
IJ
C

N
L

P2
00

4,
 S

an
ya

, H
ai

 N
an

 is
la

nd
, C

hi
na

Statistical Substring Reduction in Linear Time

Xueqiang Lü
Institute of Computational Linguistics

Peking University, Beijing
lxq@pku.edu.cn

Le Zhang
Institute of Computer Software & Theory

Northeastern University, Shenyang
ejoy@xinhuanet.com

Junfeng Hu
Institute of Computational Linguistics

Peking University, Beijing
Hujf@pku.edu.cn

Abstract

We study the problem of efficiently re-
moving equal frequency n-gram sub-
strings from an n-gram set, formally
called Statistical Substring Reduction
(SSR). SSR is a useful operation in cor-
pus based multi-word unit research and
new word identification task of orien-
tal language processing. We present
a new SSR algorithm that has linear
time (O(n)), and prove its equivalence
with the traditional O(n2) algorithm.
In particular, using experimental re-
sults from several corpora with differ-
ent sizes, we show that it is possible to
achieve performance close to that theo-
retically predicated for this task. Even
in a small corpus the new algorithm is
several orders of magnitude faster than
the O(n2) one. These results show that
our algorithm is reliable and efficient,
and is therefore an appropriate choice
for large scale corpus processing.

1 Introduction

Multi-word unit has received much attention in
corpus oriented researches. Often the first step
of multi-word unit processing is to acquire large
n-gram set (word or character n-gram) from
raw corpus. Then various linguistic and statis-
tical methods can be employed to extract multi-
word units from the initial n-grams . (Chang,
1997) applied a two stage optimization scheme
to improve the overall accuracy of an English

Compound Word Extraction task. (Merkel and
Andersson, 2000) used two simple statistical fil-
ters (frequency-based and entropy-based) to re-
move ill-formed multi-word units (MWUs) in a
terminology extraction task. (Moon and Lee,
2002) investigated the use of multi-word trans-
lation units in a Korean-to-Japanese MT system.
These efforts, while varied in specifics, can all
benefit from a procedure called n-gram Statisti-
cal Substring Reduction. The notation of “Statis-
tical Substring Reduction” refers to the removal
of equal frequency n-gram substrings from an
n-gram set. For instance, if both n-grams “the
people’s republic” and “the people’s republic of
China” occur ten times in a corpus, the former
should be removed from the n-gram set, for it
being the substring of the latter n-gram with the
same frequency. The same technique can be ap-
plied to some oriental languages (such as Chinese,
Japanese, Korean etc.) of which the basic pro-
cessing unit is single character rather than word.
In the case of Chinese, say the two character n-
grams “

���������
	
” and “ � ���������	 ”

have the same frequency in corpus, the former
should be removed.

While there exists efficient algorithm to acquire
arbitrary n-gram statistics from large corpus (Na-
gao and Mori, 1994), no ideal algorithm for SSR
has been proposed to date. When the initial n-
gram set contains n n-grams , traditional SSR al-
gorithm has an O(n2) time complexity (Han et
al., 2001), and is actually intractable for large cor-
pus. In this paper, we present a new linear time
SSR algorithm.

The rest of this paper is organized as follows,

Section 2 introduces basic definitions used in this
paper. Section 3 presents two SSR algorithms, the
latter has an O(n) time complexity. This is fol-
lowed in Section 4 with the mathematical proof
of the equivalence of the two algorithms. Exper-
imental results on three data sets with different
sizes are reported in Section 5. We reach our con-
clusion in Section 6.

2 Preliminaries

In the rest of this paper, we shall denote by N the
set of all integers larger than 0 and denote by N

∗

the set of all non-negative integers.

Definition 1 The smallest counting unit in a cor-
pus C is called a “statistical unit”, denoted by
lowercase letters. All other symbols in C are
called “non-statistical unit”. We denote by Φ the
set of all statistical units in C .

