matching set of ten citation fillers

with similar COVA2 scores, durations and speakers. The speakers who produced

each of the ten stimuli in each cell were different and split equally between male

and female speakers. Where possible the same speakers were used in each cell.

COVA2 groups were decided on the basis of the distribution of the COVA2 score

of all 90-110ms vowels. The mean of the log likelihood COVA2 score of the

vowels was -16.912. The COVA2 data was grouped by quartiles. Any vowels with

a COVA2 of less than -16.75 (in quartiles 1 and 2) were regarded as low COVA2

items. Items above -16.5 (in quartiles 3 and 4) were divided into two further

groups, those with a COVA2 between -16.5 and -15.5 (quartile 3) which were

regarded as medium and those with a COVA2 of greater then -15.25 (quartile

4) which were regarded as high COVA2 items. The standard deviation of the

COVA2 score was 2.154.

Each subject was first given a practise exercise in Magnitude Estimation training

them to use this technique to judge line lengths. They then listened to some ran-

domly selected sections of spontaneous speech produced by Glaswegian Speakers

and to some example vowels excerpted from this speech. They then carried out

a short practise session judging the vowel quality of 10 vowels before taking part
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in the main experiment. In the main experiment they were played 60 randomised

examples of each vowel (/i/ as “ee” in “street”, /o/ as “o” in “gold” and /æ/ as

“a” in “cat”), they were given the word the vowel was taken from and asked to

judge how good they thought the vowel sounded. The order of presentation of

vowels was varied amongst subjects to control for an ordering effect.

Each vowel was presented twice with a 2 second gap between each presentation

and a 4 second gap and a beep between each vowel. Vowels were blocked into

groups of ten and data was captured using netscape and a web interface.

5.5.2 Results

There are two main questions that this evaluation hopes to answer:

1. If vowel quality is a good metric of care of articulation, and related to

acoustic redundancy as argued in chapter 2, then we would expect subjects

to be sensitive to the vowel quality differences in the materials. We can

gauge how sensitive subjects are by the amount they agree with each other

when judging vowel clarity. The cluster analysis of subjects responses in

section 5.5.2.1 addresses this question.

2. If COVA2 is successfully measuring vowel quality then the average subject

response of ’vowel goodness’ should relate to the vowel quality goodness as

dictated by COVA2. This raises two questions:

• Is there a significant relationship between subjects regarding a vowel

as good and the vowel being classed as good by COVA2. Do the

other factors controlled for in the experiment (vowel type, speaker sex,

subject nationality) affect this relationship? This question is addressed

by the by-subjects and the by-materials ANOVA analysis in section

5.5.2.2.

• How predictive is the COVA2 score. Can we use COVA2 to predict

subject responses? This question is addressed by carrying out a linear

correlation between COVA2 and pooled subject responses in section

5.5.2.3.

5.5.2.1 Cluster analysis of subjects responses

In order to investigate agreement between subjects a cluster analysis was car-

ried out on subject’s responses. The clustering was carried out using correlation
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Figure 5.13: The results from all 27 subjects were compared with each other
producing 351 pair wise comparisons. (a) shows the spread of the correlation
co-efficient r over these comparisons (Average=0.33). (b) Shows the spread of
significance of these correlations.

as a distance measurement and maximum similarity (minimum distance), single

linkage to combine clusters (Hartigan, 1975). No grouping effect was appar-

ent. Agreement between subjects varied considerably. The average correlation

between any two subjects is quite low (r = 0.33) but the significance of the agree-

ment between subjects is generally high (79% with a p <= 0.05) between all

pairwise comparisons (see figure 5.13).

Subjects are sensitive to vowel quality differences in the materials but not strongly

so.

5.5.2.2 By-Subjects and by-materials ANOVA.

The by-subjects ANOVA used subject linguistic background (Native English, Na-

tive North American, Non-Native) as a grouping variable with vowel (i, o, a) and

COVA2 as calculated by the model (high, medium, low) as crossed variables.

Surprisingly the linguistic background had no significant effect on the responses.

Subjects from Germany and Poland rated vowels similarly to Native English

speakers. As I will discuss later this probably has more to do with the basic

difficulty of the task than some underlying similarity in vowel sensitivity.

Similarly vowel type alone had no significant effect on results although there was

a vowel/COVA2 interaction (F (4, 96) = 4.15, p < 0.005). However COVA2 group
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(F (2, 48) = 20.75, p < 0.001) did have a significant effect on the subjects’ re-

sponses. The means of the responses for spontaneous speech within each COVA2

group were as follows:

By-Subjects Responses
COVA2 Group High Med Low

Geometric Mean 0.883 0.799 0.777

This supported the hypothesis that the COVA2 model was modelling subjects’

response to some extent. Low, medium and high COVA2 groups as decided by

the COVA2 model reflected low, medium and high responses from subjects.

Following the insignificant effect of subjects’ linguistic background these responses

were pooled. In the by-materials ANOVA, sex of speaker, vowel type and COVA2

group were used as grouping variables.

The COVA2 group result persisted in the by-materials analysis (F (2, 72) = 3.71, p <

0.05). Again the pattern of means supported the hypothesis:

By-Materials Responses
COVA2 Group High Med Low

Geometric Mean 0.69 0.625 0.582

The difference in significance between by-subject and by-materials analyses sug-

gests there is too much variance unaccounted for in the materials. This suggests

that COVA2 is a noisy measurement. From the evaluation of the method for

calculating F1 and F2 achieved targets (section 5.4.3.3) we know that a propor-

tion of the noise resides here. If the achieved targets calculated for a vowel are

very unusual due to such noise they will produce very low COVA2 values. These

low values correspond to very unusual and thus low probability locations in the

vowel space (i.e. nowhere near the distribution of the speakers vowels). Thus

very low COVA2 scores (more than 2 standard deviations from the mean) should

be treated with suspicion.

5.5.2.3 Linear correlation between COVA2 as assigned by the statis-
tical model and pooled subject responses.

Before carrying out a linear correlation between pooled subjects response and raw

COVA2 score it was decided to remove low valued outliers (that is with a value

lower than 2 standard deviations from the mean), firstly because of suspicions

concerning their validity and secondly because of the large effect outliers can

have on linear correlation tests. This removed 7 data points from the 90 vowels

taken from spontaneous speech. The result was a weak but significant correlation
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(r = 0.313, p < 0.005).

The model appears to predict only about 10% of the subjects responses.

However bearing in mind the difficulty faced by subjects when carrying out the

task of rating vowel goodness (average agreement r = 0.33) the statistical model

performs comparatively well (r = 0.313, p < 0.005).

5.5.3 Summary

Can subjects reliably judge the clarity of vowels excerpted from spontaneous

speech without duration cues? The answer is yes but it’s hard. They reliably

agree with each other about 10% of the time. Can the COVA2 score reliably

predict the subjects’ response to such vowels? Again the answer appears to be yes

but, again, it’s quite hard only predicting about 10% of the subjects’ responses.

Basically the COVA2 score is roughly as good – or bad – a predictor of any one

listener’s judgement as any other listener’s judgement.

Vowel quality in spontaneous speech does contribute to subjects’ perception of

vowel ’goodness’. However the failure of subjects to agree on individual vowels

suggests that this contribution is not a strong one. Duration is likely to be a

primary factor. Of the 170,000 vowels segmented in the HCRC Map task nearly

100,000 are either too short to measure the spectral target reliably (less than

40ms) or were unvoiced. The materials we used in our perceptual experiment

did not reflect these short vowels or devoiced vowels. In contrast to materials

generated in ’clear speech’ experiments, where the scale of vowel articulation

varies from clear to very clear, in spontaneous speech the spectral quality of vowels

often varies from poor to very poor. Perhaps in these conditions the difficulty

in relying on spectral cues alone to perceive vowel quality leads to more reliance

on segmental duration. However, in order to establish this, further experiments

varying the duration of the segments used would be required.

Finally a clear problem with the approach taken in the modelling strategy is the

fact that phonetic context is not taken into account. Rather than the model as-

signing a COVA2 score based solely on the F1/F2 targets of the vowel it might

be more productive to assign this score on these values given the pre and/or post

segmental context. However modelling these factors effectively using the statis-

tical approach described here would require substantial quantities of controlled

citation data from each speaker. It is also important to bear in mind that other

acoustic factors such as spectral tilt, f0 and amplitude might also make an im-
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portant contribution to any judgement of a vowel’s ’goodness’ in spontaneous

speech. Although the model could be altered to take such factors into account

it is not entirely clear how such factors should be automatically measured and

incorporated.

5.6 General Summary

The measurements of care of articulation, especially COVA1 and COVA2, de-

scribed in this chapter are noisier than I would like. For COVA1 and COVA2

noise is from the following sources:

• The formant tracker introduces errors due to nasalisation and by mis-

categorising female f0 as F1. The 10ms frame method used also causes

variation in results. The start and end frame of a token will generally con-

tain data from other tokens. In short vowels these transition frames have

more influence than in long vowels.

• The autosegmentation is unreliable. Although this problem is mitigated by

also using voiced speech to determine where vowels are it means that more

data is lost than I would like. Again this is more of a problem for short

tokens.

• Phonemic context is ignored and is known to play an important role in

formant transitions.

• The parametric curve is only an approximation to the formant transitions

and will not model the transition perfectly.

• The quality of the citation speech used to produce speaker models was

variable.

• More information than F1 and F2 may be required to model vowel quality

(for example amplitude, f0, spectral tilt, F3 etc.).

Despite room for improvement (some possible approaches to improving COVA2

are discussed in chapter 7) COVA2 does reflect human responses to the question

of “how good is a vowel?”. The achieved targets calculated from parametric curve

fitting also reflect human judgements of F1 and F2 vowel targets. The methods

are also well grounded on results from laboratory phonetics. Thus COVA1 and

COVA2, together with DUR1 and DUR2, offer a practical solution to the problem
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set by this work, the quantitative assessment of the relationships between prosodic

structure, redundancy and care of articulation over a large amount of spontaneous

speech. As we will see in 6, even noisy measurements, when applied to a lot of

data (200,000 syllables) produce interesting results.
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Chapter 6

Results

6.1 Introduction

In chapter 2 I formalised the two central hypotheses that underly the work carried

out here:

The Smooth Redundancy Hypothesis: Strong Version

Prosodic structure smoothes signal redundancy by controlling care of

articulation

The Smooth Redundancy Hypothesis: Weak Version

Prosodic structure smoothes signal redundancy by controlling care of

articulation except when it acts as a checking signal

To recap:

The strong hypothesis claims that, firstly, there is an inverse relationship between

language redundancy (such as word frequency, trigram frequency) and acoustic

redundancy (how clearly a sound is produced) and, secondly, that prosodic struc-

ture is responsible for effecting this relationship. Implicitly it suggests that this

redundancy relationship can explain most of the effects that prosodic structure

has on care of articulation and therefore the main reason prosodic structure exists

in English.

The second hypothesis takes a weaker stance and accepts that another major

factor, checking, modifies the relationship between prosodic structure, care of

articulation and language redundancy. In chapter 2 it was argued that checking

offered an alternative strategy to smoothing signal redundancy in order to produce

robust communication at the signal level.
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Figure 6.2 and figure 6.1 (taken from chapter 2) show the difference between these

two hypotheses.

6.2 Testing the Hypotheses

The first step in testing these hypotheses is to confirm that prosodic structure

does indeed relate to care of articulation. To do this we need to carry out a mul-

tiple linear regression using care of articulation (COA) metrics as the dependent

variables and the prosodic structure factors as predictive variables.

On the basis of work reviewed in chapter 4 we would expect that the more promi-

nent a syllable the greater the COA. For prosodic boundaries, although we would

certainly expect prosodic boundaries to be associated with lengthening, it is less

clear whether such lengthening increases care of articulation in terms of distinc-

tiveness. This is an interesting question in itself, but, with regards the hypotheses

it is peripheral. Providing we can show that part of prosodic structure signifi-

cantly relates to COA then we can argue that prosodic structure could control

COA.

