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Statistical approaches to parameter estimation and
hypothesis testing which use prior distributions over
parameters are known as Bayesian methods. The
following notes briefly summarize some important facts.

Outline

• Bayesian Parameter Estimation

• Bayesian Hypothesis Testing

• Bayesian Sequential Hypothesis Testing
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Bayesian Parameter Estimation

• Let y be distributed according to a parametric family :
y ∼ fθ(y). The goal is, given iid observations {yi}, to
estimate θ. For instance, let {yi} be a series of coin
flips where yi = 1 denotes “heads” and yi = 0
denotes “tails”. The coin is weighted, so P (yi = 1)
can be other than 1/2. Let us define θ = P (yi = 1);
our goal is to estimate θ. This simple distribution is
given the name “Bernoulli”.

• Without prior information, we use the maximum

likelihood approach. Let the observations be
y1 . . . yH+T . Let H be the number of heads observed
and T be the number of tails.

θ̂ = argmaxfθ(y1:H+T )

= argmaxθH(1 − θ)T

= H/(H + T )

• Not surprisingly, the probability of heads is estimated
as the empirical frequency of heads in the data
sample.

• Suppose we remember that yesterday, using the same
coin, we recorded 10 heads and 20 tails. This is one
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way to indicate “prior information” about θ. We
simply include these past trials in our estimate:

θ̂ = (10 + H)/(10 + H + 20 + T )

• As (H+T) goes to infinity, the effect of the past trials
will wash out.
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• Suppose, due to computer crash, we had lost the
details of the experiment, and our memory has also
failed (due to lack of sleep), that we forget even the
number of heads and tails (which are the sufficient

statistics for the Bernoulli distribution). However, we
believe the probability of heads is about 1/3, but this
probability itself is somewhat uncertain, since we only
performed 30 trials.

• In short, we claim to have a prior distribution over the
probability θ, which represents our prior belief.
Suppose this distribution is P (θ) and
P (θ) ∼ Beta(10, 20):

g(θ) =
θ9(1 − θ)19

∫

θ9(1 − θ)19dθ
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• Now we observe a new sequence of tosses: y1:H+T .
We may calculate the posterior distribution
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P (θ|y1:H+T ) according to Bayes’ Rule:

P (θ|y) =
P (y|θ)P (θ)

P (y)

=
P (y|θ)P (θ)

∫

P (y|θ)P (θ)dθ

The term P (y|θ) is, as before, the likelihood function
of θ. The marginal P (y) comes by integrating out θ:

P (y) =

∫

P (y|θ)P (θ)dθ

• To continue our example, suppose we observe in the
new data y(1 : H + T ) a sequence of 50 heads and
50 tails. The likelihood becomes:

P (y|θ) = θ50(1 − θ)50

• Plugging this likelihood and the prior into the Bayes
Rule expression, and doing he math, obtains the
posterior distribution as a Beta(10 + 50, 20 + 50):

P (θ|y) =
θ59(1 − θ)69

∫

θ59(1 − θ)69dθ

• Note that the posterior and prior distribution have the
same form. We call such a distribution a conjugate

prior. The Beta distribution is conjugate to the
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binomial distribution which gives the likelihood of iid
Bernoulli trials. As we will see, a conjugate prior
perfectly captures the results of past experiments. Or,
it allows us to express prior belief in terms of
“invented” data. More importantly, conjugacy allows
for efficient sequential updating of the posterior
distribution, where the posterior at one stage is used
as prior for the next.
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• Key Point The “output” of the Bayesian analysis is
not a single estimate of θ, but rather the entire

posterior distribution. The posterior distribution
summarizes all our “information” about θ. As we get
more data, if the samples are truly iid, the posterior
distribution will become more sharply peaked about a
single value.

• Of course, we can use this distribution to make
inference about θ. Suppose an “oracle” was to tell us
the true value of θ used to generate the samples. We
want to guess θ that minimizes the mean squared
error between our guess and the true value. This is
the same criterion as in maximum likelihood
estimation. We would choose the mean of the
posterior distribution, because we know conditional
mean minimizes mean square error.

• Let our prior be Beta(H0, T0) and

θ̂ = E(θ|y1:N)

=
H0 + H

H0 + H + T0 + T

• The same way, we can do prediction. What is
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P (yN+1 = 1|y1:N)?