Viewed in this way, a corpus C is just a finite
sequence of statistical units and non-statistical
units. When dealing with character n-grams , the
statistical units are all characters occur in corpus
C ; similarly, the statistical units of word n-grams
are all words found in C . In previous example
“ � ”, “

�
”, “
	

” are statistical units for character
n-grams and “the”, “people’s”, “China” are sta-
tistical units for word n-grams . A particular ap-
plication may include other symbols in a corpus
as statistical units (such as numbers and punctua-
tions).

Definition 2 A string is a sequence of one or
more statistical units, denoted by uppercase let-
ters. The set of all strings is denoted by Ψ. If
X ∈ Ψ, then there exists an integer n ∈ N

such that X = x1x2 . . . xn, where xi ∈ Φ, (i =
1, 2, . . . , n). We denote the ith statistical unit in
X as Char(X,i). Then Char(X,i) = Xi.
The length of X is defined to be the number of
statistical units in X , denoted by Len(X). If
Len(X)=n, then X is called an n-gram .

Definition 3 Let Y ∈ Ψ, and Y =
y1y2 . . . yn (n ∈ N, n ≥ 2), then any
p (p ∈ N, p < n) consecutive statistical
units of Y comprise a string X that is called
the substring of Y . Equally, we call Y the
super-string of X . We denote this relationship by
X ∝ Y . The left most p consecutive statistical

units of Y make up of string Xleft that is called
the left substring of Y , denoted by Xleft ∝L Y .
Similarly, the right most p consecutive statistical
units of Y constitute string Xright, the right
substring of Y , written as Xright ∝R Y . We use
Left(Y,p) and Right(Y,p) to denote Y ’s
left substring with length p and right substring
with length p, respectively.

Definition 4 For X ∈ Ψ, X = x1x2 . . . xn(n ∈
N), if X occurs at some position in the finite se-
quence of statistical units in C , we say X occurs
in C at that position, and call X a statistical string
of C . The set of all statistical strings in C is de-
noted by ΨC . Obviously, we have ΨC ⊂ Ψ.

Definition 5 For X ∈ ΨC , the number of differ-
ent positions where X occurs in C is called the
frequency of X in C , denoted by f(x).

Definition 6 A high-frequency string is a statis-
tical string in ΨC whose frequency is no less
than f0 (f0 ∈ N). We denote by ΨC

f0
the set

of all high-frequency strings in ΨC . The set of
all strings in ΨC

f0
such that m1 ≤ Len(X) ≤

m2, (m1,m2 ∈ N and m1 < m2) is written as
ΨC

m1m2f0
. For convenience, we use Ω as a short-

hand notation for ΨC
m1m2f0

. Obviously, we have
Ω ⊂ ΨC

f0
⊂ ΨC .

Definition 7 For X,Y ∈ Ω, if X ∝ Y and
f(X) = f(Y), then we say X can be re-
duced by Y , or equally, Y can reduce X . If
X can be reduced by some Y then we say X

can be reduced. Let Ω′ = {X ∈ Ω|∃ Y ∈
Ω, X can be reduced by Y }. Ω0 = Ω \ Ω′. Then
Ω′ denotes the set of strings in Ω that can be re-
duced, Ω0 denotes the set of strings in Ω that can
not be reduced. Obviously Ω0 ⊂ Ω.

Definition 8 An algorithm that accepts Ω as in-
put and outputs Ω0 is a Statistical Substring Re-
duction algorithm.

3 Two Statistical Substring Reduction
Algorithms

3.1 An O(n2) SSR Algorithm

Suppose |Ω| = n, then Ω has n statistical strings.
The ith (1 ≤ i ≤ n) statistical string in Ω can be
represented as a 3-tuple < Xi, fi,Mi >, where
Xi denote the ith statistical string, fi = f(Xi) is

2

the frequency of Xi in corpus C and Mi is a merg-
ing flag. Mi = 0 means Xi is not reduced and
Mi = 1 indicates Xi being reduced by its super-
string. The initial value of all {Mi}

′s are set to 0.
The first SSR algorithm is given in Algorithm 1.