This issue of control is central to both hypotheses and presents some difficulties.

A strong correlation between factors, although supportive evidence of a causal

relationship, does not necessitate one. For example, there is a strong, significant

relationship between the number of radios purchased by year between 1940 and

1970 in the United States and the number of suicides. This does not mean that

listening to DJs necessarily causes people to end their lives. It is only in the

light of a theoretical prediction of causality that a correlation can be regarded as

evidence of such causality.

However, if we look at figure 6.3 we can see that a traditional view of prosodic

structure does imply such a causal connection. It suggests that prosodic struc-

ture controls the way speech sounds are realised. An alternative view might be

to regard prosodic structure as simply emergent from phonetic structure. In the

same way shadows are produced by an interaction between light and solid ob-

jects perhaps prosodic structure is produced by an interaction between phonetics

and language. However evidence from both psycholinguistics and phonetics (see

chapter 3) does suggest that prosodic structure exists, and that it does affect pho-

netics, and thus the acoustic realisation of speech, and thus, in the work reported

here, potentially control care of articulation.

The second step in testing the hypotheses is to confirm that language redundancy
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Figure 6.1: Strong smooth redundancy hypothesis.
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Figure 6.2: Weak smooth redundancy hypothesis.
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Figure 6.3: One view of the role of the prosodic component of the grammar (taken
from Shattuck-Hufnagel and Turk, 1996, p237).

has an inverse relationship with COA metrics. This would show that signal

redundancy is indeed smoothed by changes in COA. The stronger this relationship

the more we can argue that smoothing is the main result of changes in COA

and evidence for the strong hypotheses described above. In contrast, if such a

strong relationship exists only in contexts where a checking signal is unlikely to

be present, this is evidence which supports the weaker hypothesis.

If we do see strong, significant correlations between prosodic factors and COA and

an inverse relationship between language redundancy and COA the third step is

to examine how independent prosody and redundancy are with regards to COA.

Using maximum likelihood we can determine the extent the predictive power of

a prosodic model and a redundancy model are shared. The less predictive power

is shared, the more independent the models are of each other. Both hypotheses

predict a strong shared contribution. In order for prosodic structure to implement

smoothing it must alter COA in the same way as language redundancy. Both

hypotheses also predict that the independent contribution from the redundancy

factors is small. If redundancy makes a large contribution independent of prosody

then prosodic structure is not implementing much of the significant effects of

redundancy. If this is the case then smoothing is being carried out either by

direct reference to redundancy factors or by other means.

In contrast, if prosodic factors show a strong independent contribution in addition

to a large shared contribution then this undermines the strong smooth redundancy

hypothesis. This is because it suggests prosodic structure is altering COA in a

ways which do not smooth signal redundancy.
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However, if this independent prosodic effect is limited to likely checking locations,

and absent when checking is unlikely to occur, we can argue that the occasions

when prosody does not smooth signal redundancy are the occasions when prosody

is producing a checking signal. This would support the weak smooth redundancy

hypothesis.

6.2.1 Summary

To summarise we are looking for the following to support the hypotheses:

• Prosodic factors show a strong significant correlation with COA metrics.

• Language redundancy factors show a strong, significant and inverse corre-

lation with COA metrics.

• The shared contributions of the redundancy and prosodic models is high.

• The independent contribution of the redundancy model is low.

• That, for the strong hypothesis, the independent contribution of the prosodic

model is low, or, for the weak hypothesis the independent contribution of

the prosodic model is low in contexts which exclude potential checking lo-

cations.

6.3 Establishing Confidence in the Coding and

Care of Articulation Metrics

While testing the hypotheses as described above we can also establish confidence

in our coding and measurements. This is achieved by examining the direct rela-

tionship between prosodic structure and the care of articulation dependent vari-

ables (DUR1, DUR2, COVA1, COVA2) and also between the redundancy factors

and these variables. If our measurement are effective we would expect these

relationships to support previous findings in laboratory phonetics.

These can be summarised as follows:

Prosody:

• Syllables are lengthened before prosodic boundaries. The stronger the

boundary the greater the lengthening.
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• Syllables are lengthened by prominence. The greater the level of prominence

the greater the lengthening.

• Vowels in syllables are more clearly articulated the greater the level of promi-

nence. This leads to more extreme vowel targets and decreased centralisa-

tion.

Redundancy:

• The more predictable a syllable, as in greater word frequency, increased

trigram likelihood and/or more mentioned, the less carefully the syllable

is articulated resulting in shorter syllables and less carefully articulated

vowels.

Once I have established how effectively the different factors and measurements

model these expected relationships, and shown the nature of the direct relation-

ships between prosody and COA as well as redundancy and COA, I will then

examine the extent, and the contexts, prosodic factors and redundancy factors

are independent of each other. In doing so we can test whether redundancy is

implicitly represented in prosodic structure and the extent prosody may also be

used as a checking signal.

6.4 Methodology

The procedure for analysis is as follows:

1. Carry out a multiple linear regression with appropriate factors to exam-

ine the degree and significance of these factors as separate prosody and

redundancy models in predicting each of the four dependent variables.

2. For both the redundancy and prosodic models compare a set of reduced

models, each with a factor removed. Use these comparisons to calculate

the independent contribution and significance of each factor in each model

using maximum likelihood (also termed the likelihood ratio test) (Neter

et al., 1990).

3. Graph significant results (and, where appropriate, non-significant results)

to give a clear impression of the size and direction of these effects. In

all following results if the direction of the effect is not discussed it was
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in the expected direction. For example more redundant = less carefully

articulated, prominent = more carefully articulated etc.

4. Finally, use maximum likelihood to calculate the independent contribution

of prosodic and redundancy models in predicting care of articulation in

spontaneous speech.

6.4.1 Materials and Coding: Review

This work is based on a large corpus of spontaneous task oriented dialogue col-

lected by the HCRC at the University of Edinburgh - the HCRC Map Corpus (An-

derson et al., 1991). The corpus is comprised of about 15 hours of spontaneous

speech, 64 speakers and around 200,000 syllables.

As explained in chapter 3 each data point in this analysis is a syllable. The

syllables are coded with prosodic, redundancy and care of articulation factors.

Not all syllables have the same coding:

• Any syllables which were not coded for redundancy factors (such as syllables

forming words unknown to the BNC corpus) were ignored. This removed

just under 10% of the data (18225 syllables).

• a proportion have been prosodically hand coded so in addition to the lexical

and automatic factors these syllables are also coded for accent and break

index.

• A proportion of syllables, those that are within references to landmarks on

the maps used in the dialogues, have also been coded for mention.

The overlap between these groups and the entire data set is shown in figure 6.4.

Two further factors affect the total number of syllables examined in each analysis:

1. When examining the DUR1 and DUR2 measure of care of articulation (raw

syllabic duration and normalised syllabic duration respectively) all these

materials are examined because every syllable has a duration. However for

COVA1 and COVA2 (vowel centralisation and vowel quality respectively)

some of these syllables remain uncoded because, in order to measure care of

vowel articulation the syllable must have a vowel nucleus as well as at least

40ms of voiced speech in order to fit a parametric curve to formant values.
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Total n=187689
R n=169464

P n=3638 M n=30508

n=1521

Figure 6.4: Materials examined in the analysis. R: The number of syllables with
valid word frequency and trigram information. P: The number of syllables with
hand coded prosodic factors. M: The number of syllables coded for mention.

2. The weak redundancy hypothesis (see chapter 2) claims that redundancy

factors are only important when no boundary checking signal is present.

To test this all syllables with a pause following them or that were part of

polysyllabic words are removed from the analyses.

Table 6.1 shows the number of materials for all possible conditions: DUR, COVA,

DUR+Weak, COVA+Weak.

Total Mention Prosodic Mention
Coded Coded Coded + Prosodic

DUR Coded 169464 30508 3638 1521
COVA Coded 71747 13366 1482 707
DUR Coded + Weak 89532 12295 1186 205
COVA Coded + Weak 32213 4654 438 122

Table 6.1: Number of syllables in each condition.

The analyses carried out can be grouped as follows:

1. Prosodic factors: A test of the relationships between the different prosodic

factors and the dependent care of articulation variables.

2. Redundancy Factors: A test of the relationships between the different re-

dundancy factors and the dependent care of articulation variables.

3. Independence of Redundancy and Prosody: A test of the extent prosodic

factors implicitly account for redundancy effects and the extent redundancy

126



factors offer an independent contribution to predicting the dependent vari-

ables.

6.4.2 Summary of Variables and Factors for each Coding
Set

Before considering the results from these analyses I will first give a brief summary

of the variables and coding used (see chapters 2, 3, 5 for details).

Independent Variables: Prosody

• Prosodic Boundaries: Binary variables

wboun: Word boundary. This corresponds to a ToBI break index of 1.

iip2boun: Intermediate Intonational Phrase with a ToBI break index of 2.

iip3boun: Intermediate Intonational Phrase with a ToBI break index of 3.

ipboun: Full Intonational Phrase Boundary. This corresponds to a ToBI

break index of 4.

Aipboun: Automatically coded Full Intonational Phrase Boundary. For

materials not hand coded, if the syllable was followed by a pause it

was regarded as having a high likelihood of being followed by a full

intonational phrase boundary.

• Prominence: Binary variables

vtype: Vowel type. Whether the vowel is full or reduced (where reduced

equals unstressed /I,@/). This corresponds to the first level of promi-

nence described by Ladefoged.

lexstr: Lexical stress. Whether the syllable is lexically stressed. This cor-

responds to the second level of prominence described by Ladefoged and

the first level of prominence as described by Cruttenden. (lexstr is not

strictly a binary variable as although primary lexical stress is coded as

a 1, secondary stress is also coded as 0.5.)

acc: Phrasal Accent. Whether a phrasal accent has been marked using

ToBI. This corresponds to the second level of prominence as described

by Cruttenden.

Aacc: Automatically coded Phrasal Accent. For materials not hand coded,

if the syllable was lexically stressed and open class, it was marked as

having a high likelihood of having a phrasal accent.
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pps: Primary Phrasal Accent. The last accent before an intermediate or

full intonational phrase boundary (as coded using ToBI) is marked as

having primary phrasal stress. This corresponds to the third level of

prominence described by Ladefoged and the third level of prominence

as described by Cruttenden. Automatic coding of primary phrasal

stress was considered too unreliable.

• Spillover

spill: This factor is based on work by Turk and White (Turk and White,

1999) and is used in hand coded prosodic data only. It represents the

amount durational effects of prominence spill over from an accent. This

is mostly in a rightward direction (20%), leftwards by much less (5%),

when no word boundary blocks the effect. When a word boundary is

present only a spill of 4% is reported in a rightward direction.

Independent Variables: Redundancy

wf: Word Frequency. The log of the COBUILD word frequency of the word

containing the syllable.

trigram: Trigram Probability. The log probability of guessing the syllable cor-

rectly based on the two syllables preceding it.

men: How many times a particular landmark has been referred to in the dialogue

up until this point. Only references to landmarks in the HCRC Map Corpus

are coded in this way.

Dependent Variables: Care of Articulation

DUR1. Raw syllabic duration in milliseconds.

DUR2. Syllabic duration normalised for number of segments and based on chained

log normal distributions. Measured in k which are a combined z score for

the chained distributions (see chapter 5 section 5.3.2).

COVA1. Centralisation. How close to the centre of a speaker’s vowel space the

vowel targets were realised. Measured in distance in Bark normalised across

F1 and F2.

COVA2. Clear Speech Target. How likely a model of a speaker’s clear speech

would have generated the vowel target. Measured in average log probability

of the clear speech model producing the target values.
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6.4.3 The Problem with Using Total Number of Syllables
as a Prosodic Factor

It has been shown that the same syllable in a polysyllabic word tends to be more

reduced the greater the total number of syllables (e.g. Campbell, 1992). Thus

the total number of syllables would appear to be an important prosodic factor in

predicting care of articulation at least in terms of duration change.

