
– 1 –

Some Correct Error-driven Versions of the

Constraint Demotion Algorithm*

Paul Boersma, March 7, 2008

Abstract. This paper shows that Error-Driven Constraint Demotion (EDCD), an error-

driven learning algorithm proposed by Tesar (1995) for Prince and Smolensky’s (1993)

version of Optimality Theory, can fail to converge to a totally ranked hierarchy of

constraints, unlike the earlier non-error-driven learning algorithms proposed by Tesar and

Smolensky (1993). The cause of the problem is found in Tesar’s use of “mark-pooling

ties”, indicating that EDCD can be repaired by assuming Anttila’s (1997) “permuting

ties” instead. Simulations show that totally ranked hierarchies can indeed be found by

both this repaired version of EDCD and Boersma’s (1998) Minimal Gradual Learning

Algorithm.

Keywords: learnability, Optimality Theory, variation

1 The Goal of Learning Algorithms for Optimality Theory

Optimality Theory (OT), in the original version proposed by Prince and Smolensky

(1993/2004), regards a grammar as a totally ranked hierarchy of constraints, i.e., no

two constraints are ranked at the same height. For this original version of OT, Tesar

and Smolensky (1993) and Tesar (1995) devise a number of learning algorithms,

collectively called Constraint Demotion (CD), whose goal it is, given a set of input-

output pairs drawn from the target language, to find a grammar (constraint ranking)

that is compatible with that set of language data. Since the target language is assumed

to be generated from a totally ranked hierarchy, a learning algorithm can be said to

converge to a correct grammar only if the algorithm finds at least one totally ranked

hierarchy that makes all the given input-output pairs optimal. Imagine, for instance, a

language with one input form i1, two output candidates o1 and o2, and three constraints

C1, C2, and C3, with as yet unknown rankings. The violation patterns are as in tableau

(1).

 (1) A small language

i1 C1 C2 C3

� o1

o2

The check mark before the first candidate in (1) indicates that the input-output pair

(i1, o1) is optimal in the target language. The goal of a learning algorithm for OT now

is to find at least one total ranking of the three constraints so that candidate o1

becomes the optimal candidate in the tableau for i1.

*
 I would like to thank Bruce Tesar and Joe Pater for comments on an earlier version of this paper.

– 2 –

2 Algorithms That Succeed

All learning algorithms discussed by Tesar and Smolensky (1993) (Recursive CD,

Batch CD, On-line CD) succeed in finding at least one totally ranked hierarchy for the

language in (1), as well as for any other language for which a totally ranked hierarchy

exists.

For (1), all these algorithms work in the same way. In the beginning, all three

constraints are ranked at the same height: in the same stratum. The input-output pair

(i1, o1) is then given to the algorithm as a ‘correct’ learning datum. Since candidate o1

is apparently the winning candidate in the target language, it is called the winner. The

learning algorithm then selects from the tableau a loser, which can be any competing

candidate. Since tableau (1) contains only one competing candidate, namely o2, this

candidate is deemed the loser. The algorithm now investigates which constraints

prefer which of the two candidates, and finds that C1 and C2 prefer the winner

(namely o1) over the loser (o2), whereas C3 prefers the loser over the winner. The

algorithm then takes action by demoting the loser-preferring constraint C3 to a new

stratum just below the first stratum, where C1 and C2 remain. Since all information

from this simple language has now been used, the learning algorithm stops processing

any further language data. The end result is the stratified hierarchy in (2).

 (2) Target stratified hierarchy obtained by the 1993 CD algorithms

 { C1, C2 } >> { C3 }

Tesar and Smolensky (1993: 18) call the ranking (2) the target stratified

hierarchy, because it contains all crucial constraint dominance relations of the target

language while at the same time having all constraints ranked as high as possible. We

can see this as follows. First, the constraints C1 and C2 are never violated in any

correct form of the language (i.e., they are not violated in (i1, o1)), so that they can be

ranked in the top stratum. Second, the constraint C3 must be outranked by either C1 or

C2 in any totally ranked hierarchy (otherwise candidate 1 would never win), so it

cannot be in the top stratum. The result in (2) generalizes to any language generated

by a totally ranked hierarchy: all learning algorithms presented by Tesar and

Smolensky (1993) are guaranteed to yield a unique target stratified hierarchy.

