Statistical Substring Reduction in Linear Time

Xueqiang Lü
Le Zhang
Institute of Computational Linguistics Institute of Computer Software \＆Theory
Peking University，Beijing
Northeastern University，Shenyang
lxq＠pku．edu．cn
ejoy＠xinhuanet．com

Junfeng Hu
Institute of Computational Linguistics
Peking University，Beijing
Hujf＠pku．edu．cn

Abstract

We study the problem of efficiently re－ moving equal frequency n－gram sub－ strings from an n－gram set，formally called Statistical Substring Reduction （SSR）．SSR is a useful operation in cor－ pus based multi－word unit research and new word identification task of orien－ tal language processing．We present a new SSR algorithm that has linear time $(O(n)$ ），and prove its equivalence with the traditional $O\left(n^{2}\right)$ algorithm． In particular，using experimental re－ sults from several corpora with differ－ ent sizes，we show that it is possible to achieve performance close to that theo－ retically predicated for this task．Even in a small corpus the new algorithm is several orders of magnitude faster than the $O\left(n^{2}\right)$ one．These results show that our algorithm is reliable and efficient， and is therefore an appropriate choice for large scale corpus processing．

1 Introduction

Multi－word unit has received much attention in corpus oriented researches．Often the first step of multi－word unit processing is to acquire large n－gram set（word or character n－gram ）from raw corpus．Then various linguistic and statis－ tical methods can be employed to extract multi－ word units from the initial n－grams ．（Chang， 1997）applied a two stage optimization scheme to improve the overall accuracy of an English

Compound Word Extraction task．（Merkel and Andersson，2000）used two simple statistical fil－ ters（ frequency－based and entropy－based）to re－ move ill－formed multi－word units（MWUs）in a terminology extraction task．（Moon and Lee， 2002）investigated the use of multi－word trans－ lation units in a Korean－to－Japanese MT system． These efforts，while varied in specifics，can all benefit from a procedure called n－gram Statisti－ cal Substring Reduction．The notation of＂Statis－ tical Substring Reduction＂refers to the removal of equal frequency n－gram substrings from an n－gram set．For instance，if both n－grams＂the people＇s republic＂and＂the people＇s republic of China＂occur ten times in a corpus，the former should be removed from the n－gram set，for it being the substring of the latter n－gram with the same frequency．The same technique can be ap－ plied to some oriental languages（such as Chinese， Japanese，Korean etc．）of which the basic pro－ cessing unit is single character rather than word． In the case of Chinese，say the two character n－ grams＂华人民共和国＂and＂中华人民共和国＂ have the same frequency in corpus，the former should be removed．

While there exists efficient algorithm to acquire arbitrary n－gram statistics from large corpus（ $\mathrm{Na}-$ gao and Mori，1994），no ideal algorithm for SSR has been proposed to date．When the initial n－ gram set contains $n n$－grams，traditional SSR al－ gorithm has an $O\left(n^{2}\right)$ time complexity（Han et al．，2001），and is actually intractable for large cor－ pus．In this paper，we present a new linear time SSR algorithm．

The rest of this paper is organized as follows，

Section 2 introduces basic definitions used in this paper．Section 3 presents two SSR algorithms，the latter has an $O(n)$ time complexity．This is fol－ lowed in Section 4 with the mathematical proof of the equivalence of the two algorithms．Exper－ imental results on three data sets with different sizes are reported in Section 5．We reach our con－ clusion in Section 6.