However it was found that if this factor is included together with lexical stress

and word boundary information, not only is the independent contribution of this

factor to predicting duration change very small (0.05%) but, although significant,

it predicts a greater rather than a reduced duration.

Two reasons account for this result:

1. When examined alone number of syllables does behave as expected although

predicting less variance than word boundary and lexical stress factors. This

may be because over 88% of all syllables in the HCRC Map Corpus are

within words with either one or two syllables (with 75% being monosyllabic)

giving little scope for number of syllables to act as an accurate predictor in

most cases.

2. The effect is in the unexpected direction when these factors are included

because number of syllables correlates strongly and negatively with word

frequency (r = −0.55 p < 0.001). Overall in the HCRC Map Corpus,

once lexical stress and word boundary are taken into account, the number

of syllables in the word no longer predicts shorter syllables but instead

predicts less frequent words which in turn predict longer syllables.

For these reasons the number of syllable factor was removed from this analysis in

favour of lexical stress and word boundary information. As a final check analyses

were carried with number of syllables as a controlling factor. This was accom-

plished by carrying out linear regressions separately over syllables in monosyllabic,

bisyllabic and trisyllabic words. There was no indication that total number of

syllables was a confounding factor for either redundancy or prosodic factors when

controlled for in this way. Thus in all further analyses reported here total number

of syllables is ignored.
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6.4.4 Do Results from these Materials and Measurements
Support Results Obtained in Laboratory Phonetics:

Prosody and Care of Articulation

6.4.4.1 DUR1/DUR2

The r, r2 for the hand coded prosodic model as well as the independent contri-

butions from each factor are shown for DUR1 and DUR2 in tables 6.2, 6.3.

Figures 6.5, 6.6 on page 132 show the average values for each factor. In general

results do confirm previous laboratory results apart from leftwards within word

spillover as reported by Turk and White (1999). The differences between DUR1

and DUR2 are not great. Raw syllabic duration appears to be a surprisingly

good durational measure of care of articulation. However DUR2 is more sensitive

to prosodic change showing greater differences within prominence and boundary

effects as well as a neater linear relation between strength of prominence and

average DUR2. However it is possible that including number of segments within

a syllable in the prosodic analysis and using raw duration may produce better

results than using number of segments as a normalising factor in DUR2. Overall

the hand coded and lexical prosodic factors together account for nearly 60% of

the variation in syllabic duration.

6.4.4.2 COVA1/COVA2

The r, r2 for the hand coded prosodic model as well as the independent contri-

butions from each factor are shown for COVA1 and COVA2 in tables 6.4, 6.5.

As expected COVA1 as a raw centralisation measure was very sensitive to vowel

type. In general results are mostly insignificant.

Work reviewed in chapter 4 suggests that prominence should have a strong effect

on vowel articulation. Although the low r value suggests that these measurements

are very noisy the results are still disturbing in that a number of the significant

results in COVA1 are contrary to the theoretical predictions. Although phrasal

accents and break index 2 are significant the direction of the relationship is the

reverse to what we would expect. The results for these materials suggest that

accented syllables and syllables with a break index of 2 are articulated less clearly

rather than more clearly.

For COVA2 only the nuclear/non-nuclear accent distinction is significant. This is

interesting, especially as this distinction appeared to have no impact on duration
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DUR1: Raw Syllabic Duration
Regression Results r = 0.7710 r2 = 0.5944

Prosodic Independent F(1,3638) p value
Factor Contrib. to r2

vtype 00.09% 8.59 0.01
lexstr 01.17% 105.52 0.001
acc 03.30% 296.41 0.001
spill 01.21% 109.12 0.001
pps 00.01% 0.90 NS
wboun 06.97% 625.73 0.001
iip2boun 00.72% 64.74 0.001
iip3boun 00.04% 3.98 0.05
ipboun 00.15% 14.02 0.001

Table 6.2: Regression analysis of hand coded prosodic factors against raw syllabic
duration. See section 6.4.2 for details of factors.

DUR2: Normalised Syllabic Duration
Regression Results r = 0.7238 r2 = 0.5238

Prosodic Independent F(1,3637) p value
Factor Contrib. to r2

vtype 00.45% 34.85 0.001
lexstr 04.54% 346.95 0.001
acc 02.70% 206.79 0.001
spill 02.23% 170.39 0.001
pps 00.00% 0.37 NS
wboun 07.46% 569.88 0.001
iip2boun 00.74% 56.92 0.001
iip3boun 00.00% 0.11 NS
ipboun 00.07% 5.85 0.05

Table 6.3: Regression analysis of of hand coded prosodic factors against nor-
malised syllabic duration. See section 6.4.2 for details of factors.
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DUR1: Hand Coded Prosodic Factors
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dex), are associated with longer mean syllable duration. Similarly as prominence
increases mean syllabic duration increases. Spillover in a rightwards direction
confirms results reported by Turk and White (Turk and White, 1999).

DUR2: Hand Coded Prosodic Factors
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Figure 6.6: Results are very similar to those shown for DUR1 (figure 6.5) except
that the differences between Break Index 2-4 are less marked and in the case of
Break Index 3 non significant.
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COVA1: Vowel Centralisation
Regression Results r = 0.1336 r2 = 0.0178

Prosodic Independent F(1,1481) p value
Factor Contrib. to r2

vtype 00.55% 8.38 0.01
lexstr 00.23% 3.60 NS
acc 00.45% 6.85 0.01
spill 00.17% 2.64 NS
pps 00.20% 3.13 NS
wboun 00.11% 1.75 NS
iip2boun 00.44% 6.71 0.01
iip3boun 00.00% 0.02 NS
ipboun. 00.25% 3.86 0.05

Table 6.4: Regression analysis of hand coded prosodic factors against vowel cen-
tralisation. See section 6.4.2 page 127 for definitions of factors.

COVA2: Vowel Targets
Regression Results r = 0.1042 r2 = 0.0109

Prosodic Independent F(1,1481) p value
Factor Contrib. to r2

vtype 00.18% 2.63 NS
lexstr 00.14% 2.00 NS
acc 00.01% 0.08 NS
spill 00.05% 0.68 NS
pps 00.31% 4.52 0.05
wboun 00.04% 0.61 NS
iip2boun 00.09% 1.26 NS
iip3boun 00.24% 3.55 NS
ipboun. 00.06% 0.86 NS

Table 6.5: Regression analysis of hand coded prosodic factors against vowel tar-
gets. See section 6.4.2 page 127 for definitions of factors.
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scores. It is possible that at this high level of prominence duration cannot be

further extended but care of vowel articulation can be increased. However, given

the poor results overall, it is difficult to have much confidence in this observation.

One direct cause of these poor results is that not only are the COVA measurements

noisy, but that they are not representative of the data as a whole. As described in

chapter 5 COVA measurements were only taken for vowels which remained voiced

long enough to analyse the formant tracks using conventional target-undershoot

techniques to assess achieved targets. For 60% of the syllables in the spontaneous

speech in the corpus the vowels were either unvoiced or too short (less than 40ms)

to be measured in this way. If we examine the proportion of syllables that could

not be measured for COVA1 and COVA2 we see a strong relationship with regards

to prosodic factors(table 6.6). For example, 80% of syllables that were marked as

having no prominence could not be measured for COVA1 and COVA2 while in

contrast only 25% of syllables marked as carrying a primary phrasal accent could

not be measured. Thus prosodic category is an important conditioning factor on

whether we have a COVA1/2 measurement to consider and therefore COVA1/2

naturally produces a rather unrepresentative data set.

By doing so, much of DUR1/2 variance predicted by prosodic factors is removed.

In table 6.7 we can see that the standard deviation for DUR1/2 for these un-

measured syllables is similar to those measured. Thus about half of the duration

variation which forms the basis of the results detailed for DUR1 and DUR2 are

within these unmeasured syllables

Prosodic % measured % too short Prosodic % measured % too short
Prominence by COVA for COVA Boundary by COVA for COVA
none 19.5 80.5 none 30.4 69.6
+vtype 37.6 62.4 wboun 38.0 62.0
+lexstr 44.7 55.3 iip2boun 66.3 33.7
+acc 65.7 34.3 iip3boun 73.3 26.7
+pps 74.0 26.0 ipboun 69.5 30.5

Table 6.6: The proportions of prosodic types coded by COVA1/2.

This raises a number of possibilities for the failure of the COVA measurements

to reflect major findings with regards to spontaneous speech in the hand coded

prosodic data set:

• Differences in care of articulation in spontaneous speech and how they reflect

prosodic structure are below the range measurable with these care of vowel
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% too short % measured
for COVA by COVA

DUR1
mean 0.134 0.237
sd 0.086 0.122
DUR2
mean -4.13 0.498
sd 0.842 0.697

Table 6.7: DUR1/2 mean and standard deviations of materials that could and
could not be measured by COVA1/2.

articulation techniques.

• The generalisation of undershoot and centralisation models to compare dif-

ferent vowels in different phonetic contexts is inadequate. In chapter 7 I

will discuss possible improvements to the modelling approach used here

and discuss how phonemic context and identity could be included in the

model.

• The COVA measurements are only representative of the data in longer

stressed syllables. Due to noise, and the much smaller set of materials

hand coded for prosodic factors, no significant results are obtained.

• The interaction between which materials could be measured and the prosodic

factors confound the results.

Despite the disappointing performance of the COVA metrics we will return to

them when analysing the whole corpus with redundancy factors and the prosodic

factors available for the whole data set. This is because of the much larger size of

the full data set (200000 vs 3000). This huge number of tokens may help counter

problems of noise in the COVA metrics.

6.4.4.3 Examining Prosodic Effects over the Whole Corpus

Although the corpus as a whole consists of nearly 200,000 syllables due to time

constraints only about 3,500 could be prosodically hand coded for break index

and accent.

However a number of the prosodic factors can be applied to this larger set, namely,

vowel type, lexical stress, word and syllable boundary. In addition estimations
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of full IP boundaries and phrasal accents are also considered. These estimations

are assigned IP boundaries on the basis of a syllable being followed by a pause

and for phrasal accents by examining the lexical class of the word (see sections

6.4.4.3.2, 6.4.4.3.1 below).

6.4.4.3.1 Guessing Accented Syllables: In general an accent will only oc-

cur on a stressed syllable. In general accents occur much more frequently in open

class content words such as ’beach’ than in closed class function words such as

’the’.

If, on the basis of this, we automatically assign phrase accents to stressed syllables

in open class words and then compare the results with the hand coded data

(table 6.8) we find that just over 60% of accents are correctly coded with a false

alarm rate of just under 16% (The number of unaccented syllables incorrectly

coded). This is sufficiently accurate to give an idea of potential accentedness in

the whole corpus.

-Aaac +Aaac
-acc 2105 (84.1%) 398 (15.9%)
+acc 435 (38.0%) 710 (62.0%)

Table 6.8: The number of accurately guessed phrasal accents in hand coded
materials.

6.4.4.3.2 Guessing IP boundaries: I make no attempt to guess Interme-

diate IP boundaries. Such boundaries are less common than full intonational

phrase boundaries. Also, as we saw in section 6.4.4, Break Index 2 and 3 do not

have as strong an effect on care of articulation (in terms of DUR1/2) as Break

Index 0, 1 and 4. On this basis Intermediate IP boundaries are ignored in the

automatic analysis.

By regarding every syllable before a pause as being at the edge of an IP we guess

90% of coded IPs (table 6.9). Less than 2% of word or syllable boundaries are

incorrectly coded as IP boundaries. IIP boundaries (Break Index 2/3) account

for 6% of all boundaries mistakenly coded as a full IP boundary.