Algorithm 1 An O(n2) Statistical Substring Re-
duction Algorithm

1: Input: Ω
2: Output: Ω0

3: for i = 1 to n do
4: for j = 1 to n do
5: if Xi ∝ Xj and fi = fj then
6: Mi = 1
7: for i = 1 to n do
8: if Mi = 0 then
9: output Xi

Obviously, this algorithm has an O(n2) time
complexity, making it infeasible to handle large
scale corpora.

3.2 An O(n) SSR Algorithm

Algorithm 1 tries to find a string’s super-strings
by comparing it with all strings in Ω. Since only
a small portion of strings in Ω can be potential
super-strings of any given string, a great deal of
time will be saved if we restrict the searching
space to the possible super-string set. Based on
this motivation we now describe a faster SSR al-
gorithm.

To describe algorithm 2, we need to introduce
the notation of reversed string first:

Definition 9 Let X ∈ Ψ, X = x1x2 . . . xn(n ∈
N), then XR = xnxn−1 . . . x1 is called the re-
versed string of X . All reversed strings of statis-
tical units in Ω comprise the reversed string set
ΩR. Reverse(X) returns the reversed string
of X .

In this algorithm, all steps have a time com-
plexity of O(n) except step 3 and 9, which per-
form sorting on n statistical strings. It is worth
mention that sorting can be implemented with
radix sort, an O(n) operation, therefore this
algorithm has an ideal time complexity of O(n).
For instance, if the maximum length of statistical
unit in Ω is m, we can perform a radix sort
by an m-way statistical unit collection (padding

Algorithm 2 An O(n) Statistical Substring Re-
duction Algorithm

1: Input: Ω
2: Output: Ω0

3: sort all statistical strings in Ω in ascending or-
der according to Xi’s value

4: for i = 1 to n − 1 do
5: if Xi ∝L Xi+1 and fi = fi+1 then
6: Mi = 1
7: for i = 1 to n do
8: Xi=Reverse(Xi)
9: sort all statistical strings in Ω in ascending or-

der according to Xi’s value
10: for i = 1 to n − 1 do
11: if Xi ∝L Xi+1 and fi = fi+1 then
12: Mi = 1
13: for i = 1 to n do
14: Xi=Reverse(Xi)
15: if Mi = 0 then
16: output Xi

all strings to length m with empty statistical
unit). When special requirement on memory us-
age or speed is not very important, one can use
quick sort to avoid additional space require-
ment imposed by radix sort. Quick sort is
an O(n log n) operation, so the overall time com-
plexity of algorithm 2 is O(n log n).

In algorithm 2, only step 6 and 12 modify the
merging flag, we call them left reduction and right
reduction of algorithm 2. In algorithm 1, each
string must be compared with all strings in Ω
whereas in algorithm 2, each string is only re-
quired to be compared with two strings. This is
why algorithm 2 reduces the number of compari-
son tremendously compared to algorithm 1.

4 The equivalence of the Two
Algorithms

While it is obvious to see that algorithm 1 is an
SSR algorithm, it is unclear how can algorithm
2 have the same function, despite its lower time
complexity. In this section we will give a mathe-
matical proof of the equivalence of the two algo-
rithms: they yield the same output given the same
input set (not considering element order).

For a given corpus C , Φ is a finite set, the
finity of which is determined by the finity of C

3

. Since any two statistical units can be assigned
an ordering (either by machine code representa-
tion or specified manually) such that the two sta-
tistical units are ordered from less to greater one.
We can denote this ordering by �. It is obvious
that this ordering satisfies reflexivity, antisymme-
try and transitivity. For any given a, b ∈ Φ, either
a � b or b � a holds, therefore < Φ,�> is a fi-
nite well-ordered set. Here we introduce the sym-
bol ≺ and write the condition a 6= b and a � b as
a ≺ b.