2 Preliminaries

In the rest of this paper，we shall denote by \mathbb{N} the set of all integers larger than 0 and denote by \mathbb{N}^{*} the set of all non－negative integers．

Definition 1 The smallest counting unit in a cor－ pus \mathcal{C} is called a＂statistical unit＂，denoted by lowercase letters．All other symbols in \mathcal{C} are called＂non－statistical unit＂．We denote by Φ the set of all statistical units in \mathcal{C} ．

Viewed in this way，a corpus \mathcal{C} is just a finite sequence of statistical units and non－statistical units．When dealing with character n－grams，the statistical units are all characters occur in corpus \mathcal{C} ；similarly，the statistical units of word n－grams are all words found in \mathcal{C} ．In previous example ＂中＂，＂人＂，＂国＂are statistical units for character n－grams and＂the＂，＂people＇s＂，＂China＂are sta－ tistical units for word n－grams．A particular ap－ plication may include other symbols in a corpus as statistical units（such as numbers and punctua－ tions）．

Definition 2 A string is a sequence of one or more statistical units，denoted by uppercase let－ ters．The set of all strings is denoted by Ψ ．If $X \in \Psi$ ，then there exists an integer $n \in \mathbb{N}$ such that $X=x_{1} x_{2} \ldots x_{n}$ ，where $x_{i} \in \Phi,(i=$ $1,2, \ldots, n)$ ．We denote the ith statistical unit in X as Char（X，i）．Then Char（X，i）$=X_{i}$ ． The length of X is defined to be the number of statistical units in X ，denoted by Len（X）．If Len $(\mathrm{X})=\mathrm{n}$ ，then X is called an n－gram ．

Definition 3 Let $Y \in \Psi$ ，and $Y=$ $y_{1} y_{2} \ldots y_{n}(n \in \mathbb{N}, n \geq 2)$ ，then any $p(p \in \mathbb{N}, p<n)$ consecutive statistical units of Y comprise a string X that is called the substring of Y ．Equally，we call Y the super－string of X ．We denote this relationship by $X \propto Y$ ．The left most p consecutive statistical
units of Y make up of string $X_{\text {left }}$ that is called the left substring of Y ，denoted by $X_{\text {left }} \propto_{L} Y$ ． Similarly，the right most p consecutive statistical units of Y constitute string $X_{\text {right，}}$ ，the right substring of Y ，written as $X_{\text {right }} \propto_{R} Y$ ．We use $\operatorname{Left}(\mathrm{Y}, \mathrm{P})$ and Right（ Y, p ）to denote Y＇s left substring with length p and right substring with length p ，respectively．

Definition 4 For $X \in \Psi, X=x_{1} x_{2} \ldots x_{n}(n \in$ \mathbb{N} ），if X occurs at some position in the finite se－ quence of statistical units in \mathcal{C} ，we say X occurs in \mathcal{C} at that position，and call X a statistical string of \mathcal{C} ．The set of all statistical strings in \mathcal{C} is de－ noted by Ψ^{C} ．Obviously，we have $\Psi^{C} \subset \Psi$ ．
Definition 5 For $X \in \Psi^{C}$ ，the number of differ－ ent positions where X occurs in \mathcal{C} is called the frequency of X in \mathcal{C} ，denoted by $f(x)$ ．

Definition 6 A high－frequency string is a statis－ tical string in Ψ^{C} whose frequency is no less than $f_{0}\left(f_{0} \in \mathbb{N}\right)$ ．We denote by $\Psi_{f_{0}}^{C}$ the set of all high－frequency strings in Ψ^{C} ．The set of all strings in $\Psi_{f_{0}}^{C}$ such that $m_{1} \leq \operatorname{Len}(\mathrm{X}) \leq$ $m_{2},\left(m_{1}, m_{2} \in \mathbb{N}\right.$ and $\left.m_{1}<m_{2}\right)$ is written as $\Psi_{m_{1} m_{2} f_{0}}^{C}$ ．For convenience，we use Ω as a short－ hand notation for $\Psi_{m_{1} m_{2} f_{0}}^{C}$ ．Obviously，we have $\Omega \subset \Psi_{f_{0}}^{C} \subset \Psi^{C}$.