Although after finding the target stratified hierachy in (2) the algorithm has

stopped processing language data, it has not finished yet, because (2) is not a totally

ranked hierarchy. In order to make the learning algorithm yield a totally ranked

hierarchy, the target stratified hierarchy has to be converted to at least one totally

ranked hierarchy. Tesar and Smolensky (1993: 22) provide a way for doing this: “any

totally ranked hierarchy consistent with the output (partially ranked) stratified

hierarchy will correctly evaluate all of the data presented.” Specifically, a result as in

(2) “represents a class of all totally-ranked constraint hierarchies which give rise to

the target language [...]: the same optimal outputs arise regardless of the ranking of

[the constraints within a stratum]” (Tesar and Smolensky 1993: 12). This class is thus

obtained by refining each stratum in (2) into all the possible total rankings of the

constraints within that stratum. Thus, stratum 1 contains the constraints C1 and C2,

and these can be totally ranked either as C1 >> C2 or as C2 >> C1; stratum 2 contains

– 3 –

only the constraint C3, and this can of course be totally ranked in just one way. The

totally ranked hierarchies that can be derived from (2) are therefore those given in (3).

 (3) Totally ranked hierarchies obtained by the 1993 CD algorithms

 C1 >> C2 >> C3

 C2 >> C1 >> C3

The set of totally ranked hierarchies in (3) is the real output of the CD algorithms:

unlike the stratified hierarchy in (2), the totally ranked hierarchies in (3) are grammars

that fit in Prince and Smolensky’s model of possible grammars, which are totally

ranked hierarchies.

It must be noted here that the procedure does not necessarily find all totally

ranked hierarchies that are consistent with the data. For instance, the total rankings

C1 >> C3 >> C2 and C2 >> C3 >> C1 are consistent with (1) yet do not show up in (3).

But this is not important. What is important is that the procedure finds at least one

total ranking. This is guaranteed, because the procedure is guaranteed (by Tesar and

Smolensky’s proof) to find a target stratified hierarchy, from which at least one totally

ranked hierarchy can always be derived by the factorial refinement procedure

described above.

The final totally ranked hierarchies in (3) can be illustrated with production

tableaus, as in (4). They show that for each total ranking, the same correct candidate

wins in production.

 (4) Correct outputs after learning, in both totally ranked hierarchies

i1 C1 C2 C3 i1 C2 C1 C3

!! o1 " !! o1 "

o2 "! " o2 "! "

There is a way to combine these two tableaus into a single stratified tableau, as in (5).

 (5) A stratified tableau with permuting ties

i1 C1 C2 C3

!! o1 "

o2 "(!) "(!)

This tableau represents the target stratified hierachy in (3). The dashed line between

C1 and C2 indicates that the { C1, C2 } stratum consists of a set of two tied constraints.

It is important that the constraint tie in (3) is a permuting tie (Anttila 1997): the tie

represents a set of rankings derivable from all the permutations of the constraints

involved (if there are multiple strata, the set of total rankings is obtained by permuting

the constraints in each stratum independently).

– 4 –

3 The Problem: An Algorithm That Fails

Tesar (1995: 95) notes that the CD algorithms described above do not have a very

principled way of choosing a loser. The illustrations of the algorithms in Tesar and

Smolensky (1993) typically consider all nonoptimal candidates as losers (one at a

time), but this (as well as choosing an informative candidate randomly) is problematic

in cases where the candidate set is infinite. For this reason, Tesar (1995: 95) asks

himself: “Can informative competitors be efficiently selected?” The answer Tesar

provides is a variant of On-Line CD. In an on-line learning algorithm, learning data

are provided to the learning algorithm one at a time; the algorithm receives a datum,

then processes it, perhaps making a change to the algorithm’s currently hypothesized

ranking, and then forgets it. Tesar proposes an error-driven variant on this (Error-

Driven Constraint Demotion; EDCD), where the loser is defined simply as the

candidate that is optimal under the learner’s current grammar hypothesis. This makes

perfect sense, because precisely any mismatch between the learner’s optima and the

learning data signals that the learner has not yet arrived at a grammar appropriate for

the target language.