Definition 10 For X,Y ∈ Ψ, X =
x1x2 . . . xn(n ∈ N), Y = y1y2 . . . ym(m ∈ N).
If m = n and ∀i(1 ≤ i ≤ m) such that xi = yi,
then we say X is equal to Y , denoted by X = Y .
If X ∝L Y , or ∃ p(1 ≤ p ≤ min(n,m))
such that x1 = y1, x2 = y2, . . . , xp−1 = yp−1

and Xp ≺ Yp, then we say X is less than Y .
Whenever it is clear from context it is denoted by
X ≺ Y . If either X = Y or X ≺ Y then we
write X � Y .

Under these definitions it is easy to check that <

Ψ,�> , < ΨC ,�>, < Ω,�> and < ΩR,�>

are all well-ordered sets.

Definition 11 Suppose X,Y ∈ Ω (or ΩR), and
X ≺ Y , ∀Z ∈ Ω (or ΩR) whenever X ≺ Z we
have Y ≺ Z . Then we say X is the proceeder of
Y in Ω (or ΩR) and Y is the successor of X in Ω
(or ΩR)

Algorithm 1 compares current statistical string
(Xi) to all statistical strings in Ω in order to de-
cide whether the statistical string can be reduced
or not. By comparison, algorithm 2 only com-
pares Xi with its successors in Ω (or ΩR) to find
its super-strings.

The seemingly in-equivalence of the
two algorithms can be illustrated by the
following example: Suppose we have
the following four statistical strings with
f(X1)=f(X1)=f(X3)=f(X4)=f0:

X1=“ ������������� ” (the people’s republic of China)
X2=“ ����������� ” (people’s republic of China)
X3=“ ����������� ” (the people’s republic of)
X4=“ ����� ” (people’s republic)

According to definition 7, X2, X3, X4 will all be
reduced by X1 in algorithm 1. In algorithm2, X2

is the right substring of X1, it will be reduced

by X1 in right reduction. Similarly, X3 can be
reduced by X1 in left reduction for being left
substring of X1. However, X4 is neither the left
substring of X1 nor X1’s right substring. It will
not be reduced directly by X1 in algorithm 2. As
a matter of fact, X4 will be reduced indirectly by
X1 in algorithm 2, the reason of which will be
explained soon.

To prove the equivalence of algorithm 1 and 2,
the following lemmas need to be used. Because of
the space limitation, the proofs of some lemmas
are omitted.

Lemma 1 If X ∈ Ψ and X ∝ Y ∈ ΨC then
X ∈ ΨC and f(X) ≥ f(Y).

Explanation: a statistical string’s substring is also
a statistical string, whose frequency is no less than
its super-string’s.

Lemma 2 For X,Z ∈ Ω, Y ∈ Ψ. If X ∝ Y ∝
Z and f(X) = f(Z) then f(Y) = f(X) = f(Z)
and Y ∈ Ω.

Proof: Since Y ∈ Ψ, Y ∝ Z ∈ Ω ⊂ ΨC . by
Lemma 1 we have Y ∈ ΨC and f(Y) ≥ f(Z).
Considering X ∈ Ω ⊂ Ψ, X ∝ Y ∈ ΨC ,
by Lemma 1 we get f(X) ≥ f(Y). Since
f(X) = f(Z) it follows that f(Y) = f(X) =
f(Z). Moreover X,Z ∈ Ω, by definition 6
we get m1 ≤ Len(X) ≤ m2,m1 ≤ Len(Z)
≤ m2 and f(X) ≥ f0, f(Y) ≥ f0. Considering
X ∝ Y ∝ Z , from definition 3, we conclude
that Len(X) < Len(Y) < Len(Z). There-
fore m1 < Len(Y) < m2. Since f(Y) =
f(X) = f(Z) ≥ f0. From definition 6 Y ∈ Ω.
2

Lemma 2 is the key to our proof. It states
that the substring sandwiched between two equal
frequency statistical strings must be a statistical
string with the same frequency. In the above ex-
ample both “ � ����������	 ” and “

� �!�
”

occur f0 times. By Lemma 2 “
�"�
���#�$	

”,
“ � ���!�%��� ” and all other string sandwiched
between X1 and X4 will occur in Ω with the fre-
quency of f0. Therefore X4 =“

�
���
” can be

reduced by X1=“ � ���������	 ” indirectly in
algorithm 2.