Definition 7 For $X, Y \in \Omega$ ，if $X \propto Y$ and $f(X)=f(Y)$ ，then we say X can be re－ duced by Y ，or equally，Y can reduce X ．If X can be reduced by some Y then we say X can be reduced．Let $\Omega^{\prime}=\{X \in \Omega \mid \exists Y \in$ Ω, X can be reduced by $Y\}$ ．$\Omega_{0}=\Omega \backslash \Omega^{\prime}$ ．Then Ω^{\prime} denotes the set of strings in Ω that can be re－ duced，Ω_{0} denotes the set of strings in Ω that can not be reduced．Obviously $\Omega_{0} \subset \Omega$ ．

Definition 8 An algorithm that accepts Ω as in－ put and outputs Ω_{0} is a Statistical Substring Re－ duction algorithm．

3 Two Statistical Substring Reduction Algorithms

3．1 An $O\left(n^{2}\right)$ SSR Algorithm

Suppose $|\Omega|=n$ ，then Ω has n statistical strings． The i th $(1 \leq i \leq n)$ statistical string in Ω can be represented as a 3－tuple $<X_{i}, f_{i}, M_{i}>$ ，where X_{i} denote the i th statistical string，$f_{i}=f\left(X_{i}\right)$ is
the frequency of X_{i} in corpus \mathcal{C} and M_{i} is a merging flag. $M_{i}=0$ means X_{i} is not reduced and $M_{i}=1$ indicates X_{i} being reduced by its superstring. The initial value of all $\left\{M_{i}\right\}^{\prime} s$ are set to 0 . The first SSR algorithm is given in Algorithm 1.

```
Algorithm 1 An \(O\left(n^{2}\right)\) Statistical Substring Re-
duction Algorithm
    Input: \(\Omega\)
    Output: \(\Omega_{0}\)
    for \(i=1\) to \(n\) do
        for \(j=1\) to \(n\) do
            if \(X_{i} \propto X_{j}\) and \(f_{i}=f_{j}\) then
                \(M_{i}=1\)
    for \(i=1\) to \(n\) do
        if \(M_{i}=0\) then
            output \(X_{i}\)
```

Obviously, this algorithm has an $O\left(n^{2}\right)$ time complexity, making it infeasible to handle large scale corpora.

3.2 An $O(n)$ SSR Algorithm

Algorithm 1 tries to find a string's super-strings by comparing it with all strings in Ω. Since only a small portion of strings in Ω can be potential super-strings of any given string, a great deal of time will be saved if we restrict the searching space to the possible super-string set. Based on this motivation we now describe a faster SSR algorithm.

To describe algorithm 2, we need to introduce the notation of reversed string first:

Definition 9 Let $X \in \Psi, X=x_{1} x_{2} \ldots x_{n}(n \in$ \mathbb{N}), then $X_{R}=x_{n} x_{n-1} \ldots x_{1}$ is called the reversed string of X. All reversed strings of statistical units in Ω comprise the reversed string set Ω_{R}. Reverse (X) returns the reversed string of X.

In this algorithm, all steps have a time complexity of $O(n)$ except step 3 and 9 , which perform sorting on n statistical strings. It is worth mention that sorting can be implemented with radix sort, an $O(n)$ operation, therefore this algorithm has an ideal time complexity of $O(n)$. For instance, if the maximum length of statistical unit in Ω is m, we can perform a radix sort by an m-way statistical unit collection (padding

```
Algorithm 2 An \(O(n)\) Statistical Substring Re-
duction Algorithm
    Input: \(\Omega\)
    Output: \(\Omega_{0}\)
    sort all statistical strings in \(\Omega\) in ascending or-
    der according to \(X_{i}\) 's value
    for \(i=1\) to \(n-1\) do
        if \(X_{i} \propto_{L} X_{i+1}\) and \(f_{i}=f_{i+1}\) then
            \(M_{i}=1\)
    for \(i=1\) to \(n\) do
        \(X_{i}=\) Reverse \(\left(X_{i}\right)\)
    sort all statistical strings in \(\Omega\) in ascending or-
    der according to \(X_{i}\) 's value
    for \(i=1\) to \(n-1\) do
        if \(X_{i} \propto_{L} X_{i+1}\) and \(f_{i}=f_{i+1}\) then
            \(M_{i}=1\)
    for \(i=1\) to \(n\) do
        \(X_{i}=\) Reverse \(\left(X_{i}\right)\)
        if \(M_{i}=0\) then
            output \(X_{i}\)
```

all strings to length m with empty statistical unit). When special requirement on memory usage or speed is not very important, one can use quick sort to avoid additional space requirement imposed by radix sort. Quick sort is an $O(n \log n)$ operation, so the overall time complexity of algorithm 2 is $O(n \log n)$.