Here is how EDCD works for the language in (1). Tableau (6) shows the learner’s

initial grammar hypothesis, in which all constraints are ranked at the same height. The

tableau also shows the first (and only) language datum, which is the input-output pair

(i1, o1); this is the “winner”, as indicated by the check mark.

 (6) The learner’s optimal candidate in the initial state: EDCD with pooling ties

i1 C1 C2 C3

!! o1 "

o2 " "

Subsequently, EDCD has to compute the “loser”, i.e. the candidate that is optimal

under the current ranking of the three constraints. However, in this initial state of (6),

all three constraints tie. Since constraint ties are very common during CD learning,

Tesar had to devise a proposal for how constraint ties are to be interpreted. Instead of

proposing the permuting ties of (5), Tesar proposes that the violations of all the

constraints within a stratum should add up (the marks of the constraints are pooled),

as if these constraints together count as one larger constraint: “This extension treats

constraints in the same stratum as having equivalent Harmonic value. When

comparing two descriptions, a mark assessed by one constraint may cancel with a

mark assessed by a different constraint in the same stratum” (Tesar 1995: 96). On the

basis of terminology by Tesar (2000: 25), I call this a pooling tie. In tableau (6), this is

indicated by having no vertical lines between the tied constraints. Under the pooling-

tie regime, then, the optimal candidate in tableau (6) is candidate o1: this form wins in

production (as indicated by the pointing finger), because it incurs only one violation

in the top stratum, whereas candidate o2 incurs two violations in the top stratum.

Candidate o1, then, is chosen as the “loser”.

The intermediate result of processing the first datum, now, is that both the winner

and the loser are candidate o1. This is a situation that cannot occur for the earlier CD

algorithms, in which the loser can only be chosen from the non-winners. For EDCD,

– 5 –

the situation means that no learning can be performed. This situation is general for

error-driven learning algorithms: if the incoming language datum is grammatical in

the learner’s current grammar hypothesis, no learning will take place.

Since (i1, o1) is the only possible language datum, and EDCD has noticed that it

cannot learn from it any longer, EDCD stops processing any more language data. The

final stratified grammar is given in (7).

 (7) Final stratified hierarchy obtained by EDCD

 { C1, C2, C3 }

This final hierarchy is a correct grammar of the target language, under the assumption

that in production the violations of tied constraints are pooled. However, EDCD is not

finished yet, because it has to derive one or more totally ranked hierarchies from (7)

in order to make the end result compatible with Prince and Smolensky’s OT.

Unfortunately, this is impossible: the permutations of the three constraints in the top

stratum of (7) include the grammars C3 >> C1 >> C2 and C3 >> C2 >> C1, which

would incorrectly map the input i1 on the output o2.

EDCD’s failure to yield a correct set of totally ranked hierarchies is in contrast

with Tesar and Smolensky’s (1998) claim that it does yield such a hierarchy:

When learning is successful, the learned stratified hierarchy, even if not totally ranked, is

completely consistent with at least one total ranking. (Tesar and Smolensky 1998: 249)

How does the learner get to a totally ranked hierarchy? At the endpoint of learning, the

hierarchy may not be fully ranked. The result is a stratified hierarchy with the property

that it could be further refined into typically several fully ranked hierarchies, each

consistent with all the learning data. [...] In human terms, one could suppose that by

adulthood, a learner has taken the learned stratified hierarchy and refined it to a fully

ranked hierarchy. (Tesar and Smolensky 1998: 250)

The “refining” that the authors refer to here, and which has to be performed by

randomly imposing an order on the constraints within strata, is not possible for the

language in (1). We must conclude, then, that EDCD fails in a way the authors did not

foresee, a way that renders the original version of EDCD incapable of learning the

languages it was designed for.

One could think that it might be possible to replace Prince and Smolensky’s

grammar model by a model that allows stratified hierarchies (with pooling ties), so

that the final hierarchies with pooling ties such as (7) are valid end results of learning.

However, such an alternative grammar model will exhibit cases of multiple optimal

outputs, and therefore be unlearnable by EDCD, as the authors note (Tesar 1995: 103;

Tesar and Smolensky 1998: 249–250).