The automatic coding (these two automatic coding together with vowel type, lex-

ical stress, word boundary and syllable boundary data) compares well with fully

hand coded factors over the hand coded materials. Automatic coding predicts

45% (r = 0.6714) of the variance of DUR1 and 35% (r = 0.5943) of the variance
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-Aipboun +Aipboun
none 1403 (99.1%) 13 (0.9%)
wboun 1534 (98.7%) 20 (1.3%)
iip2boun 66 (69.5%) 29 (30.5%)
iip3boun 66 (62.9%) 39 (37.1%)
ipboun 48 (10.0%) 430 (90.0%)

Table 6.9: The number of accurately guessed phrase boundaries in hand coded
materials.

of DUR2 whereas hand coding predicts 59% (r = 0.7710) of the variance of DUR1

and 52% (r = 0.7238) of the variance of DUR2.

6.4.4.4 DUR1/DUR2: Whole Corpus with Automatic Prosodic Cod-
ing

Examining the automatic coding and all materials with DUR1/DUR2 measure-

ments we see that all prosodic factors significantly and independently predict

these variables (see tables 6.10, 6.11 on page 139).

Prosodic boundaries account for the majority of the effect, in particular the au-

tomatically tagged IP boundary. However prominence also makes a strong con-

tribution. See figure 6.7 and figure 6.8 for the magnitude and directions of the

automatic prosodic factors. Overall the results suggest that the DUR1/DUR2

measurements and automatic prosodic factors are behaving as we expect from

literature reviewed in chapter 4.

6.4.4.5 COVA1/COVA2: Whole Corpus with Automatic Prosodic
Coding

The large amount of data considered in this full analysis was sufficient to uncover

significant prosodic effects for both COVA metrics. Given the very low r values

and the reservations discussed in section 6.4.4.2 these results should be treated

with caution. However as argued in chapter 5 one main function of the COVA

metrics was to act as a comparison with the DUR measurements.

In both cases the prosodic factors predicted less than 1% of the variance of the

COVA metrics. All factors were significant for COVA1.

Significance at these very low r values and very high population sizes deserves

some discussion. Significance can be thought of as indicative of a tendency but

not as predictive in these contexts. A good analogy is the significant effect of left
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DUR1: Raw Syllabic Duration
Regression Results r = 0.6473 r2 = 0.4190

Auto Prosodic Independent F(1,169461) p value
Factor Contrib. to r2

vtype 01.08% 3139.49 0.001
str 00.83% 2421.31 0.001
apacc 01.49% 4335.15 0.001
awboun 03.62% 10561.72 0.001
aip. 19.72% 57523.91 0.001

Table 6.10: Regression analysis of automatic prosodic analysis with raw syllabic
duration. See section 6.4.2 page 127 for definitions of factors.

DUR2: Normalised Syllabic Duration
Regression Results r = 0.6077 r2 = 0.3693

Auto Prosodic Independent F(1,169461) p value
Factor Contrib. to r2

vtype 00.37% 997.12 0.001
str 03.31% 8901.64 0.001
apacc 00.03% 79.00 0.001
awboun 01.46% 3926.77 0.001
aip. 13.10% 35208.99 0.001

Table 6.11: Regression analysis of automatic prosodic analysis with normalised
syllabic duration. See section 6.4.2 page 127 for definitions of factors.

handedness on life expectancy1. Left handedness is a highly significant factor in

life expectancy however the amount of variance it explains is very small (a shorter

life of about two weeks). However the fact it is significant is important and is

indicative of an underlying cause. In the same way the significant results obtained

for both prosodic factors and redundancy with COVA metrics do indicate an

underlying relationship. However the weakness of the relationship means, that

in this work they form a basis for discussion and speculation but are not used to

justify any hypotheses.

Firstly looking at the results for COVA1 (table 6.12) we see that the results

are very strongly affected by whether the vowel is full or reduced. This is not

unexpected considering that COVA1 attempts to measure centralisation. More

surprising is that lexically stressed vowels appear more centralised than unstressed

1Thanks to Paddy O’Donnell at the Psychology Department, University of Glasgow for
explaining this analogy to me.
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full vowels (see figure 6.9). However, given the very small predictive power of the

regression and the comparatively strong effect of vowel type this result should

be treated with caution. In contrast with the results from DUR1/DUR2 neither

prosodic boundary factor increased COVA1 instead predicting less centralisation

when absent rather than more. I will return to the lack of boundary effects after

looking at COVA2 results. In general phrasal stress does contribute a tiny positive

effect but again the impact of vowel reduction may be undermining this result.

The COVA2 results are more interesting (table 6.12). The strong effect of vowel

reduction is absent. This supports the idea that COVA2 is better at measuring

undershoot in individual vowels than COVA1. Like COVA1 the measurement is

noisy. However phrasal stress does seem to have a highly significant effect whereas

all other prominence factors do not. Of the pitifully tiny 0.5% predictive power

of COVA2 that the model achieves most of this is from the automatically guessed

phrasal accent factor. Looking at figure 6.10 we see this difference whatever the

prosodic boundary context.

Ignoring the vowel type effect in COVA1 and taking COVA1/COVA2 results

together it seems that these vowel articulation measurements are more sensitive

to phrasal stress than prosodic boundaries. Unfortunately the noisy nature of

the metrics make this observation far from conclusive. The results hint at the

following:

• Care of articulation in terms of spectral quality is only within speakers’

control in already relatively prominent syllables. This would explain the

lack of a COVA1/COVA2 effect between lexically stressed, and unstressed

syllables, when no pitch accent was present. The majority of the vowel

studies which showed spectral quality differences related to lexical stress

only (van Bergem, 1988, for example) were on citation speech. In fast,

running spontaneous speech where 60% of the vowels are less than 40ms

these effects seem to disappear.

• Although prosodic boundaries have a strong effect on duration they do not

appear to have a strong effect on vowel articulation. In accented sylla-

bles such vowel effects appear almost independent of lengthening due to

prosodic boundaries. This could be used by the human language system

to differentiate duration change signalling a boundary (the checking signal

discussed in chapter 2) and careful articulation used to smooth the overall

signal redundancy.
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COVA1: Vowel Centralisation
Regression Results r = 0.0579 r2 = 0.0033

Auto Prosodic Independent F(1,80577) p value
Factor Contrib. to r2

vtype 00.29% 234.37 0.001
str 00.21% 171.23 0.001
apacc 00.01% 8.00 0.01
awboun 00.01% 7.95 0.01
aip. 00.01% 10.09 0.01

Table 6.12: Regression analysis of automatic prosodic analysis with vowel cen-
tralisation. See section 6.4.2 page 127 for definitions of factors.

COVA2: Vowel Targets
Regression Results r = 0.0729 r2 = 0.0053

Auto Prosodic Independent F(1,80577) p value
Factor Contrib. to r2

vtype 00.00% 1.13 NS
str 00.00% 0.09 NS
apacc 00.37% 304.87 0.001
awboun 00.04% 30.23 0.001
aip. 00.00% 3.78 NS

Table 6.13: Regression analysis of automatic prosodic analysis with vowel targets.
See section 6.4.2 page 127 for definitions of factors.

However as emphasised earlier this is really just speculation. A much more robust

measure of vowel undershoot would be required to test these ideas in spontaneous

speech.

6.4.5 Do Results from these Materials and Measurements
Support Results Obtained in Laboratory Phonetics:

Redundancy and Care of Articulation

Generally if things are predictable we would expect them to be shorter and less

carefully articulated. We have three redundancy measurements, log of COBUILD

word frequency, the log of the syllabic trigram prediction and the number of times

the referent has already been mentioned in the dialogue.

We would firstly expect these factors to have a significant effect on the dependent

variables and we would expect to see these dependent care of articulation variables
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fall in value as these factors increase in value.

6.4.5.1 DUR1/DUR2

Results from the regression and maximum likelihood analysis of these factors are

complicated by the different data sets we have to consider.

I will first consider word frequency effects and trigram probability on DUR1 and

DUR2 over the entire corpus. Then I will examine these factors together with

mention over only those materials with mention coding and finally both these

analyses again but only looking at syllables in a monosyllabic context with no

intonational phrase boundary following them. This final context controls for any

possible checking effect (see chapter 2) and will be used to support the weak

smoothing redundancy hypothesis.

6.4.5.1.1 Word frequency effects and trigram probability effects on

DUR1/DUR2 over the entire corpus: If we look at tables 6.14 and 6.15

we see that these factors predict about 15% of the variation in DUR1 and 9% of

the variation of DUR2. Both factors are highly significant in both cases. Looking

at figures 6.11 and 6.12 we can see that as expected the more redundant the

syllable the shorter it tends to be.

6.4.5.1.2 Mention effects on DUR1/DUR2 over mention coded part

of corpus: If we look at tables 6.16 and 6.17 we see that a significant mention

effect is present although the independent contribution it makes to the model is

less than 1%. Again looking at figures 6.11 and 6.12 we can see that as with the

factors over the entire corpus the more a syllable in a referent has been mentioned

the shorter it becomes.

Also of interest is that over these mention coded materials the redundancy models

as a whole are more predictive (31% of the variation in DUR1 and 27% of the

variation in DUR2) than for all materials. This is probably due to the more

homogeneous nature of this reference coded material. There will be few verbs,

open class words will tend to be adjectives and two syllable nouns (such as “white

mountain”), and the function words will mostly consist of pronominals, deictics

and determiners.
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DUR1: Raw Syllabic Duration: All
Regression Results r = 0.3811 r2 = 0.1452

Redundancy Independent F(1,169464) p value
Factor Contrib. to r2

wf 03.20% 6357.96 0.001
trigram. 06.28% 12454.40 0.001

Table 6.14: Regression analysis of redundancy factors applicable to the entire
corpus with raw syllabic duration. See section 6.4.2 page 127 for definitions of
factors.

DUR2: Normalised Syllabic Duration: All
Regression Results r = 0.2976 r2 = 0.0886

Redundancy Independent F(1,169464) p value
Factor Contrib. to r2

wf 02.77% 5138.14 0.001
trigram. 02.95% 5470.34 0.001

Table 6.15: Regression analysis of redundancy factors applicable to the entire
corpus with normalised syllabic duration. See section 6.4.2 page 127 for definitions
of factors.

DUR1: Raw Syllabic Duration: M
Regression Results r = 0.5594 r2 = 0.3130

Redundancy Independent F(1,30507) p value
Factor Contrib. to r2

wf 03.78% 1675.82 0.001
trigram 12.48% 5540.36 0.001
men. 00.50% 221.30 0.001

Table 6.16: Regression analysis of redundancy factors applicable to the mention
coded part of the corpus with raw syllabic duration. See section 6.4.2 page 127
for definitions of factors.

DUR2: Normalised Syllabic Duration: M
Regression Results r = 0.5203 r2 = 0.2707

Redundancy Independent F(1,30507) p value
Factor Contrib. to r2

wf 06.65% 2781.59 0.001
trigram 06.37% 2665.76 0.001
men. 00.93% 386.51 0.001

Table 6.17: Regression analysis of redundancy factors applicable to the mention
coded part of the corpus with normalised syllabic duration. See section 6.4.2 page
127 for definitions of factors.
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DUR1: Redundancy Factors
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Figure 6.11: The relationship between redundancy factors and DUR1. Redun-
dancy increases left to right. Trigram and word frequency factors are calculated
over the entire corpus whereas mention is calculated over only mention coded
materials.
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DUR1: Raw Syllabic Duration: All: Weak
Regression Results r = 0.6081 r2 = 0.3698

Redundancy Independent F(1,89531) p value
Factor Contrib. to r2

wf 10.11% 14361.29 0.001
trigram. 01.93% 2736.84 0.001

Table 6.18: Regression analysis of redundancy factors applicable to entire corpus
with raw syllabic duration (weak model). See section 6.4.2 page 127 for definitions
of factors.

DUR2: Normalised Syllabic Duration: All: Weak
Regression Results r = 0.4250 r2 = 0.1806

Redundancy Independent F(1,89531) p value
Factor Contrib. to r2

wf 04.44% 4850.10 0.001
trigram. 01.21% 1322.12 0.001

Table 6.19: Regression analysis of redundancy factors applicable to the entire
corpus with normalised syllabic duration (weak model). See section 6.4.2 page
127 for definitions of factors.