In algorithm 2, only step 6 and 12 modify the merging flag, we call them left reduction and right reduction of algorithm 2. In algorithm 1, each string must be compared with all strings in Ω whereas in algorithm 2 , each string is only required to be compared with two strings. This is why algorithm 2 reduces the number of comparison tremendously compared to algorithm 1.

4 The equivalence of the Two Algorithms

While it is obvious to see that algorithm 1 is an SSR algorithm, it is unclear how can algorithm 2 have the same function, despite its lower time complexity. In this section we will give a mathematical proof of the equivalence of the two algorithms: they yield the same output given the same input set (not considering element order).

For a given corpus \mathcal{C}, Φ is a finite set, the finity of which is determined by the finity of \mathcal{C}
．Since any two statistical units can be assigned an ordering（either by machine code representa－ tion or specified manually）such that the two sta－ tistical units are ordered from less to greater one． We can denote this ordering by \preceq ．It is obvious that this ordering satisfies reflexivity，antisymme－ try and transitivity．For any given $a, b \in \Phi$ ，either $a \preceq b$ or $b \preceq a$ holds，therefore $<\Phi, \preceq>$ is a fi－ nite well－ordered set．Here we introduce the sym－ bol \prec and write the condition $a \neq b$ and $a \preceq b$ as $a \prec b$ ．

Definition 10 For $X, Y \quad \Psi, X=$ $x_{1} x_{2} \ldots x_{n}(n \in \mathbb{N}), Y=y_{1} y_{2} \ldots y_{m}(m \in \mathbb{N})$ ． If $m=n$ and $\forall i(1 \leq i \leq m)$ such that $x_{i}=y_{i}$ ， then we say X is equal to Y ，denoted by $X=Y$ ． If $X \propto_{L} Y$ ，or $\exists p(1 \leq p \leq \min (n, m))$ such that $x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{p-1}=y_{p-1}$ and $X_{p} \prec Y_{p}$ ，then we say X is less than Y ． Whenever it is clear from context it is denoted by $X \prec Y$ ．If either $X=Y$ or $X \prec Y$ then we write $X \preceq Y$ ．

Under these definitions it is easy to check that $<$ $\Psi, \preceq>,<\Psi^{C}, \preceq>,<\Omega, \preceq>$ and $<\Omega_{R}, \preceq>$ are all well－ordered sets．

Definition 11 Suppose $X, Y \in \Omega$（or Ω_{R} ），and $X \prec Y, \forall Z \in \Omega\left(\right.$ or $\left.\Omega_{R}\right)$ whenever $X \prec Z$ we have $Y \prec Z$ ．Then we say X is the proceeder of Y in $\Omega\left(\right.$ or $\left.\Omega_{R}\right)$ and Y is the successor of X in Ω （or Ω_{R} ）

Algorithm 1 compares current statistical string （ X_{i} ）to all statistical strings in Ω in order to de－ cide whether the statistical string can be reduced or not．By comparison，algorithm 2 only com－ pares X_{i} with its successors in Ω（or Ω_{R} ）to find its super－strings．

The seemingly in－equivalence of the two algorithms can be illustrated by the following example：Suppose we have the following four statistical strings with $\mathrm{f}(\mathrm{X} 1)=\mathrm{f}(\mathrm{X} 1)=\mathrm{f}(\mathrm{X} 3)=\mathrm{f}(\mathrm{X} 4)=f_{0}$ ：