We conclude that EDCD with pooling ties, as envisaged by Tesar and

Smolensky, is not guaranteed to converge to a grammar of any known type: when

given data from a language generated by a totally ranked hierarchy, it does not

produce a totally ranked hierarchy, and when given data from a language generated by

a stratified hierarchy, it does not produce a stable stratified hierarchy.

– 6 –

4 The Cause of the Problem

When studying tableau (6), one can see that the cause of EDCD’s failure, and the

success of the earlier CD algorithms, lies in the fact that EDCD has no way of

regarding candidate o2 as a loser. Tableau (6) will instead always yield o1 as a loser,

and this is a totally uninformative loser, since it is identical to the ‘correct’ form given

in the language data.

The failure of EDCD is thus caused by the inaccessibility of the potentially

informative candidate o2. The following remark by the authors (in a discussion of

EDCD) comes to mind:

An antagonistic learning environment can of course always deny the learner necessary

informative examples, making learning the target grammar impossible. We consider this

uninteresting and assume that as long as there remain potentially informative positive

examples, these are not maliciously withheld from the learner. (Tesar and Smolensky

1998: 246)

However, the learning algorithm itself turns out to have withheld the informative loser

o2 from the learner. Tesar and Smolensky’s proofs of convergence are based on

bounding the number of grammar changes from above; for EDCD, they show that the

learner can make no more than some maximum number of errors. These proofs are

correct. In the example studied here, however, the learner will never even make her

first error, which is the error she needs in order to change grammar (7) into grammar

(2).

The inaccessibility of candidate o2 as a loser is caused by the assumption of

pooling ties: only under that assumption will candidate o1 always be better than

candidate o2 if all the constraints are ranked at an equal height. Under the assumption

of permuting ties, which was needed to interpret the strata of the target stratified

hierarchy in (2), candidate o2 will be able to win under at least some total rankings of

the tied constraints C1, C2, and C3.

5 The Solution

The solution to the problem that EDCD does not converge to a totally ranked

hierarchy, is to use the same assumption for ties as was needed for converting the

target stratified ranking in (2) to the total rankings in (3), namely Anttila’s (1997)

assumption of permuting ties.

Under the assumption of permuting ties, the initial state is not (6) but (8). This

time, the three tied constraints have variable ranking, as indicated by the dashed lines

within the (only) stratum.

 (8) The learner’s optimal candidate in the initial state: variationist EDCD

i1 C1 C2 C3

!! o1 "

! o2 " "

Two pointing fingers now appear in tableau (8), because both o1 and o2 can be optimal

outputs under some of the total rankings of the three constraints. I now show that this

leads to successful learning.

– 7 –

In production, permuting ties have to be interpreted as variation in outputs across

evaluations (Anttila 1997). That is, at each tableau evaluation, the learner randomly

chooses a total ranking from among the ones allowed by the stratified hierarchy, i.e.

from all possible permutations of the constraints within each stratum. In (8), the

stratified hierarchy allows six total rankings (they were all mentioned in sections 2

and 3). Starting in the initial state of (8), the learning algorithm will receive language

data. In the case of the language in (1), the data will arrive as (i1, o1), (i1, o1), (i1, o1)...

The tableaus in (9) show how the learner handles these data.

 (9) Error-driven learning with permuting ties

i1 C1 C3 C2 i1 C3 C1 C2

!! o1 " ! o1 "!

o2 "! " ! o2 " "

When the first (i1, o1) comes in, the learner determines that candidate o1 is the

“winner” (because it equals the given output). She then computes her own production

for the given input i1. She does this by establishing a random total ranking of the three

constraints, in this case C1 >> C3 >> C2, as shown on the lefthand side in (9). This

ranking leads to choosing o1 as the optimal form, and therefore as the “loser”. Since

the loser equals the winner, no learning takes place.

Then the second learning datum comes in, again (i1, o1) (for want of alternatives).

The learner again establishes o1 as the “winner”, but when she computes her own

production for i1, she now does that with a new random ranking of the three

constraints, namely C3 >> C1 >> C2, as shown on the right in (9). The result is that

candidate o2 becomes optimal (the “loser”), as indicated by the pointing finger. The

learner has now finally made an “error”, since the winner is different from the loser.

As a result, the learner will demote all constraints that prefer the loser (here, only

constraint C3) into the stratum below the stratum that contains the highest-ranked

constraint that prefers the winner (here, both C1 and C2, which are still in the same

stratum). As a result, the ranking of (8) turns into the ranking in (10).

