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Abstract 21 
 22 

Distributional learning of speech sounds is learning from simply being exposed to frequency 23 

distributions of speech sounds in one’s surroundings. In laboratory settings, the mechanism has 24 

been reported to be discernible already after a few minutes of exposure, in both infants and 25 

adults. These “effects of distributional training” have traditionally been attributed to the 26 

difference in the number of peaks between the experimental distribution (two peaks) and the 27 

control distribution (one or zero peaks). However, none of the earlier studies fully excluded a 28 

possibly confounding effect of the dispersion in the distributions. Additionally, some studies with 29 

a non-speech control condition did not control for a possible difference between processing 30 

speech and non-speech. The current study presents an experiment that corrects both 31 

imperfections. Spanish listeners were exposed to either a bimodal distribution encompassing the 32 

Dutch contrast /ɑ/~/a/ or a unimodal distribution with the same dispersion. Before and after 33 

training, their accuracy of categorization of [ɑ]- and [a]-tokens was measured. A traditionally 34 

calculated p-value showed no significant difference in categorization improvement between 35 

bimodally and unimodally trained participants. Because of this null result, a Bayesian method 36 

was used to assess the odds in favor of the null hypothesis. Four different Bayes factors, each 37 

calculated on a different belief in the truth value of previously found effect sizes, indicated the 38 

absence of a difference between bimodally and unimodally trained participants. The implication 39 

is that “effects of distributional training” observed in the lab are not induced by the number of 40 

peaks in the distributions.  41 

  42 
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1. Introduction 43 

 44 

1.1. Distributional learning 45 
 46 

The term “distributional learning” refers to learning from simply being exposed to frequency 47 

distributions of stimuli in one’s surroundings (Lacerda, 1995; Guenther and Gjaja, 1996). 48 

Distributional learning is considered one of the mechanisms with which infants start learning the 49 

speech sounds of their native language (e.g., Maye et al., 2002). There is also evidence of this 50 

mechanism in adults who try to master difficult non-native speech sound contrasts (e.g., Maye 51 

and Gerken, 2000). 52 

 53 

Distributional learning of speech sounds can be explained as follows. When one acoustic 54 

property (e.g., the first formant, F1) is measured across many tokens of a certain speech sound 55 

category (e.g., a certain vowel), most values are likely to be observed close to the mean of that 56 

category. This is illustrated in Figure 1. The x-axes represent an F1 continuum, for which the F1 57 

values are expressed in ERB (Equivalent Rectangular Bandwidth); each vertical line marks the 58 

F1 value hypothetically measured in a token of the Spanish vowel /a/ (Figure 1, top), and in a 59 

token of the Dutch vowels /ɑ/ or /a/ (Figure 1, bottom). It is apparent that the F1 values tend to 60 

cluster around certain values, which are the means of the categories. Accordingly, the probability 61 

density functions (the grey curves in Figure 1) of the F1 values have peaks here. Conversely, the 62 

number of peaks observed in a probability density function is indicative of the number of speech 63 

sound categories along the corresponding acoustic continuum. Frequency distributions such as 64 

the schematic one in Figure 1 have been observed for several speech sound categories (e.g., 65 

Lisker and Abramson, 1964; Newman et al., 2001; Lotto et al., 2004). 66 

 67 

<Insert Figure 1 around here> 68 

 69 

 70 

Distributional learning implies that exposure to such speech sound distributions induces 71 

listeners to perceive tokens with acoustic values that occur within one peak as exemplars of the 72 

same speech sound category. The idea is that exposure to the Dutch language, and thereby to the 73 

F1 distribution at the bottom of Figure 1, prepares Dutch listeners for perceiving vowel tokens 74 

with F1 values of around 12.2 ERB as belonging to one speech sound category (namely /ɑ/), and 75 

vowel tokens with F1 values of around 13.6 ERB as belonging to another speech sound category 76 

(namely /a/), while exposure to the Spanish language, and thereby to the F1 distribution at the 77 

top of Figure 1, prompts Spanish listeners to perceive these same vowel tokens as exemplars of 78 

one single speech sound category (namely Spanish /a/). 79 

 80 

The just-described distributional-learning mechanism has been tested empirically in the 81 

lab, where perceptual tuning to the number of peaks in the input distribution has been reported to 82 

occur already after a few minutes of exposure, for both infants and adults (for infants: Maye et 83 

al., 2002, 2008; Yoshida et al., 2010; Capel et al., 2011; Wanrooij et al., 2014; for adults: Maye 84 

and Gerken, 2000, 2001; Shea and Curtin, 2006; Hayes-Harb, 2007; Gulian et al., 2007; 85 

Escudero et al., 2011; Wanrooij et al., 2013; Wanrooij and Boersma, 2013; Escudero and 86 

Williams, 2014). In a typical distributional-learning experiment, two groups of participants (e.g., 87 