DUR1: Raw Syllabic Duration: M: Weak
Regression Results r = 0.8085 r2 = 0.6536

Redundancy Independent F(1,12294) p value
Factor Contrib. to r2

wf 06.06% 2150.52 0.001
trigram 00.74% 263.66 0.001
men. 00.33% 116.28 0.001

Table 6.20: Regression analysis of redundancy factors applicable to the men-
tion coded part of the corpus with raw syllabic duration (weak model). See
section 6.4.2 page 127 for definitions of factors.

DUR2: Normalised Syllabic Duration: M: Weak
Regression Results r = 0.6603 r2 = 0.4360

Redundancy Independent F(1,12294) p value
Factor Contrib. to r2

wf 05.45% 1187.79 0.001
trigram 00.11% 24.75 0.001
men. 00.90% 196.06 0.001

Table 6.21: Regression analysis of redundancy factors applicable to the mention
coded part of the corpus with normalised syllabic duration (weak model). See
section 6.4.2 page 127 for definitions of factors.
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6.4.5.1.3 Word frequency effects and trigram probability effects on

DUR1/DUR2 with no boundaries (weak model): In order to explore the

weak smoothing redundancy hypothesis we consider all four analyses described

above but this time for only syllables in monosyllabic words without a following

intonational phrase boundary. If it is true that a checking signal is confounding

our redundancy results we would expect redundancy to predict much more of the

variation in these materials (tables 6.18, 6.19, 6.20, 6.21).

The main effect of the weak model is to increase the predictive power of the re-

dundancy factors substantially and to reduce the independent contribution made

by the trigram probability measurements. These differences are summarised in

table 6.22.

Summary of Weak/Strong model differences for DUR1/DUR2
Strong Weak

trigram r2 trigram r2

DUR1 entire corpus 06.28% 0.1452 01.93% 0.3698
DUR2 entire corpus 02.95% 0.0886 01.21% 0.1806
DUR1 with mention 12.48% 0.3130 00.74% 0.6536
DUR2 with mention 06.37% 0.2707 00.11% 0.4360

Table 6.22: Differences between the independent contribution of the trigram fac-
tor and the overall r2 for strong (all materials) and weak (syllables in monosyllabic
words with no subsequent IP boundary) materials.

Overall the redundancy factors perform in a way predicted from the literature re-

viewed in chapter 4 in that redundant equals shorter. The importance of bound-

aries confounding this result with regards to duration measurements is also sup-

ported. When considering the independent contributions of redundancy factors

outwith prosodic factors these weak models must be also taken into account.

6.4.5.2 COVA1/COVA2

Our experience with COVA1/2 in previous sections suggests we are unlikely to

achieve robust correlations with redundancy factors. However as with prosodic

factors we do find the similar low r but highly significant effects throughout these

regressions (see tables 6.23 and 6.24 and for the +mention model tables 6.25

and 6.26). The trigram probability factor is insignificant for COVA1 when viewed

over the whole corpus although when used in the model together with mention this

changes. In contrast with COVA2, it is the mention effect that is insignificant. If

we look at the effect these factors have on the magnitude of COVA1 and COVA2

147



(figures 6.13 and 6.14) we can see quite clearly what the effect of noise is on

these metrics. Although the significant factors do have a perceivable down drift

the random variation is much more intense than in the DUR1/DUR2 examples

(figures 6.11 and 6.12).

Because of the low r values of the COVA regressions it is unwise to compare r2

values and different contributions across materials with very different populations.

Unfortunately this means that the comparison between weak and strong models

carried out for DUR1/DUR2 cannot be meaningfully made for COVA1/COVA2.

Thus although it looks as if care of vowel articulation is not as strongly affected as

duration metrics by prosodic boundaries it is impossible to establish this without

improving the COVA1/2 measurements significantly by addressing some of the

sources of noise mentioned in chapter 5.

6.4.5.3 Summary

Overall DUR1 and DUR2 behave as expected for both prosodic and redundancy

factors. COVA1 and COVA2 although succeeding in acting as an interesting con-

trast to DUR1/DUR2 appear too noisy to act as reliable variables on their own. A

number of possible explanations are put forward for the failure of these measure-

ments to act as a robust control for DUR1/DUR2 in section 6.4.4.2. COVA1/2

have highlighted a potential problem with duration measurements reflecting care

of articulation at strong prosodic boundaries (section 6.4.4.2). It is possible that

the lengthening we see caused by boundaries may be independent of careful artic-

ulation and that these syllables may be longer but not more acoustically distinct.

However the noise in COVA1/2 and low r values mean that it is not possible to use

these measurements to make strong comparisons. For this reason no comparisons

for weak and strong models were carried out for COVA1 and COVA2.
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COVA1: Vowel Centralisation: All
Regression Results r = 0.0467 r2 = 0.0022

Redundancy Independent F(1,71747) p value
Factor Contrib. to r2

wf 00.17% 122.06 0.001
trigram. 00.00% 1.62 NS

Table 6.23: Regression analysis of redundancy factors applicable to the entire
corpus with vowel centralisation. See section 6.4.2 page 127 for definitions of
factors.

COVA2: Vowel Targets: All
Regression Results r = 0.0684 r2 = 0.0047

Redundancy Independent F(1,71747) p value
Factor Contrib. to r2

wf 00.24% 172.20 0.001
trigram. 00.07% 48.40 0.001

Table 6.24: Regression analysis of redundancy factors applicable to the entire
corpus with vowel targets. See section 6.4.2 page 127 for definitions of factors.

COVA1: Vowel Centralisation: M
Regression Results r = 0.0927 r2 = 0.0086

Redundancy Independent F(1,13365) p value
Factor Contrib. to r2

wf 00.14% 19.36 0.001
trigram 00.20% 27.19 0.001
men. 00.22% 29.26 0.001

Table 6.25: Regression analysis of redundancy factors applicable to the mention
coded part of the corpus with vowel centralisation. See section 6.4.2 page 127 for
definitions of factors.

COVA2: Vowel Targets: M
Regression Results r = 0.1172 r2 = 0.0137

Redundancy Independent F(1,13365) p value
Factor Contrib. to r2

wf 00.12% 16.71 0.001
trigram 00.71% 96.06 0.001
men. 00.00% 0.29 NS

Table 6.26: Regression analysis of redundancy factors applicable to the men-
tion coded part of the corpus with vowel targets. See section 6.4.2 page 127 for
definitions of factors.
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COVA1: Redundancy Factors
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Figure 6.13: The relationship between redundancy factors and COVA1. Redun-
dancy increases left to right. Trigram and word frequency factors are calculated
over the entire corpus whereas mention is calculated over only mention coded
materials.

COVA2: Redundancy Factors
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Figure 6.14: The relationship between redundancy factors and COVA2. Redun-
dancy increases left to right. Trigram and word frequency factors are calculated
over the entire corpus whereas mention is calculated over only mention coded
materials.
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6.4.6 The Independent Contribution of Redundancy to
Care of Articulation Change.

With these results in mind it is now possible to return to our two main hypotheses

once more.

The Smooth Redundancy Hypothesis: Strong Version

Prosodic structure smoothes signal redundancy by controlling care of

articulation

and

The Smooth Redundancy Hypothesis: Weak Version

Prosodic structure smoothes signal redundancy by controlling care of

articulation except when it acts as a checking signal

To test these hypotheses we need to compare the independent and shared predic-

tive power of the redundancy model with the prosodic model with regards to the

care of articulation measurements. The more factors outside of language redun-

dancy that prosody is representing the greater the independent contribution of

the prosodic model. This can be related to the dashed boxes in figure 6.15 (This

figure was originally shown in chapter 2. Also see this chapter for more detail on

the hypotheses mentioned here).

Specifically, if the strong hypothesis is correct we would expect to find the fol-

lowing relationships:

Redundancy is inversely related to COA: That language redundancy fac-

tors influence care of articulation and that the more predictable a syllable

the less carefully articulated it is. This establishes that changes in care of

articulation do indeed smooth signal redundancy as argued in chapter 2.

Prosody relates to COA: That prosodic factors do influence care of articula-

tion. This establishes that prosodic structure can control care of articula-

tion.

Redundancy is implicitly expressed by prosody: That language redundancy

offers only a small independent contribution to a joint prosody/redundancy

model. This establishes that the variation that smoothes signal redundancy

is implicitly and only expressed in terms of prosodic structure.

Prosody only smoothes redundancy: That prosodic structure offers only a
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Figure 6.15: How the weak smoothing signal redundancy model could be amal-
gamated with more traditional views of prosody. (based on the figure Shattuck-
Hufnagel and Turk, 1996, p237)

small independent contribution to a joint prosody/redundancy model. This

establishes that there are not conditions where prosodic structure alters care

of articulation in a way that does not smooth signal redundancy. This is a

fairly strict restriction. It is possible that an independent contribution from

prosody may just reflect inadequacies in the current language redundancy

model. However a large independent contribution certainly suggests that

prosody is acting strongly outside the predictions of language redundancy

and on that basis the strong hypothesis could not be accepted.

For the weak hypothesis we would also expect to find the above but:

Prosody only smoothes redundancy when not checking: Smoothing only

occurs for materials which had boundary conditions controlled.

Prosody does not only smooth redundancy at checking locations: That

for materials that do not have boundary conditions controlled that prosodic

structure did show a substantial independent contribution to a joint model

above that modelled by redundancy.
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’Redundancy is inversely related to COA’ and ’prosody relates to COA’

are strongly supported for DUR1 and DUR2 in section 6.4.4.1 and section 6.4.5.1.

They are also more weakly supported for COVA1 and COVA2 in section in section

6.4.4.2 and section 6.4.5.2.

A problem testing the other relationships is deciding exactly what a “small” as

opposed to a “substantial” independent contribution is in numerical terms. In

table 6.27 we see the independent contributions of the prosodic and redundancy

models to the overall r2 and also the shared contribution.

DUR1/2:Independent and Shared Contribution
Strong Weak

Materials r2 Pros. Red. Shared r2 Pros. Red. Shared
DUR1: P 63.11% 39.52% 3.67% 19.92% 53.17% 12.10% 7.97% 33.10%
DUR1: P∪M 68.35% 38.52% 2.29% 27.54% 53.29% 4.73% 11.27% 37.29%
DUR2: P 53.80% 38.27% 1.42% 14.11% 33.25% 21.13% 1.80% 10.32%
DUR2: P∪M 61.91% 37.18% 1.67% 23.06% 31.44% 16.69% 2.31%ns 12.44%
DUR1: All 49.01% 34.49% 7.11% 7.41% 41.44% 4.46% 9.70% 27.28%
DUR1: M 61.06% 29.76% 9.64% 21.66% 67.83% 2.47% 3.62% 61.74%
DUR2: All 40.22% 31.36% 3.29% 5.57% 29.68% 11.62% 2.84% 15.22%
DUR2: M 51.90% 24.83% 9.12% 17.95% 55.01% 11.41% 1.16% 42.44%
Average 56.17% 34.24% 4.78% 17.15% 45.64% 10.58% 5.08% 29.98%
% of Explained Variance 60.96% 8.5% 30.53% 23.18% 11.14% 66.69%

Table 6.27: Independent contributions of redundancy - Red. and prosodic models
- Pros. in predicting variance of DUR1 and DUR2 over all materials. The non-
independent, shared contribution is shown under Shared. P: Materials hand coded
for prosody. M: Materials with mention coding. All: Materials with automatic
prosodic coding and a trigram/word frequency redundancy model. P∪M: Ma-
terials both hand coded for prosody and for mention. All results are significant
except for the redundancy model’s contribution to hand coded and mentioned
coded material with respect to DUR2.

Values are not shown for COVA1/2 because r values are too small for such a

comparison to be meaningful. Thus we have failed to produce sufficient evidence

to support either hypothesis for COVA1 and COVA2 and for these measures of

care of articulation they must be rejected.