 (10) Target stratified hierarchy obtained by EDCD with permuting ties

 { C1, C2 } >> { C3 }

The ranking in (10) is also the final ranking: no amount of incoming (i1, o1) data will

be incompatible with it, because all total rankings associated with (10) will correctly

turn the input i1 input the output o1.

Tesar and Smolensky’s version of EDCD fails to converge to a totally ranked

hierarchy because the interpretation of constraint ties is different during learning than

at the point where totally ranked hierarchies have to be created; in particular, the final

hierarchy in (7) is based on pooling ties whereas extracting totally ranked hierarchies

from it requires permuting ties. The version of EDCD presented here, by contrast,

converges to a set of totally ranked hierarchies because constraint ties are interpreted

as variationist throughout learning; in particular, the final hierarchy in (10) is based on

permuting ties, so that totally ranked hierachies can be correctly extracted from it.

– 8 –

6 The Test

In this paper I make no attempt to provide a formal proof of convergence for the

present “variationist EDCD”; as we have seen, even when proofs are available they

can sometimes fail to consider all the possible problems. Instead, this section checks

that variationist EDCD converges on 1 million randomly generated languages.
1

Each of the 1 million languages is created in the way described in (11), which

creates a totally ranked grammar and then derives a language from it (in the

description, ‘randomly’ refers to uniform distributions of integer numbers).

 (11) Simulation procedure: language creation

1. Randomly choose a number of constraints K between 2 and 20.

2. Put the constraints in a random total order.

3. Randomly choose a number of inputs M between 1 and 20.

4. Randomly choose a maximum number of violations Vmax (per cell) between 1

and 5.

5. For each of the M inputs:

5a. Randomly choose a number of output candidates between 2 and 20.

5b. Fill all tableau cells (for every candidate and every constraint) with a

random number of violations between 0 and Vmax.

5c. Determine the optimal output(s) given the total constraint ranking.

6. If any input has more than one optimal output, go back to (1); else stop.

The procedure in (11) is guaranteed to yield a nonvarying language. From it, we

create a language environment for learners by making a list of the M possible correct

input-output pairs, and determining that each of these input-output pairs is equally

likely to appear as a learning datum.

Subsequently, we create a learner, who has the same set of K constraints as the

language of (11), the same set of M inputs, the same output candidates, and the same

violations in the cells. The learner’s initial grammar is therefore identical to the

grammar that generated the language in (11), except that all constraints are ranked in

the same stratum.

The learner subsequently receives language data, which are input-output pairs

drawn randomly from the language environment. Specifically, these data are drawn

from the M possible input-output pairs determined in (11), with equal probability. For

each learning datum, the learner performs the steps in (12).

1
 The Praat script that performs the simulations is available from http://www.fon.hum.uva.nl/paul/gla/.

– 9 –

 (12) Simulation procedure: learning

1. The learner receives an input-output pair (i, o).

2. The learner determines her own optimal output, given the input i:

2a. The learner randomly chooses a total constraint ranking consistent with

her current stratified ranking under the assumption of permuting ties.

2b. The learner determines the output that is optimal under this total ranking.

3. If the learner’s own optimal output for i is different from o:

3a. Determine the stratum s that contains the highest-ranked constraint that

prefers o over the learner’s own optimal output.

3b. All constraints that prefer the learner’s own optimal output over o and that

are not already ranked in a lower stratum than s, are demoted into the

stratum just below s.

The only difference between the original EDCD and (12) is the use of permuting ties

in step 2a; some care has been taken to ensure that the rankings mentioned in 3a and

3b refer to the stratified hierarchy rather than to the totally ranked hierarchy.

For each language created in (11) we investigate whether the learner in (12)

converges towards a stratified ranking that when translated to any totally ranked

hierarchy correctly maps every given input to the corresponding given output. We do

the same for a learner with the original EDCD, inferring convergence only if all

totally ranked hierarchies derivable from the final pooling-tie-based stratified

hierarchy generate the correct outputs for all inputs. Finally, we do the same for a

learner with the nonnoisy version of Boersma’s (1998) “Minimal Gradual Learning

Algorithm”, which is a version of Constraint Demotion that skips step 3a, and in step

3b demotes (by only one stratum) only the highest-ranked constraint (highest-ranked

in the randomly selected total ranking) that prefers the learner’s own optimal output

over o; this algorithm explicitly uses permuting ties (Boersma 1998: 324).