4 

 

native speakers of Spanish) are exposed to speech sound distributions encompassing a not yet 88 

acquired speech sound contrast (e.g., the Dutch vowel contrast /ɑ/~/a/): one group is presented 89 

with a unimodal training distribution (i.e., with one peak, as in an F1 distribution of the Spanish 90 

vowel /a/) and another group with a bimodal training distribution (i.e., with two peaks, as in an 91 

F1 distribution of the Dutch vowel contrast /ɑ/~/a/). Such training distributions have been 92 

“discontinuous” or “continuous” (Wanrooij and Boersma, 2013). Discontinuous distributions 93 

contain only a limited number of acoustically different stimuli, which are each repeated a certain 94 

number of times according to the respective distribution. Examples of discontinuous distributions 95 

are shown in Figure 3 (section 1.4). Continuous distributions consist of a large number of 96 

acoustically different stimuli, each of which is presented only once. The acoustic values are 97 

chosen to be such that they match the intended probability density function. Examples of 98 

continuous distributions are shown in Figure 4 (section 2.2.1). After exposure to the speech 99 

sound distribution, participants are tested on their discrimination or categorization of 100 

representative tokens of the contrast involved (e.g., [ɑ]- and [a]-tokens). If the distributional-101 

learning mechanism is effective, it is expected that bimodally trained participants will 102 

discriminate or categorize these test stimuli better than unimodally trained participants. This 103 

difference between the groups is expected because only the bimodally trained participants have 104 

been exposed to a distribution that suggests the existence of a contrast between the two 105 

categories. 106 

 107 

1.2. Problems in previous research on distributional learning 108 
 109 

Studies on distributional learning (previous section) have focused on the number of peaks as the 110 

relevant factor that shapes the distributional learning process. Unfortunately, it is not certain that 111 

the reported effects of distributional learning in these studies were truly due to perceptual 112 

changes induced by the number of peaks in the distributions. The chosen methodologies leave 113 

open the possibility that other factors caused these reported effects. Specifically, none of the 114 

earlier studies fully equated the training distributions on the amount of dispersion, as expressed 115 

in for instance the range and the standard deviation of the acoustic values (section 1.4). The lack 116 

of control for dispersion may be an important oversight in the light of indications that the 117 

dispersion of acoustic values in the training stimuli can affect speech sound acquisition (section 118 

1.3). Evidence even exists that measures of dispersion (such as the range and the standard 119 

deviation) in a training distribution may exert more influence on perception than measures of 120 

central tendency (such as the mean; Holt and Lotto, 2006: 3066). A second possible confounding 121 

effect in some studies with a non-speech control group, is the effect of processing speech versus 122 

non-speech (section 1.5). The two potential confounding factors are discussed in turn.  123 

 124 

1.3. The role of dispersion in speech sound learning 125 
 126 

Indications that the dispersion of the acoustic values in speech sound distributions can influence 127 

adults’ speech sound learning can be found in studies reporting that training with “enhancement” 128 

leads to changes in adults’ perception (e.g., Jamieson and Morosan, 1986). Enhancement refers 129 

to the widening of the acoustic distance between speech sound categories, thereby affecting the 130 

dispersion in the presented stimulus distributions. The precise effect of enhancement on the 131 

dispersion depends on the way in which it is implemented in the training paradigm. In 132 
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distributional training experiments, it has been implemented by giving enhanced bimodal 133 

distributions a larger acoustic difference between the means (i.e., the two peaks in the 134 

distribution
1
, each of which represents a speech sound category), a wider range, and a larger 135 

standard deviation than non-enhanced bimodal distributions (Escudero et al., 2011; Wanrooij et 136 

al., 2013).
2
 These three factors are of course strongly interdependent. Figure 2 demonstrates the 137 

difference between the non-enhanced (top) and enhanced (bottom) distributions.  138 

 139 

<Insert Figure 2 around here> 140 

 141 

In other training experiments, where participants typically receive feedback during 142 

categorization training, enhancement has been implemented by “perceptual fading” (Jamieson 143 

and Morosan, 1986), a technique originally applied to visual discrimination learning in birds 144 

(Terrace, 1963). With this technique, participants are first presented with exemplars of each 145 

speech sound category whose acoustic properties are “enhanced”, thus presumably making it 146 

easier to hear a difference between the categories. If the participant categorizes the exemplars 147 

well, the acoustic difference between the categories is reduced in small steps. As the actually 148 

presented distributions depend on participants’ performance and thus vary per participant, studies 149 

using this technique do not always specify the distribution in terms of means and measures of 150 

dispersion. Nevertheless, the initial enhancement is likely to widen the dispersion of the 151 

presented distributions in comparison to distributions without such enhancement. 152 

 153 

Although direct comparisons between the effects of enhanced and non-enhanced training 154 

tend to yield non-significant results (e.g., Iverson et al., 2005; Escudero et al., 2011), enhanced 155 

training (both enhanced distributional training and training with perceptual fading) generally 156 

leads to improved categorization or discrimination of the trained speech sound categories after as 157 

compared to before training (Jamieson and Morosan, 1986; Iverson et al., 2005; Kondaurova and 158 