For DUR1 and DUR2 we can make meaningful comparisons. Firstly taking ’re-

dundancy is implicitly expressed by prosody’ we can see that in general

the redundancy model made an independent contribution of just under 4% to

predicting these variables. This represents around 10% of the total variance pre-

dicted in both a strong and weak context. This is arguably a small independent

contribution and thus the relationship, ’redundancy is implicitly expressed
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by prosody’, can be accepted.

In contrast over all materials (strong) the prosodic model independently accounts

for about 60% of the predictive power of the overall model. This is a large

contribution and over all materials (without attempting to control for a checking

effect) prosodic structure does affect care of articulation in a way not predicted

by the redundancy model. Thus the relationship Prosody only smoothes

redundancy and thus the strong hypothesis must be rejected.

However if we compare the independent contribution of the prosodic model be-

tween strong (all materials) and weak (materials without boundaries) we see this

contribution is reduced from 60% to 23% while the shared proportion rises from

30% to 66%. That is 66% of of predictive power of the prosodic model is directly

related to smoothing redundancy when no checking signal is likely to occur. The

remaining 23% must either be accounted for by the unknown factors in the dotted

boxes shown in figure 6.15 or to inadequacies of the redundancy model. Over-

all, given the simplicity of the redundancy model this result supports the weak

hypothesis (and both the relationship, ’prosody only smoothes redundancy

when not checking’, and, ’prosody does not only smooth redundancy at

checking locations’).

Looking more closely at table 6.27 we can see that for some materials this con-

clusion is stronger than for others, in particular for DUR1 (see also figure 6.16).

This is because word frequency is a strong predictor of overall word length and

thus a good predictor of the number of segments in a monosyllabic word. For

DUR2, where this information is normalised out of the metric, word frequency is

not such a good predictor making the prosodic model relatively stronger.

Secondly we see that the hand coded prosodic materials show a generally stronger

independent contribution from prosody (see also figure 6.16). The main difference

between the hand coded and the automatic coded models in the weak materials

is that the automatic factors are exclusively factors within the lexicon (vowel

type, lexical stress, open/close class) whereas in the hand coded materials phrasal

accents are not guessed on the basis of these lexical features but were assigned

by inspection. Thus the hand coded model is stronger, again raising the general

independent contribution of these factors.
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Figure 6.16: Pie charts showing the shared and independent contribution of
prosodic and redundancy models in predicting raw syllabic duration (DUR1).
Weak materials (no boundaries) show a much higher shared contribution.

6.5 Summary of Results

The results obtained from this work can be summarised as follows:

• Both prosodic factors and redundancy factors have a significant effect on

care of articulation in a large corpus of spontaneous running speech.

• In terms of duration change prosodic factors predicts up to 59% of raw

syllabic duration in hand coded materials. Results for automatic coding

based on lexical information and pauses predicted 42% of the variation.

• Also in terms of duration change, redundancy factors, looking at a subset of

landmark referents with controlled prosodic boundaries, predicted 65% of

raw syllabic duration change. Results for other materials varied. For all ma-

terials, trigram and word frequency factors predicted 14% of the variation.

The more predictable a syllable in terms of low level factors such as word
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frequency and syllabic trigram and a higher level factor, givenness/mention,

the less carefully articulated a syllable is.

• Results for care of articulation measured in terms of the spectral quality of

vowels were disappointing. It was found that the metrics were very noisy

and although significant relationships were found they predicted very small

amounts of variance.

• However the results from these metrics suggested that such articulatory care

may be independent of lengthening due to prosodic boundaries.

• Comparing the independent contribution of redundancy factors and prosodic

factors to predicting duration it was found that (see figure 6.16):

1. Most of the contribution made by redundancy factors is implicitly rep-

resented by prosodic factors. However a significant but small percent-

age (2-4%) predicted even by these very simple redundancy metrics

was not represented by prosodic factors.

2. Prosodic factors, especially hand coded factors, made a large indepen-

dent contribution to predicting duration change above that represent-

ing redundancy (about 35% compared to a shared prosodic/redundancy

contribution of 17% over all sets of materials).

3. This independent contribution was much smaller for syllables where

prosodic boundaries were controlled for (11% over all sets of materials).

This suggests a major role of prosodic structure, outwith boundaries,

is to smooth signal redundancy by controlling care of articulation in a

way which implicitly mirrors language redundancy factors. This led to

tentatively acceptance of the weak smoothing redundancy hypothesis.

In the next chapter I will discuss the implications of these results more fully, con-

sider future directions this work may take and speculate on the role of redundancy

in spoken language.
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Chapter 7

Discussion

7.1 Introduction

In the previous chapters we have explored the relationship between prosodic struc-

ture, redundancy and care of articulation. Results have strongly supported pre-

vious findings on the effect of these factors on duration. Prominent syllables and

syllables next to prosodic boundaries are lengthened. Redundant, easy to predict

syllables, are reduced. Results for vowel quality, although hampered by noise,

show similar effects, with vowels becoming more centralised and less spectrally

distinct when redundant and less centralised and more spectrally distinct when

prominent.

When comparing the independent contribution of prosody and redundancy to pre-

dicting these changes it was found that, in general, prosodic structure implicitly

shared a majority of the predictive power of redundancy.

In this chapter I will discuss the importance of these findings and what further

work should be addressed. I will deal with the following issues:

1. Measuring Care of Articulation: The advantages and disadvantages of au-

tomatic techniques. How do we improve a metric of care of articulation?

2. Smoothing Redundancy versus Checking: In chapter 2 I considered why

redundancy might affect care of articulation. How do my results support

the smooth signal redundancy hypothesis?

3. Stochastic Suprasegmentals: Prosodic structure implicitly represents much

redundancy information. How, or should, this be incorporated into prosodic

theory?
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7.2 Measuring Care of Articulation

In chapter 6 I wrote that measuring care of articulation for almost every syllable

in 15 hours of speech was a significant research task in itself. In this section I

would like to consider how successfully this task has been addressed.

The strong, significant results for all care of articulation variables supporting pre-

vious work in prosodic theory and redundancy are encouraging. The differences

between the DUR and COVA metrics with regards to prosodic structure are also

interesting. However the COVA metrics, were in the end, too noisy to carry out

the complete analysis. With such poor r values it was not possible to compare

the independent contributions of the redundancy and prosodic models.

7.2.1 COVA1/COVA2

As explained in chapter 6 some noise in COVA1/2 is attributable to the formant

tracker used. Some of this noise was caused by the failure to track F1 for women

with high f0. However even where this was not the case the automatic techniques

did not do as well as the human coders. If the analysis was carried out for male

speakers only, although this did improve results, the r values for COVA1/2 and

the prosodic and redundancy models were still very low (for the combined model

r = 0.1058). Different formant trackers are available and a more effective tracker

might well exist for female and male spontaneous speech. In the same way bet-

ter autosegmentation techniques would have also improved results slightly. For a

100ms vowel, autosegmentation error, on average, caused 20% of the data to be

outside the vowel and lost 12% of the data within the vowel. Despite voicing being

used in addition to autosegmentation to filter out non-vocalic data, for shorter

vowels this error is sufficient to undermine F1/F2 assessments. Considering how

clearly visible many boundaries in the speech signal are, current frame based au-

tosegmentation techniques seem to do a poor job. There is room for improvement

here.

Another source of noise was caused by considering the F1/F2 space in isolation.

By ignoring other acoustic factors in the vowels in order to simplify the model

I also discarded information that can be used to identify vowels and stress such

as spectral tilt, amplitude and f0 transitions. Although the simplified model was

very advantageous when used to test and view output from the system I believe

more information should be retained. Local amplitude variation, especially, seems

an obvious candidate to consider in the model. To do so would require sophisti-
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cated normalisation both in terms of speaker differences and in terms of phonetic

contents.

The decision to ignore phonetic context was another source of noise in these

measurements. It would be advantageous to build models that took into account

such contexts so that a vowel following a consonant that is known to reduce F2

could be treated differently from a vowel following a consonant that is known to

increase F2. To a large extent, the restriction on the data available used to build

the citation model of each speaker, precluded the use of such context.

This brings me to the final point with regards to noise in the system. Although

the citation speech used to build the speaker models was certainly a lot more

carefully articulated than most of the spontaneous speech it was not specifically

collected for this purpose. In some cases the citation speech was not as carefully

articulated as I would have liked and it was also not phonemically balanced.

Overall I do believe that this technique could potentially be improved to give

a better, less noisy metric of care of vowel articulation. Such a measurement

would be potentially useful in discriminating between duration change caused by

prosodic boundaries as opposed to duration change caused by prominence.

Given the problem of considering spectral characteristics of phonemic segments

when they have been so heavily reduced (over 60% of vowels in my corpus were

less than 40ms) it is unclear how such a metric could effectively be combined with

duration to produce a single care of articulation measurement. However if a less

noisy COVA2 can be produced this may at least become a practicality. The main

reasons for rejecting short and voiceless tokens were:

1. The formant tracker could not produce valid results for voiceless speech.

2. The curve fitting algorithm used to estimate vowel targets could not mean-

ingfully be applied to less than four points (in this case 40ms) of speech.

However it is possible to assess formants within voiceless speech with techniques

other than LPC analysis (Wrench, 1995). It would also be possible to modify

the curve fitting algorithm to accept a simple average for very short stretches of

speech.

This was not carried out in this work for two reasons:

1. Noise: A clear problem with the COVA1/2 measurements was noise. The

severity of the noise problem increases the shorter the vowel, firstly, because
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of autosegmentation error, and secondly, because a single spurious value has

more effect on the overall result. One of the functions of the curve fitting

algorithm was to reduce the effect of spurious values. Given the problem

with noise for longer vowels it is unlikely that taking an average for shorter

vowels will produce usable results. Autosegmentation error alone would

mean that on average, of the data points in a vowel under 40ms, 2 out

of the 3 data points would be outside the vowel. It is possible to address

this problem by reducing the frame size and by improving the formant

tracker and autosegmentation. However to do so would require significant

re-engineering of the automatic processes used in this work.

2. Phonemic Context: The second major function of the curve fitting algorithm

was to assess the achieved target of the vowel and to take into account

some of the different coarticulatory effects caused by phonemic context. In

vowels less than 40ms long a simple average, even if all data points are

representative of the vowel, will give undue influence to the coarticulated

beginning and end of the vowel and give a false impression of how carelessly

a speaker may have tried to achieve the vowel target.

Although these are significant problems they could (and should) be addressed in

future work (see above for a discussion on dealing with both noise and phonemic

context). If these issues are addressed a simple average could then be used to

produce COVA1/2 values for short and voiceless vowels. This would address the

question of whether care of vowel articulation does reduce further in these short

tokens or whether it is only duration that can be further attenuated in these

contexts.

Finally I hope that some of the results reported in this work will encourage more

controlled laboratory work on the way care of articulation is expressed in terms

of acoustic factors. Without these careful studies it is difficult to proceed with

a modelling approach in a considered fashion because, as discussed in chapter 2,

statistical modelling benefits from being theoretically led as well as being obser-

vationally driven.
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7.3 Smoothing Signal Redundancy versus Check-

ing

In chapter 2 I argued that care of articulation was related to language redundancy

because the result was to smooth signal redundancy. Smooth signal redundancy

is good if a message is likely to be degraded by a noisy environment. The results

reported in chapter 6 support this view. Predictable, redundant syllables are

shorter and their vowels have less defined spectral characteristics. This relation-

ship is strongest for syllables where prosodic boundaries have been controlled.

The effect of reduction in duration and in spectral characteristics is to make

syllables harder to guess based solely on their acoustic properties. Their redun-

dancy with regards to an acoustic model is reduced. The signal redundancy, the

combination of these two models, is thus smoother (see figure 2.1 in chapter 2).

However as pointed out in chapter 2 the fact that final phrase lengthening oc-

curs confounds a simple smoothing signal redundancy hypothesis. The ends of

phrases are more predictable than the beginning of phrases yet we see an increase

in syllabic duration of around 20%. Over all materials, the fact that a full into-

national phrase boundary followed a syllable predicted about half of all variation

in syllabic duration.