The result of the simulations is that the original EDCD converges for only 31

percent of the 1 million languages, whereas both variationist EDCD and Minimal

GLA converge for all 1 million languages. Just for comparison, the usual “maximal”

GLA (Boersma 1998) converges for 99.2 percent of the languages (see Pater 2008 for

convergence problems of the GLA). We can conclude that Minimal GLA is the

earliest convergent constraint demotion algorithm, although variationist EDCD, in

which multiple constraints can be demoted by multiple strata at once, is faster.

7 An earlier attempt to repair EDCD

The problem I noted with EDCD in §3 has been remarked on before, although it was

never before regarded as a convergence problem of EDCD itself.

In a discussion of error-driven learning Tesar (2000: 25–28) says: “The mark-

pooling interpretation [...] of stratified hierarchies [...] can sometimes cause error-

driven learning to stop before reaching a hierarchy in which the desired winner beats

every competitor by constraint domination alone [i.e. a totally ranked hierarchy —

PB].” Tesar does not label this early stopping as a general convergence problem for

EDCD, although it is (see §3). Tesar relates the problem to mark pooling, but does not

link the problem to the mismatch between the pooling ties of learning and the

permuting ties needed to convert stratified hierarchies to totally ranked hierarchies.

– 10 –

Tesar thus provides a different, tentative solution in terms of “conflict ties” that he is

not satisfied with himself: he calls it “a bad replacement for [mark pooling] in

general” (p. 27), and decides to use it “sparingly” (p. 27).

I can point out an additional reason not to use “conflict ties”, which is relevant in

the present context. Consider the small language in (13).

 (13) Pooling ties, permuting ties, conflict ties

i1 C1 C2

! o1 """

o2 """"

o3 " "

Tableau (13) can be regarded as the initial state of the grammar, with C1 and C2

ranked at the same height. Under the pooling-tie regime, candidate o3 is optimal,

because it incurs fewer violations (namely, 2) in the top stratum than both other

candidates do; so o3 will be deemed the “loser” for EDCD. Under the permuting-tie

regime, by contrast, candidates o1 and o2 will be optimal interchangeably, depending

on which total ranking will be randomly selected at each evaluation; so both o1 and o2

will perform as “losers”. Under the “conflict tie” regime, finally, the learner looks for

a set of candidates where each two members are preferred by different constraints;

thus, the members of the pair o1~o2 are preferred by different constraints (C1 prefers

o2, C2 prefers o1); the same goes for the members of the pair o2~o3 and the members

of the pair o1~o3; the learner will therefore consider all members of the set {o1, o2, o3}

as “losers”. This set is larger than necessary: the number of candidates considered

under the “conflict tie” scenario is somewhere between the number considered by

variationist EDCD and the number considered by the non-error-driven CD algorithms.

A problem shared by the pooling and conflict ties has to do with the continuity

between children’s grammars and adult grammars. In (13), an especially problematic

candidate is o3: it can be optimal (and would therefore be produced by the child) in

both the pooling-tie and the conflict-tie scenarios, although in a factorial typology it is

harmonically bounded by the combination of C1 and C2 (and would therefore never be

produced by an adult with a totally ranked hierarchy). By contrast, the permuting-tie

scenario restricts the set of potentially informative “losers” to o1 and o2, precisely the

set of possible optima under intrastratal ranking permutation; since such permutation

is the manner in which totally ranked hierarchies will have to be constructed from the

final stratified hierarchy, variationist EDCD ensures that both children and adults are

subject to the same general typological restrictions of OT, namely factorial typology.

The fact that pooling ties generate too few “errors” (§3) was also noted by Jesney

and Tessier (2007: 7–8), who regarded it as a problem for “restrictive learning”, rather

than as a convergence problem for EDCD. They propose that “We can resolve this

issue by requiring that constraints be strictly ranked with respect to one another...

either in the grammar itself or with each iteration of Eval” (p. 7). The present paper

implements the latter option, by showing that with each evaluation a totally ranked

hierarchy should be constructed from the stratified hierarchy in a variationist manner,

i.e. by random intrastratal permutation.