X1＝＂中华人民共和国＂（the people’s republic of China） X2＝＂华人民共和国＂（people＇s republic of China） X3＝＂中华人民共和＂（the people＇s republic of） X4＝＂人民共＂ （people＇s republic）

According to definition $7, X_{2}, X_{3}, X_{4}$ will all be reduced by X_{1} in algorithm 1 ．In algorithm2，X_{2} is the right substring of X_{1} ，it will be reduced
by $X 1$ in right reduction．Similarly，X_{3} can be reduced by X_{1} in left reduction for being left substring of X_{1} ．However，X_{4} is neither the left substring of X_{1} nor X_{1}＇s right substring．It will not be reduced directly by X_{1} in algorithm 2．As a matter of fact，X_{4} will be reduced indirectly by X_{1} in algorithm 2 ，the reason of which will be explained soon．

To prove the equivalence of algorithm 1 and 2， the following lemmas need to be used．Because of the space limitation，the proofs of some lemmas are omitted．
Lemma 1 If $X \in \Psi$ and $X \propto Y \in \Psi^{C}$ then $X \in \Psi^{C}$ and $f(X) \geq f(Y)$ ．
Explanation：a statistical string＇s substring is also a statistical string，whose frequency is no less than its super－string＇s．
Lemma 2 For $X, Z \in \Omega, Y \in \Psi$ ．If $X \propto Y \propto$ Z and $f(X)=f(Z)$ then $f(Y)=f(X)=f(Z)$ and $Y \in \Omega$ ．

Proof：Since $Y \in \Psi, Y \propto Z \in \Omega \subset \Psi^{C}$ ．by Lemma 1 we have $Y \in \Psi^{C}$ and $f(Y) \geq f(Z)$ ． Considering $X \in \Omega \subset \Psi, X \propto Y \in \Psi^{C}$ ， by Lemma 1 we get $f(X) \geq f(Y)$ ．Since $f(X)=f(Z)$ it follows that $f(Y)=f(X)=$ $f(Z)$ ．Moreover $X, Z \in \Omega$ ，by definition 6 we get $m_{1} \leq \operatorname{Len}(X) \leq m_{2}, m_{1} \leq \operatorname{Len}(Z)$ $\leq m_{2}$ and $f(X) \geq f_{0}, f(Y) \geq f_{0}$ ．Considering $X \propto Y \propto Z$ ，from definition 3，we conclude that $\operatorname{Len}(X)<\operatorname{Len}(Y)<\operatorname{Len}(Z)$ ．There－ fore $m_{1}<\operatorname{Len}(Y)<m_{2}$ ．Since $f(Y)=$ $f(X)=f(Z) \geq f_{0}$ ．From definition $6 Y \in \Omega$ ．

Lemma 2 is the key to our proof．It states that the substring sandwiched between two equal frequency statistical strings must be a statistical string with the same frequency．In the above ex－ ample both＂中华人民共和国＂and＂人民共＂ occur f_{0} times．By Lemma 2 ＂华人民共和国＂， ＂中华人民共和＂and all other string sandwiched between X_{1} and X_{4} will occur in Ω with the fre－ quency of f_{0} ．Therefore $X_{4}=$＂人民共＂can be reduced by $X_{1}=$＂中华人民共和国＂indirectly in algorithm 2.

Lemma 3 If $X, Y, Z \in \Omega$ ．$X \prec Y \prec Z$ and $X \propto_{L} Z$ then $X \propto_{L} Y$.
Lemma 4 If $X, Y \in \Omega\left(\right.$ or $\left.\Omega_{R}\right), X \propto_{L} Y$ ，
$\operatorname{Len}(\mathrm{X})+1=\operatorname{Len}(\mathrm{Y}), f(X)=f(Y)$; then Y is X 's successor in Ω or $\left(\Omega_{R}\right)$.