Lemma 3 If X,Y,Z ∈ Ω. X ≺ Y ≺ Z and
X ∝L Z then X ∝L Y .

Lemma 4 If X,Y ∈ Ω (or ΩR), X ∝L Y ,
4

Len(X)+1=Len(Y), f(X) = f(Y); then Y is
X’s successor in Ω or (ΩR).

Lemma 5 If X,Y ∈ Ω and X ∝R Y then
XR, YR ∈ ΩR and XR ∝L YR.

Lemma 6 If X,Y ∈ Ω, X ∝ Y ,
Len(X)+1=Len(Y), f(X) = f(Y) then
X will be reduced in algorithm 2.

Lemma 7 If X,Y ∈ Ω, X ∝ Y, f(X) = f(Y),
then X will be reduced in algorithm 2.

Proof: If Len(X)+1=Len(Y) the result
follows immediately after applying Lemma
6. We now concentrate on the situation
when Len(Y)>Len(X)+1. Let X =
x1x2 . . . xn(n ∈ N). Since X ∝ Y , from def-
inition 3 there exists k,m ∈ N

∗, which can
not be zero at the same time, such that Y =
y1y2 . . . ykx1x2 . . . xnz1z2 . . . zm. If k 6= 0, let
M = ykx1x2 . . . xn; if m 6= 0, let M =
x1x2 . . . xnz1. In any case we have Len(X) +
1 = Len(M) <Len(Y). Considering X,Y ∈
Ω, X ∝ M ∝ Y, f(X) = f(Y), by Lemma 2
we have M ∈ Ω and f(M) = f(X), therefore
Len(X) + 1 = Len(M), by Lemma 6 X will
be reduced in algorithm 2. 2

Now we arrive the main result of this paper:

Theorem 1 Algorithm 1 and 2 are equivalent,
that is: given the same input Ω they both yield
the same output Ω0.

Proof: Suppose X ∈ Ω. If X can be reduced
in algorithm 2, obviously X can also be reduced
in algorithm 1. If X can be reduced in algo-
rithm 1, then there exists a Y ∈ Ω such that
X ∝ Y, f(X) = f(Y). By Lemma 7 X will
be reduced in algorithm 2. So given the same Ω
as input, the two algorithms will output the same
Ω0. 2

5 Experiment

To measure the performances of the two SSR al-
gorithms we conduct experiments on three Chi-
nese corpora with different sizes (table 1). We
first extract 2-20 n-grams from these raw cor-
pora using Nagao’s algorithm. In our experi-
ments, the high-frequency threshold is chosen to
be f0 = blog10 nc, and n is the total number of
characters in corpus, discarding all n-grams with
frequency less than f0. Then we run the two

SSR algorithms on the initial n-gram set Ω and
record their running times (not including I/O op-
eration). All results reported in this paper are ob-
tained on a PC with a single PIII 1G Hz CPU run-
ning GNU/Linux. Table 2 summarizes the results
we obtained1 .

We can make several useful observations from
table 2. First, the SSR algorithm does reduce the
size of n-gram set significantly: the reduced n-
gram set Ω0 is 30% - 35% smaller than Ω, con-
forming the hypothesis that a large amount of
initial n-gram set are superfluous “garbage sub-
strings”. Second, the data in table 2 indicates that
the newly proposed SSR algorithm is vastly su-
perior to algorithm 1 in terms of speed: even in
small corpus like corpus1 the speed of algorithm
2 is 1500 times faster. This difference is not sur-
prising. Since algorithm 1 is an O(n2) algorithm,
it is infeasible to handle even corpus of modest
size, whereas the algorithm 2 has an ideal O(n)
time complexity, making even very large corpus
tractable under current computational power: it
takes less than five minutes to reduce a 2-20 n-
gram set from corpus of 1 Giga bytes.