P (yN+1 = 1|y1:N) =

∫

P (yN+1 = 1|θ, y1:N)P (θ|y1:N)dθ

=

∫

P (yN+1 = 1|θ)P (θ|y1:N)dθ

=

∫

θP (θ|y1:N)dθ

= E(θ|y1:N)

=
H0 + H

H0 + H + T0 + T
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Bayesian Hypothesis Testing

• Suppose we have a fixed iid data sample
y1:N ∼ fθ(y). We have two choices: θ = θ0 or
θ = θ1. That is, the data y1:N is generated by either

θ0 or θ1. Call θ0 the “null” hypothesis and θ1 the
“alternative”. The alternative hypothesis indicates a
disturbance is present. If we decide θ = θ1, we signal
an “alarm” for the disturbance.

• We process the data by a decision function g(y1:N)

D(y1:N) = 0, θ = θ0

= 1, θ = θ1

• We have two possible errors:

– False Alarm: θ = θ0, but D(y1:N) = 1

– Miss: θ = θ1, but D(y1:N) = 0

• In the non-Bayesian setting, we wish to choose a
family of D(·), which navigate the optimal tradeoff
between the probabilities of miss and false alarm.

• The probability of miss, PM , is
P (D(y1:N)) = 0|θ = θ1) and the probability of false
alarm, PFA, is P (D(y1:N)) = 1|θ = θ0).

9

• We optimize the tradeoff by comparing the likelihood
ratio to a nonnegative threshold, say exp(T ) > 0:

D∗(y1:N) = 1fθ1
(y)

fθ0
(y)

>exp(T )

• Equivalently, compare the log likelihood ratio to an
arbitrary real threshold T :

D∗(y1:N) = 1
log

fθ1
(y)

fθ0
(y)

>T

• Increasing T makes the test less “sensitive” for the
disturbance: we accept a higher probability of miss in
return for a lower probability of false alarm. Because
of the tradeoff, there is a limit as to how well we can
do, which improves exponentially as we collect more
data. This limit relation is given by Stein’s lemma.
Fix PM = ε. Then, as ε → 0, and for large N , we get:

1

N
log PFA → −K(fθ0, fθ1)

• The quantity K(fθ0, fθ1) is the Kullback-Leibler

distance, or the expected value of the log likelihood
ratio. We define, where f and g are densities:

K(f, g) = Ef [log(g/f )]

The following facts about Kullback-Leibler distance
hold:

10



– K(f, g) ≥ 0. Equality holds when f ≡ g except
on a set of (f + g)/2-measure zero. I.E. for a
continuous sample space you can allow difference
on sets of Lebesgue measures zero, for a discrete
space you cannot allow any difference.

– K(f, g) 6= K(g, f ), in general. So the K-L
distance is not a metric. The triangle inequality
also fails.
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• When f, g belong to the same parametric family, we
adopt the shorthand: K(θ0, θ1) rather than
K(fθ0, fθ1). Then we have an additional fact. When
hypotheses are “close”, K-L distance behaves
approximately like the square of the Euclidean metric
in parameter (θ)-space. Specifically:

2K(θ0, θ1) ≈ (θ1 − θ0)
′J(θ0)(θ1 − θ0).

where J(θ0) is the Fisher information. The right hand
side is sometimes called the square of the
Mahalanobis distance.

• Furthermore, we may assume the hypotheses are
“close” enough that J(θ0) ≈ J(θ1). Then, K-L
information appears also symmetric.

• Practically there is still the problem to choose T , or
to choose “desirable” probabilities of miss and false
alarm which obey Stein’s lemma, which gives also the
data size. We can solve for T given the error
probabilities. However, it is often “unnatural” to
specify these probabilities; instead, we are concerned
about other, observable effects on the system. Hence,
the usual scenario results in a lot of lost sleep, as we
are continually varying T , running simulations, and
then observing some distant outcome.

• Fortunately, the Bayesian approach comes to the
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rescue. Instead of optimizing a probability tradeoff,
we assign costs: CM > 0 to a miss event and
CFA > 0 to a false alarm event. Additionally, we have
a prior distribution on θ

P (θ = θ1) = π1
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• Let D(y1:N) be the decision function as before. The
Bayes risk, or expected cost, is as follows.