This led to the weak hypothesis, that when a checking signal caused by prosodic

boundaries was controlled then the smooth signal redundancy hypothesis would

be fulfilled. This does indeed appear to be the case with redundancy predict-

ing much more duration variation outside boundary contexts. The independent

contribution of prosody in these conditions, and thus its potential for reflecting

factors beyond language redundancy, is much lower. We conclude that the smooth

redundancy hypothesis in these conditions must be tentatively accepted.

To accept the weak smooth redundancy hypothesis with more confidence we need

to explain what the independent prosodic contribution in these conditions is rep-

resenting. Can such an independent contribution be ascribed to phonological

constraints for example? Would it disappear if the redundancy model was more

sophisticated, for example taking into account more semantic and syntactic infor-

mation? Is it because of inaccuracies in the method used to control for prosodic

boundaries?

The key to unravelling this problem and the major problem of deciding whether

duration change is being caused by boundaries or prominence is to build and test

a sophisticated checking model. One way of approaching this is stochastically.
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Work looking at the statistical patterns in language suggests that prosodic bound-

aries can be identified by the high trigram probability of the section of speech

before the boundary as opposed to the low trigram probability of the section of

speech after the boundary. However care is required. Final phrase lengthening

appears to occur primarily in the rhyme of the syllable. This suggests the larger

syllabic domain used in my work is not ideal for addressing this problem. There

is also a question of differences between monologues, where a listener is not sup-

posed to interrupt, and more collaborative dialogues where a great deal of back

and forth is expected. In the HCRC Map Corpus much is known concerning the

interaction between speakers in terms of intervals between speakers and discourse

structure. None of this knowledge is considered in the work presented here but

could form the basis of a more sophisticated model of checking.

Finally the rather frustrating result from the COVA variables suggests that care

of articulation is a combination of a number of factors and that changes caused

by a checking signal might be different from changes caused by smoothing signal

redundancy. As reported in chapter 6 section 6.4.4.5 I found that boundaries

did not appear to affect COVA2 in the same way as prominence. Vowel quality

did not seem to increase when a boundary was present, only when prominence

was expected. The noisy nature of the COVA variables leaves this result as

inconclusive. Before trying to build a checking model these metrics need to be re-

examined and improved. The results linking COVA with redundancy in a broad

sense are encouraging as is the relationship between them and human subjects’

perception of what makes a good vowel. If the problem of noise can be addressed

this approach may lead to more conclusive results.

7.4 Stochastic Suprasegmentals

The extent redundancy factors predicted care of articulation change, in terms of

duration, varied across the different materials we examined in chapter 6. Redun-

dancy factors were most successful at predicting raw syllabic duration in sylla-

bles occurring in references to landmarks when they were controlled for prosodic

boundaries. In this case the redundancy model predicted 65% of the variation

(r = 0.8085). Let’s put this in perspective. For over 12,000 syllables without

knowing anything about their phonetic contents, redundancy factors predicted

over half the raw duration. Even taking into account the restricted contexts of

these syllables (monosyllabic words in references to landmarks with a low prob-

ability of being followed by a major prosodic boundary) this predictive power
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seems high. Especially when you consider it is based on three very simple redun-

dancy measurements, word frequency, syllabic trigram probability and how many

times the landmark is mentioned.

For the same materials prosodic structure also accounted for about the same

amount of variance (64%, r = 0.8013). Over these automatically coded materials,

with prosodic boundaries factored out, all of the prosodic information coded is

lexical in nature, as in whether the syllable has a full or reduced vowel, lexical

stress and whether the word is open or closed class.

When we consider a joint model of redundancy factors and these lexical prosodic

factors we find that an enormous 62% of the predictive power is shared.

Although not as extreme, results over all the other materials supported the extent

prosodic factors embodied these redundancy factors. When boundaries were con-

sidered the shared predictive power fell to about a third of the variance predicted,

when boundaries were controlled this rose to two thirds of the variance predicted.

These results are not accidental and I believe go some way to answering the

question of not what prosody is but why prosody is.

If we take a critical look at the more traditional view of prosody embodied in

figure 7.1 (previously shown in chapter 2) and compare it with the combined

model shown in figure 7.2 (also previously shown in chapter 2) we can make some

interesting observations.

Firstly the traditional view does not offer a theoretical framework for why some

things affect prosody and others do not. Each area, syntax, semantics, discourse

structure are treated independently in this traditional view. The reasons some

syntactic factors affect prosody and some do not are not related to the reasons

some semantic factors affect prosody and some do not. By looking at language

in terms of redundancy we can relate these different factors to each other. Con-

cepts as diverse as focus, syntactic structure, word class, length of utterance and

word frequency can be looked at in terms of a predictive model and thus in terms

of language redundancy (see figure 7.2). In addition, the reason language redun-

dancy should affect care of articulation and thus be expressed in terms of prosodic

structure follows persuasively from the requirements of getting information from

A to B within a noisy environment. This does not mean that other factors outside

redundancy do not affect prosody, for example psycholinguistic or phonological

constraints, however it does shed some light on why we have prominence and with

checking, why we have prosodic boundaries.
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Figure 7.2: How the weak smoothing signal redundancy model could be amal-
gamated with more traditional views of prosody (based on the figure Shattuck-
Hufnagel and Turk, 1996, p237).
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This redundancy framework could in principle be applied to global questions

concerning prosodic structure. For example the traditional approach of regarding

languages as stress timed or syllable timed could be related instead to smoothing

signal redundancy and checking.

So called stress timed languages may require (or just have) more smoothing.

The natural tendency of word initial syllables to be unpredictable would then

cause them to be lengthened and the rest of the word (however long) to be

reduced. This would lead to a tendency for isochrony between lexical stresses.

In contrast so called syllable timed languages may require (or just have) less

smoothing and stronger checking making each syllable a self contained checked

piece of information. In this case syllables would tend to be produced more

regularly.

In addition languages with looser word ordering could use position as a means of

smoothing redundancy rather than prominence. Thus, rather than attenuating

repeated mentions, they could be placed further to the front of the phrase where

they were less predictable in terms of context. Such differences in the constraints

of a language would be reflected in differences in prosodic structure given the

smooth signal redundancy hypothesis.

I do not begin to address these questions here. My point is that redundancy and

stochastic modelling offers a common framework within which these questions

can be meaningfully asked.

I would argue that the results from my work suggest that prosody acts as a

interface between the compositional structure of language and the constraints of

producing a robust and effective signal. This role of prosody in smoothing signal

redundancy and checking is crucial to why prosodic structure is as it is and why

it works as it does.

Given this crucial relationship between predictability in language and prosody

it seems surprising that the role of redundancy has remained so unspecified in

prosodic theory. It emerges occasionally in concepts of ’semantic weight’, and in

arguments linking prosody with both language perception and acquisition, but

formal, stochastic, representations of redundancy have been generally ignored.

In my opinion redundancy information should be incorporated into prosodic the-

ory in the same way that other lexical factors, such as stress and number of

syllables within words are incorporated. The need for this is exemplified by the

results on givenness found by Bard and Aylett (1999). In this work there is clear
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evidence that subsequent mentions of the same word are produced less carefully

even when the traditional prosodic structure is identical. By including redun-

dancy information into prosodic theory we could go some way to addressing this

issue. For example, lexical stress could be modified to take redundancy into ac-

count so that syllables in unpredictable words were regarded as having stronger

lexical stress than stressed syllables in predictable words. Perhaps these stronger

stressed syllables could be regarded as more desirable sites for phrase accent

placement than their more common neighbours. The probability of accentedness

could then be directly related to acoustic parameters rather than the categorical

+/-phrase accent from traditional prosodic phonology. In this way suprasegmen-

tals could be connected to stochastic information and be used to produce the

redundancy effects we have observed. In fact, even if we ignore the practical

concerns of modelling data effectively using prosodic structure, we still need to

include redundancy information more explicitly in prosodic theory because:

1. My results are consistent with the view that the requirement for robust

transmission in a noisy environment drives prosody. This relationship should

be formalised.

2. If prosodic theory is the means with which redundancy smoothing and

checking are implemented then the small but consistently significant contri-

bution from the redundancy model should be modelled by prosodic theory.

It doesn’t make sense to have such a small contribution represented as an

independent factor when so much of the predictive power is shared.

3. Such stochastic information can be used as a useful interface between pho-

netic variation such as in duration, amplitude and pitch and a categorical

phonological view. As with modern speech recognition such a statistical

model allows the calculation of the most likely string of prosodic phonol-

ogy given such phonetic observations without necessitating any particular

sequence. This could potentially be used to produce more natural sounding

synthesised speech.

Another major advantage of including stochastic information directly in this way

is that, as suggested above, it offers a potential framework for comparing prosodic

structure across languages. If it is true that a major role of prosody is to smooth

signal redundancy and act as a checking signal then this should be the case

cross linguistically. The same requirements for a robust an effective signal exist

whatever language you are speaking in. Thus by including redundancy in our
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prosodic theory we could potentially go some way to making prosodic theory less

language dependent.

A great deal of work would be required to pursue this approach. It is possible that

if other languages are considered we may find that such a smoothing redundancy/

checking role is not cross linguistic at all. This remains an open research question.

We may also find that with more effective metrics of care of articulation and more

complex models of redundancy that the view presented here must be modified.

Perhaps, more crucially, the question of exactly how a checking signal is produced

by prosody and how it interacts with redundancy will undermine any simple

redundancy articulation relationship. Perhaps we will find that the independent

contribution made by prosodic structure in my results is actually reflecting the

music and rhythm of language and some sort of stately dance between speakers

cooperating in a dialogue, rather than the mundane problem of making sure that

bits of information have been effectively received.

However 62% is 62%. How can so much predictive power be shared by factors as

different as lexical stress and word frequency and not demand being addressed

by a combined theory?

7.5 Conclusion

I hope that this work has shown how important redundancy and ideas of redun-

dancy are in the study of spoken language. As with much research the questions

answered pose further more challenging questions. Current access to large corpora

of digitised speech have made the work here possible and opened up an approach

that could be described as corpus phonetics. Speech technology does not just

benefit from the findings in phonetic research but phonetic research can itself

benefit from applying such technology in order to explore relationships within

large multi-speaker corpora. In conclusion I reiterate what I regard as the main

findings in this work:

• Redundancy in language has a strong association with care of articulation.

This association is implicitly represented by much formal prosodic theory.

• This is because spoken language needs to have a smooth signal redundancy

and prosodic structure offers a linguistic means for effecting this.
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Appendix A

DISC and other phonetic codes
used in CELEX
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ipa example sam-pa celex cpa disc

p pat p p p p

b bad b b b b

t tack t t t t

d dad d d d d

k cad k k k k

� game g g g g

8 bang N N N N

m mad m m m m

n nat n n n n

l lad l l l l

r rat r r r r

f fat f f f f

v vat v v v v

S thin T T T T

� then D D D D

s sap s s s s

z zap z z z z

M sheep S S S S

` measure Z Z Z Z

j yank j j j j

x loch x x x x

h had h h h h

w why w w w w

Q cheap tS tS T/ J

� jeep dZ dZ J/ _

8j bacon N, N, N, C

mj idealism m, m, m, F

nj burden n, n, n, H

lj dangle l, l, l, P

* father r* r* r* R

(possible linking `r')

Figure A.1: Computer phonetic codes for English consonants. (Taken from the
CELEX manual p4-25 Baayen et al., 1995)
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ipa example sam-pa celex cpa disc

* pit I I I I

� pet E E E E

� pat { & ^/ {

� putt V V ^ V

� pot Q O O Q

V put U U U U

� another @ @ @ @

iq bean i: i: i: i

�q barn A: A: A: #

=q born O: O: O: $

uq boon u: u: u: u

�q burn 3: 3: @: 3

e* bay eI eI e/ 1

a* buy aI aI a/ 2

=* boy OI OI o/ 4

�V no @U @U O/ 5

aV brow aU aU A/ 6

*� peer I@ I@ I/ 7

�� pair E@ E@ E/ 8

V� poor U@ U@ U/ 9

� timbre {~ &~ ^/~ c

~�q d�etente A~: A~: A~: q

~�q lingerie {~: &~: ^/~: 0

~�q bouillon O~: O~: O~: ~

Figure A.2: Computer phonetic codes for English vowels and diphthongs. (Taken
from the CELEX manual p4-26 Baayen et al., 1995)
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Appendix B

An example Dialogue from the
HCRC Map Task (Q3NC8)

183



B.1 Instructions For Subjects

Map instructions

(once they’re sitting down and have been given their copy of the map)

to the speaker

You and your partner have both got a map of the same place.