6 Conclusion

Ever since the proposal of Nagao’s n-gram ex-
traction algorithm, the acquisition of arbitrary n-
gram statistics is no longer a problem for large
scale corpus processing. However, the fact that
no efficient SSR algorithm has been proposed to
deal with redundant n-gram substrings in the ini-
tial n-gram set has prevented statistical substring
reduction from being used widely. Actually, al-
most all researches involving large n-gram acqui-
sition (statistical lexicon acquisition, multi-word
unit research, lexicon-free word segmentation, to
name just a few) can benefit from SSR operation.
We have shown that a simple fast SSR algorithm
can effectively remove up to 30% useless n-gram
substrings. SSR algorithm can also combine with
other filtering methods to improve filter accuracy.
In a Chinese multi-word unit acquisition task, a
combined filter with fast SSR operation and sim-
ple mutual information achieved good accuracy
(Zhang et al., 2003). In the future, we would like

1We did not run Algo 1 on corpus 3 for it is too large to
be efficiently handled by algorithm 1.

5

Label Source Domain Size Characters
corpus1 People Daily of Jan, 1998 News 3.5M 1.8 million
corpus2 People Daily of 2000 News 48M 25 million
corpus3 Web pages from internet Various topics (novel, politics etc.) 1GB 520 million

Table 1: Summary of the three corpora

Label m1 m2 f0 |Ω| |Ω0| Algo 1 Algo 2
corpus1 2 20 6 110890 75526 19 min 20 sec 0.82 sec
corpus2 2 20 7 1397264 903335 40 hours 14.87 sec
corpus3 2 20 8 19737657 12888632 N/A 185.87 sec

Table 2: 2 - 20-gram statistical substring reduction results.

to explore the use of SSR operation in bilingual
multi-word translation unit extraction task.

In this paper, a linear time statistical substring
reduction algorithm is presented. The new algo-
rithm has an ideal O(n) time complexity and can
be used to rule out redundant n-gram substrings
efficiently. Experimental result suggests the fast
SSR algorithm can be used as an effective pre-
processing step in corpus based multi-word re-
search.

Acknowledgements

This research was funded by a grant from
the National High Technology Research and
Development Program (863 Program, Beijing,
No. 2002AA117010-08), a grant from the Na-
tional Natural Science Foundation (Beijing, No.
60083006) and a grant from the Major State Basic
Research Development Program (973 Program,
Beijing, No. G199803050111).

References
Jing-Shin Chang. 1997. Automatic Lexicon Ac-

quisition and Precision-Recall Maximization for
Untagged Text Corpora. Ph.D. thesis, National
Tsing-Hua University, National Tsing-Hua Univer-
sity Hsinchu, Taiwan 300, ROC.

Kesong Han, Yongcheng Wang, and Guilin Chen.
2001. Research on fast high-frequency extracting
and statistics algorithm with no thesaurs. Journal
of Chinese Information Processing (in Chinese).

M. Merkel and M. Andersson. 2000. Knowledge-lite
extraction of multi-word units with language filters
and entropy thresholds.

Kyonghi Moon and Jong-Hyeok Lee. 2002. Trans-
lation of discontinuous multi-word translation units
in a korean-to-japanese machine translation system.
International Journal of Computer Processing of
Oriental Languages, 15(1):79–99.

Makoto Nagao and Shinsuke Mori. 1994. A new
method of n-gram statistics for large number of n
and automatic extraction of words and phrases from
large text data of japanese. In COLING-94.

Le Zhang, Xueqiang LÜ, Yanna Shen, and Tianshun
Yao. 2003. A statistical approach to extract chinese
chunk candidates from large corpora. In Proceed-
ing of 20th International Conference on Computer
Processing of Oriental Languages (ICCPOL03),
pages 109–117.

6