– 11 –

8 Conclusion

Two error-driven constraint demotion algorithms have turned out to exist that

converge on correct “target stratified hierarchies”, and therefore on sets of totally

ranked hierarchies, for all 1 million languages investigated. I conclude that by

interpreting constraint ties in the variationist manner rather than in terms of pooling

violation marks, we can repair Tesar’s (1995) Error-Driven Constraint Demotion in

such a way that it is guaranteed to converge to at least one totally ranked hierarchy.

“Variationist EDCD” thus becomes the fastest convergent learning algorithm for OT.

Conditions on convergence that remain are that the learner is given sufficiently rich

data and receives full information about the structure of these data.

This result adds to the evidence that the correct interpretation of ties is

variationist, i.e., that they reflect a factorial permutation of total rankings. This idea

was first voiced by Pesetsky (1998), although in his case lower strata were allowed to

influence the total subrankings of higher strata. The present full idea of deriving total

rankings by independent permutations within all strata is explicit in one of the

variations on partial ranking that Anttila (1997) proposes, as well as in Stochastic OT

(Boersma 1998), in which two constraints can never be ranked exactly equally high

during an evaluation. The most important empirical result of the present paper for

human language learning, though, is that it predicts that at every moment during

acquisition, the child’s possible outputs form a subset of the ones allowed by factorial

typology, which asserts that languages can have precisely those forms that can be

generated by total rankings of the universal set of constraints; by operating with

permuting ties, the proposed corrected EDCD ensures that the idea of factorial

typology also applies to child language, i.e. that there is a continuity between the

language of children and that of adults; a difference that remains is that in this view

children show variation but adults do not.

The proposed repair of EDCD may influence not only the workings of direct

applications of this algorithm, but also the workings of more elaborate learning

procedures that utilize EDCD, beginning with Robust Interpretive Parsing with

Constraint Demotion (Tesar and Smolensky 2000) and inconsistency detection (Tesar

2000). I leave investigations into these matters to the future.

References

Anttila, Arto. 1997. Variation in Finnish phonology and morphology. PhD thesis, Stanford University.

Boersma, Paul. 1998. Functional Phonology: formalizing the interactions between articulatory and

perceptual drives. Doctoral dissertation, University of Amsterdam.

Jesney, Karen, and Anne-Michele Tessier. 2007. Restrictiveness in gradual learning of Harmonic

Grammar. Handout North East Computational Phonology Circle 1, University of Amherst.

Pater, Joe. 2008. Gradual learning and convergence. Linguistic Inquiry 39:xx–xx.

Pesetsky, David. 1998. Some optimality principles of sentence pronunciation. In Is the best good

enough? Optimality and competition in syntax, ed. Pilar Barbosa, Danny Fox, Paul Hagstrom,

Martha McGinnis, and David Pesetsky, 337–383. Cambridge, Mass.: MIT Press.

Prince, Alan, and Paul Smolensky. 1993/2004. Optimality Theory: Constraint interaction in generative

grammar. Technical Report TR-2, Rutgers Center for Cognitive Science, Rutgers University, New

Brunswick, N.J., 1993. Published by Blackwell, Oxford, 2004.

Tesar, Bruce. 1995. Computational Optimality Theory. PhD thesis, University of Colorado.

– 12 –

Tesar, Bruce. 2000. Using inconsistency detection to overcome structural ambiguity in language

learning. Technical Report RuCCS-TR-58, Rutgers Center for Cognitive Science, Rutgers

University, New Brunswick, NJ. Rutgers Optimality Archive ROA-426, http://roa.rutgers.edu.

Tesar, Bruce, and Paul Smolensky. 1993. The learnability of Optimality Theory: an algorithm and

some basic complexity results. Ms. Department of Computer Science and Institute of Cognitive

Science, University of Colorado at Boulder.

Tesar, Bruce, and Paul Smolensky. 1998. Learnability in Optimality Theory. Linguistic Inquiry 29:

229-268.

Tesar, Bruce, and Paul Smolensky. 2000. Learnability in Optimality Theory. Cambridge, Mass.: MIT

Press.