Lemma 5 If $X, Y \in \Omega$ and $X \propto_{R} Y$ then $X_{R}, Y_{R} \in \Omega_{R}$ and $X_{R} \propto_{L} Y_{R}$.
Lemma 6 If $X, Y \quad \Omega, X \propto Y$, $\operatorname{Len}(\mathrm{X})+1=\operatorname{Len}(\mathrm{Y}), f(X)=f(Y)$ then X will be reduced in algorithm 2.

Lemma 7 If $X, Y \in \Omega, X \propto Y, f(X)=f(Y)$, then X will be reduced in algorithm 2.

Proof: If Len (X) $+1=\operatorname{Len}(\mathrm{Y})$ the result follows immediately after applying Lemma 6. We now concentrate on the situation when $\operatorname{Len}(\mathrm{Y})>\operatorname{Len}(\mathrm{X})+1$. Let $X=$ $x_{1} x_{2} \ldots x_{n}(n \in \mathbb{N})$. Since $X \propto Y$, from definition 3 there exists $k, m \in \mathbb{N}^{*}$, which can not be zero at the same time, such that $Y=$ $y_{1} y_{2} \ldots y_{k} x_{1} x_{2} \ldots x_{n} z_{1} z_{2} \ldots z_{m}$. If $k \neq 0$, let $M=y_{k} x_{1} x_{2} \ldots x_{n}$; if $m \neq 0$, let $M=$ $x_{1} x_{2} \ldots x_{n} z_{1}$. In any case we have Len (X) + $1=\operatorname{Len}(\mathrm{M})<\operatorname{Len}(\mathrm{Y})$. Considering $X, Y \in$ $\Omega, X \propto M \propto Y, f(X)=f(Y)$, by Lemma 2 we have $M \in \Omega$ and $f(M)=f(X)$, therefore Len (X) $+1=\operatorname{Len}(M)$, by Lemma $6 X$ will be reduced in algorithm 2 .

Now we arrive the main result of this paper:
Theorem 1 Algorithm 1 and 2 are equivalent, that is: given the same input Ω they both yield the same output Ω_{0}.

Proof: Suppose $X \in \Omega$. If X can be reduced in algorithm 2, obviously X can also be reduced in algorithm 1. If X can be reduced in algorithm 1 , then there exists a $Y \in \Omega$ such that $X \propto Y, f(X)=f(Y)$. By Lemma $7 X$ will be reduced in algorithm 2 . So given the same Ω as input, the two algorithms will output the same Ω_{0}.

5 Experiment

To measure the performances of the two SSR algorithms we conduct experiments on three Chinese corpora with different sizes (table 1). We first extract 2-20 n-grams from these raw corpora using Nagao's algorithm. In our experiments, the high-frequency threshold is chosen to be $f_{0}=\left\lfloor\log _{10} n\right\rfloor$, and n is the total number of characters in corpus, discarding all n-grams with frequency less than f_{0}. Then we run the two

SSR algorithms on the initial n-gram set Ω and record their running times (not including I/O operation). All results reported in this paper are obtained on a PC with a single PIII 1 G Hz CPU running GNU/Linux. Table 2 summarizes the results we obtained ${ }^{1}$.

We can make several useful observations from table 2. First, the SSR algorithm does reduce the size of n-gram set significantly: the reduced n gram set Ω_{0} is $30 \%-35 \%$ smaller than Ω, conforming the hypothesis that a large amount of initial n-gram set are superfluous "garbage substrings". Second, the data in table 2 indicates that the newly proposed SSR algorithm is vastly superior to algorithm 1 in terms of speed: even in small corpus like corpus1 the speed of algorithm 2 is 1500 times faster. This difference is not surprising. Since algorithm 1 is an $O\left(n^{2}\right)$ algorithm, it is infeasible to handle even corpus of modest size, whereas the algorithm 2 has an ideal $O(n)$ time complexity, making even very large corpus tractable under current computational power: it takes less than five minutes to reduce a 2-20 n gram set from corpus of 1 Giga bytes.