Your map has got a route on it; your partner’s map does not.

Your job is to describe the route to your partner so that s/he can draw it on

her/his map.

Your path is known to be the only reliable route through and around all the

various obstacles.

You must try to describe your route carefully so that your partner can avoid the

obstacles and hazards on the way.

It is important to avoid these obstacles, rather than to make the routes identical

to the last millimetre!

As you do this, keep in mind that the maps have been drawn by different explorers

and might not be quite the same.

then to the hearer

You and your partner have both got a map of the same place.

Your partner’s map has got a route on it, which s/he’s going to describe to you.

Your job is to draw the route on your map.

You must draw the route with care, because it’s the only route known to avoid

the various obstacles you may encounter.

Listen carefully to what your partner says, and ask questions if there’s anything

you’re not sure about.

As you do this, keep in mind that the maps have been drawn by different explorers

and might not be quite the same.

Do you understand what you’re supposed to do?
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B.2 Givers Map
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B.3 Followers Map
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B.4 Transcription of Dialogue

GIVER FOLLOWER

M1(READY): Right

M2(QUERY-YN): Have you got the start

above the haystack

M3(REPLY-Y): Yeah

M4(ACKNOWLEDGE): Right

M5(INSTRUCT): If you want to

sort_of......... ehm...... head down

towards the haystack,... right,...

pass it by on its left-hand side

M6(ACKNOWLEDGE): Yeah, ’kay

M7(ALIGN): Right

M8(INSTRUCT): And head...

more_or_less straight down maybe

curving slightly towards your left

M9(QUERY-YN): Have you got a

blacksmith marked

M10(REPLY-N): No,... I don’t

M11(ACKNOWLEDGE): No

M13(INSTRUCT): Ehm, head down for

about,... eh two inches from the
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haystack,......... two and a half

inches

M14(ACKNOWLEDGE): Two inches okay

M15(ALIGN): Right

M16(INSTRUCT): Ehm,... go to your

right towards the carpenter’s house

M17(READY): All right

M18(EXPLAIN): Well I’ll need to go

below. Got a blacksmith marked

M19(ACKNOWLEDGE): Right,... well you

do that

M20(CHECK): Do you want it_to go

below the carpenter

M21(REPLY-N): No

M22(REPLY-W): I want you to go up

the left-hand side of it

towards...... green bay and make it

a slightly diagonal line,...

towards,... ehm... sloping to the

right

M23(ACKNOWLEDGE): Okay

M25(CHECK): So you want me to go

above the carpenter

M26(REPLY-Y): Uh-huh
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M27(ACKNOWLEDGE): Right

M28(CLARIFY): Towards... the bay

M29(QUERY-W): The bay

M30(QUERY-YN): Have you got the bay,

no

M31(CHECK): What crane bay

M32(CLARIFY): Green bay

M33(REPLY-N): No, I don’t have a

crane bay

M34(ACKNOWLEDGE): Right

M35(INSTRUCT): Okay well head up

above the carpenter’s house for

about, ehm,... it should be about...

an inch above it

M36(ACKNOWLEDGE): Alright

M38(ACKNOWLEDGE): Okay

M39(INSTRUCT): And head... slope

slightly... down the way... for

about two inches

M40(ALIGN): Right

M41(QUERY-YN): Do you have the seven

beeches

M42(ACKNOWLEDGE): Well okay
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M44(REPLY-Y): Nope.... Oh, yes I do

sorry

M45(ACKNOWLEDGE): You do

M46(READY): Right

M47(INSTRUCT): Go down past them on

their left-hand side

M48(ACKNOWLEDGE): Okay

M49(INSTRUCT): And stop when you get

to where it says seven beeches

M50(ACKNOWLEDGE): Okay

M51(INSTRUCT): Now you’re going to

go underneath that bit. You’re going

to make a slight curve, ehm... to

the right,... right? While it’s

still going down the way

M52(ACKNOWLEDGE): Right

M53(EXPLAIN): Because you’re

avoiding a chapel which I don’t

think you’ve got

M54(ACKNOWLEDGE): No

M55(CHECK): So I’m going right

M56(REPLY-Y): Uh-huh, you’re going

right
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M57(CLARIFY): Make it a curve

sort_of

M58(CHECK): Down the way

M59(REPLY-Y): Down the way,...

uh-huh

M60(CLARIFY): Out towards the... the

right-hand side of your paper

M61(ACKNOWLEDGE): Okay

M62(QUERY-W): How far out towards

right-hand side

M63(UNCODED): Right

M65(CLARIFY): Not too far, just...

like you were drawing a circle but

not quite

M66(ACKNOWLEDGE): Okay

M68(ACKNOWLEDGE): Right

M69(ALIGN): Ehm, now you’re...

slightly less than an inch below the

chapel

M70(EXPLAIN): You haven’t got the

chapel. Ha ha ha

M71(ACKNOWLEDGE): No

M72(ALIGN): You’re about... two and

a half inches below the seven
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beeches.... Right you’re above the

M73(CHECK): Turn to the right of

them

M74(CLARIFY): Ehm, not really,

you’re underneath them

M75(REPLY-N): Oh. Oh no I’m not

M76(EXPLAIN): Well you should be

M77(ACKNOWLEDGE): Right

M78(EXPLAIN): You should be just

above the reclaimed fields

M79(ACKNOWLEDGE): Right, okay

M80(EXPLAIN): I can go down there

M81(ACKNOWLEDGE): Right... ehm

M82(INSTRUCT): And, I want you to

come... above them and round to the

right-hand side of them and

underneath them

M83(ACKNOWLEDGE): Right

M84(ALIGN): Right?... Dri--

M85(CHECK): Down to the right-hand

side

M86(CLARIFY): Round the right-hand

side and come right along underneath
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them

M87(ACKNOWLEDGE): Oh, right

M89(ACKNOWLEDGE): Okay

M90(INSTRUCT): Right and stop when

you get to... the line where they

stop

M91(ACKNOWLEDGE): Right, okay

M92(INSTRUCT): And I’d like you to

come... straight down the way...

towards crane bay

M93(ACKNOWLEDGE): Okay

M94(INSTRUCT): And when you get to

that curve of crane bay stick

closely to it

M95(ACKNOWLEDGE): Okay

M96(INSTRUCT): For... until you get

to that corner

M97(QUERY-W): Which corner

M98(CLARIFY): You see where the...

just opposite... the "c"... of crane

bay,...... diagonally opposite

M99(CHECK): Towards the north of

it, or to the

M100(REPLY-Y): Uh-huh
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M101(ACKNOWLEDGE): Right

M102(READY): Right

M103(ALIGN): Now you’re heading

towards vast meadow and attractive

cliffs

M104(REPLY-Y): Well... yes okay

M105(ACKNOWLEDGE): Right

M106(UNCLASSIFIABLE): Now I don’t

want you to stick to the coast,...

just opposite vast meadow

M107(INSTRUCT): Right, you’ve got to

come down in_between vast meadow and

the attractive cliffs

M108(ACKNOWLEDGE): Okay

M109(UNCLASSIFIABLE): In a straight

line between them once you’ve come

down,... ehm...... at a

southwesterly angle... towards them

and then in

M110(UNCLASSIFIABLE): Straight

in_between them

M111(ALIGN): Right

M112(REPLY-Y): Right

M113(CHECK): So I’m down near the
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attractive cliffs

M114(REPLY-Y): Uh-huh, you’re

in_between vast meadow

M115(CLARIFY): And attractive cliffs

M116(ACKNOWLEDGE): Okay

M117(INSTRUCT): And then you come

down in a southwesterly angle

again,... down the left-hand side of

the attractive cliffs

M118(ACKNOWLEDGE): Okay

M119(INSTRUCT): Stop when you get to

the bottom of them

M120(ACKNOWLEDGE): Okay

M121(QUERY-YN): Have you got

crashed spaceship marked

M122(REPLY-N): No

M124(EXPLAIN): Oh right... well I’m

quite close to the edge

M123(INSTRUCT): Ehm,... I’d like you

to head... m-- more_or_less

westwards curving slightly down the

way... towards... the left-hand side

of_the page... very very close to

the edge

M125(QUERY-W): I mean how far down
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do you want me to go

M126(CLARIFY): I want you to well

you’re heading towards the chestnut

tree but you’re not,... ehm... going

diagonally towards it

M127(ALIGN): Right

M128(CLARIFY): Just come down the

side of the page for about an inch

and a half

M129(ACKNOWLEDGE): Okay

M130(CHECK): Then head towards

chestnut tree

M131(REPLY-Y): Uh-huh

M132(CLARIFY): Towards the finish

M133(ACKNOWLEDGE): Okay

M134(QUERY-W): Where’s the finish

M135(REPLY-W): At the chestnut tree

M136(ACKNOWLEDGE): Right

M137(CHECK): North of it

M138(REPLY-N): No

M139(REPLY-W): Just by the side of

it, at the the left-hand side of it
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M140(UNCLASSIFIABLE): Left-hand

side

M142(ACKNOWLEDGE): Okay

M143(EXPLAIN): That’s you.... I hope

------------------------------------------------------------------------
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Appendix C

Finding Formant Targets with
Parametric Curves

C.1 Algorithm

The algorithm used in this work was as follows:

1. Find sections of voiced speech using the entropics pitch tracker.

2. Calculate F1 and F2 formant values over the area using the Entropic’s

formant tracker.

3. Move left to right across the voiced speech a 10ms frame at a time. Fit a

simple parametric curve to the data using mean squared error (MSE) (see

below) from that point over windows varying from 40-100ms.

4. For each frame retain the target value estimated by the parametric curve

with the lowest average MSE per frame (Total MSE/window size).

C.2 Fitting Parametric Curves Using Mean Squared

Error

The calculations required to fit a simple parametric curve using mean squared

error are as follows:

For each point [x(i), y(i)] over a window of n points, the mean squared error E

for a curve y = ax2 + bx + c is:
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E =

n∑
i=0

(y(i) − (ax(i)2 + bx(i) + c))2

To find the minimum error differentiate in parts with respect to a, b, c and giving:

da

dE
=

n∑
i=0

2ax(i)4 + 2bx(i)3 + 2cx(i)2 − 2x(i)2y(i)

db

dE
=

n∑
i=0

2ax(i)3 + 2bx(i)2 + 2cx(i) − 2x(i)y(i)

dc

dE
=

n∑
i=0

2ax(i)2 + 2bx(i) + 2c − 2y(i)

Set all three equations to 0 for the minimum error and substitute to find a, b, c in

terms of x(i) and y(i). To simplify for calculation in a subroutine in a computer

program the resulting equations can be rearranged using temporary variables

p, q, r, s, t as follows:

p = n
∑

x(i)3 −
∑

x(i)2
∑

x(i)

q = n
∑

x(i)2 −
∑

x(i)
∑

x(i)

r = n
∑

x(i)4 −
∑

x(i)2
∑

x(i)2

s = n
∑

x(i)y(i) −
∑

x(i)
∑

y(i)

t = n
∑

x(i)2y(i) −
∑

x(i)2
∑

y(i)

and a, b, c are calculated as follows:

a =
ps − tq

p2 − rq

b =
pt − rs

p2 − rq

c =

∑
y(i) − a

∑
x(i)2 − b

∑
x(i)

n
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