R(D) = π1E [D(y1:N) = 0|θ = θ1] + (1 − π1)E [D(y1:N) = 1|θ = θ0]

• It follows, the optimum-Bayes risk decision also

involves comparing the likelihood ratio to a threshold:

D(y1:N) = 1P (y|θ1)
P (y|θ0)

>
CFAP (θ0)
CMP (θ1)

= 1fθ1
(y)

fθ0
(y)

>
CFA(1−π1)

CMπ1

We see the threshold is available in closed form, as a
function of costs and priors.
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Bayesian Sequential Analysis

• In sequential analysis we don’t have a fixed number of
observations. Instead, observations come in sequence,
and we’d like to decide in favor of θ0 or θ1 as soon as
possible. For each n we perform a test: D(y1:n).
There are three outcomes of D:

– Decide θ = θ1

– Decide θ = θ0

– Keep testing

• NonBayesian Case Let T be the stopping time of
this test. We wish to find an optimal tradeoff
between:

– PFA, the probability:: [D(y1:T ) = 1, but θ = θ0]

– PM , the probability: [D(y1:T ) = 0, but θ = θ1]

– Eθ(T ), where θ = θ0 or θ1

• It turns out, the optimal test again involves
monitoring the likelihood ratio. This test is called
SPRT for “Sequential Probability Ratio Test”. It is
more insightful to examine this test in the “log”
domain. The test involves comparing the log
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likelihood ratio:

Sn =
fθ1(y1:n)

fθ0(y1:n)

to positive and negative thresholds −a < 0, b > 0.
The first time Sn < −a, we stop the test and decide
θ0 The first time Sn > b, we stop and declare θ1.
Otherwise we keep on testing.

• There is one “catch”; in the analysis, we ignore
overshoots concerning the threshold boundary. Hence
ST = −a or b.

• Properties of SPRT The change (first difference)
of Sn is

sn = Sn − Sn−1

=
fθ1(yn|y1:n−1)

fθ0(yn|y1:n−1)

For an iid process, we drop the conditioning:

sn =
fθ1(yn)

fθ0(yn)

The drift of Sn is defined as E(sn|θ). From
definitions, it follows that the drifts under θ = θ0 or
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θ1 are given by the K-L informations:

E(sn|θ0) = −K(θ0, θ1)

E(sn|θ1) = −K(θ1, θ0)

• We can visualize the behavior of Sn, when in fact θ
undergoes a step transition from θ0 to θ1:
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• Again, we have practical issues concerning how we
choose thresholds a, b. By invoking Wald’s equation,
or some results from martingale theory, these are
easily related to the probabilities of error at the
stopping time of the test. However, the problem
arises how to choose both probabilities of error, since
we have a three-way tradeoff with the average run

lengths Eθ0(T ), Eθ1(T ) !!

• Fortunately, the Bayesian formulation comes to our
rescue. We can again assign costs to the probabilities
of false alarm and miss CFA, CM . We also include a
cost proportional to the number of observations prior
to stopping. Let this cost equal the number of
observations, which is T . The goal is to minimize
expected cost, or sequential Bayes risk. What is our
prior information? Again, we must know
P (θ = θ1) = π1.

• It turns out that the optimal Bayesian strategy is
again a SPRT. This follows from the theory of
optimal stopping. Suppose at time n, our we have yet
to make a decision concerning θ. We must decide
among the following alternatives:

– Stop, and declare θ0 or θ1.

– Take one more observation.
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• We choose to stop only when the minimum additional
cost of stopping is less than the minimum expected
additional cost of taking one more observation.

• We compute these costs using the posterior

distribution of θ, i.e:

π1(n) = P (θ = θ1|y1:n)

which comes by recursively applying Bayes’ rule.

π1(n + 1) =
π1(n)P (yn+1|θ1)

(1 − π1(n))P (yn+1|θ0) + π1(n)P (yn+1|θ1)
π1(0) = π1

• If we stopped after observing yn and declared θ = θ0,
the expected cost due to “miss” would be π1(n)CM .
Therefore if we make the decision to stop, the
(minimum) additional cost is

ρ0(π1(n)) = min {π1(n)CM , (1 − π1(n))CFA}

• The overall minimum cost is:

ρ(π1(n)) = min
{

ρ0(π1(n)), 1 + Eπ1(n)[ρ(π1(n + 1))]
}

• In the two-hypothesis case, the implied recursion for
the minimum cost can be solved, and the result is a
SPRT(!)
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• Unfortunately, one cannot get a close form expression
for the thresholds in terms of the costs, but the
“Bayes” formulation allows at least to involve prior
information about the hypotheses.

• We will see a much richer extension to the problem of
Bayesian change detection.
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