6 Conclusion

Ever since the proposal of Nagao's n-gram extraction algorithm, the acquisition of arbitrary n gram statistics is no longer a problem for large scale corpus processing. However, the fact that no efficient SSR algorithm has been proposed to deal with redundant n-gram substrings in the initial n-gram set has prevented statistical substring reduction from being used widely. Actually, almost all researches involving large n-gram acquisition (statistical lexicon acquisition, multi-word unit research, lexicon-free word segmentation, to name just a few) can benefit from SSR operation. We have shown that a simple fast SSR algorithm can effectively remove up to 30% useless n-gram substrings. SSR algorithm can also combine with other filtering methods to improve filter accuracy. In a Chinese multi-word unit acquisition task, a combined filter with fast SSR operation and simple mutual information achieved good accuracy (Zhang et al., 2003). In the future, we would like

[^0]| Label | Source | Domain | Size | Characters |
| :---: | :---: | :---: | ---: | ---: |
| corpus1 | People Daily of Jan, 1998 | News | 3.5 M | 1.8 million |
| corpus2 | People Daily of 2000 | News | 48 M | 25 million |
| corpus3 | Web pages from internet | Various topics (novel, politics etc.) | 1 GB | 520 million |

Table 1: Summary of the three corpora

Label	m_{1}	m_{2}	f_{0}	$\|\Omega\|$	$\left\|\Omega_{0}\right\|$	Algo 1	Algo 2
corpus1	2	20	6	110890	75526	19 min 20 sec	$\mathbf{0 . 8 2} \mathbf{~ s e c}$
corpus2	2	20	7	1397264	903335	40 hours	$\mathbf{1 4 . 8 7} \mathbf{~ s e c}$
corpus3	2	20	8	19737657	12888632	N/A	$\mathbf{1 8 5 . 8 7} \mathbf{~ s e c}$

Table 2: 2-20-gram statistical substring reduction results.
to explore the use of SSR operation in bilingual multi-word translation unit extraction task.

In this paper, a linear time statistical substring reduction algorithm is presented. The new algorithm has an ideal $O(n)$ time complexity and can be used to rule out redundant n-gram substrings efficiently. Experimental result suggests the fast SSR algorithm can be used as an effective preprocessing step in corpus based multi-word research.

Acknowledgements

This research was funded by a grant from the National High Technology Research and Development Program (863 Program, Beijing, No. 2002AA117010-08), a grant from the National Natural Science Foundation (Beijing, No. 60083006) and a grant from the Major State Basic Research Development Program (973 Program, Beijing, No. G199803050111).

References

Jing-Shin Chang. 1997. Automatic Lexicon Acquisition and Precision-Recall Maximization for Untagged Text Corpora. Ph.D. thesis, National Tsing-Hua University, National Tsing-Hua University Hsinchu, Taiwan 300, ROC.

Kesong Han, Yongcheng Wang, and Guilin Chen. 2001. Research on fast high-frequency extracting and statistics algorithm with no thesaurs. Journal of Chinese Information Processing (in Chinese).
M. Merkel and M. Andersson. 2000. Knowledge-lite extraction of multi-word units with language filters and entropy thresholds.

Kyonghi Moon and Jong-Hyeok Lee. 2002. Translation of discontinuous multi-word translation units in a korean-to-japanese machine translation system. International Journal of Computer Processing of Oriental Languages, 15(1):79-99.

Makoto Nagao and Shinsuke Mori. 1994. A new method of n-gram statistics for large number of n and automatic extraction of words and phrases from large text data of japanese. In COLING-94.

Le Zhang, Xueqiang LÜ, Yanna Shen, and Tianshun Yao. 2003. A statistical approach to extract chinese chunk candidates from large corpora. In Proceeding of 20th International Conference on Computer Processing of Oriental Languages (ICCPOLO3), pages 109-117.

[^0]: ${ }^{1}$ We did not run Algo 1 on corpus 3 for it is too large to be efficiently handled by algorithm 1.