Francis, 2010) and in addition sometimes also as compared to a control group that received no 159 

training with speech sound stimuli (McCandliss et al., 2002; Escudero et al., 2011; Wanrooij et 160 

al., 2013; Wanrooij and Boersma, 2013). These improvements leave open the possibility that 161 

enhancement of the speech sounds presented during training (likely affecting the range and the 162 

standard deviation of a speech sound distribution) indeed affects speech sound learning in adults. 163 

 164 

The observed benefit of enhancement in distributional training studies could be due to 165 

better distributional learning (Escudero et al., 2011; Wanrooij et al., 2013). However, the 166 

assumed benefit of enhancement in perceptual fading studies is usually not attributed to better 167 

distributional learning but to a facilitation of “attentional learning”, i.e., learning through 168 

focusing one’s “attention” on the relevant differences between speech sound categories (e.g., 169 

Jamieson and Morosan, 1986; Francis and Nusbaum, 2002; Iverson et al., 2005; Kondaurova and 170 

Francis, 2010). Such attentional learning is also raised as an additional explanation (apart from 171 

better distributional learning) for improved categorization after training in distributional training 172 

studies (Escudero et al., 2011; Wanrooij et al., 2013; Escudero and Williams, 2014). Perceptual 173 

                                                 
1
 The true bimodal means are somewhat closer together than the two peaks. 

2
 Specifically, the values in Escudero et al. (2011) and Wanrooij et al. (2013) were as follows. In the non-enhanced 

bimodal distribution, the distance between the peaks was 0.67 ERB, the range was 12.60 to 13.54 ERB, and the 

standard deviation of the pooled distribution was 0.31 ERB. In the enhanced bimodal distribution, the distance 

between the peaks was 2.02 ERB, the range was 11.52 to 14.35 ERB, and the standard deviation was 0.93 ERB.  
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fading studies that focus on attentional learning generally leave the concept of attention 174 

undefined, but it looks as if attention in these studies is mediated by existing knowledge (about, 175 

for instance, native speech sound categories; Logan et al., 1991: 882) or knowledge obtained 176 

during the experiment in the form of feedback (e.g., McCandliss et al., 2002). Such attention can 177 

be related to top-down processes in the brain (Posner and Petersen, 1990; Roelfsema, 2011). 178 

Attentional learning thus seems to contrast with distributional learning, which is viewed as a 179 

purely stimulus-driven, bottom-up process (Lacerda, 1995; Guenther and Gjaja, 1996). 180 

 181 

At the same time, our understanding of attentional learning and distributional learning 182 

(assuming that they exist) is poor, and it is difficult to establish that they are truly separate 183 

processes. For instance, both predict that the learning of a speech sound contrast should improve 184 

from enhancement if enhancement is implemented by only pulling the means of the two 185 

categories wider apart without changing each peak's standard deviation. Such an enhancement 186 

method could draw participants’ attention to the differences between the categories (thus 187 

advancing attentional learning) and would reduce the overlap between the two peaks (thus 188 

promoting distributional learning)
3
. Accordingly, improvement of discrimination or 189 

categorization performance after such enhanced distributional training could be accounted for by 190 

both distributional learning and attentional learning. Experiments designed to demonstrate the 191 

existence of the distributional learning mechanism must exclude the possibility that the results 192 

can be explained through attentional learning, and must thus use the same dispersion in the 193 

experimental (two peaks) and the control (one or zero peaks) distributions. 194 

  195 

In sum, even though it is still unclear precisely what role measures of dispersion in 196 

distributions play in adults’ speech sound learning, there are several indications that such 197 

measures do play a role. Accordingly, it is important to exclude a possibly confounding influence 198 

of dispersion in distributional training experiments. An equal dispersion in the distributions to be 199 

compared would also reduce the possibility that differences in attentional learning between 200 

training conditions could account for the results, rather than differences in distributional learning. 201 

 202 

1.4. No adequate control for dispersion across distributional learning studies 203 
 204 

None of the previous studies on distributional learning, neither those with infants nor those with 205 

adults (section 1.1), fully excluded dispersion as a possible factor that can account for the 206 

observed differences between the bimodal training groups and the control groups. Three possible 207 

measures of dispersion are the range, the standard deviation, and the “edge strength”. These are 208 

discussed here in turn. 209 

 210 

The first measure of dispersion is the range. Typical bimodal and unimodal distributions 211 

such as those in Maye et al. (2008) have the same range within a study: the minimum and 212 

maximum presented values are the same in the one as in the other distribution (see Figure 3). 213 

Range was not excluded as a possibly confounding effect in four studies on distributional 214 

learning that used a music control group instead of a unimodal control group (Escudero et al., 215 

2011; Wanrooij et al., 2013; Wanrooij and Boersma, 2013; Escudero and Williams, 2014). These 216 

                                                 
3
 Note that enhancement of the contrast reduces the overlap between the categories if the standard deviations of each 

peak remain the same. The overlap is not necessarily reduced if the standard deviation of each peak is increased as 

well (as it is in Figure 2). 
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four studies investigated the effect of distributional training on Spanish listeners' categorization 217 

of vowel tokens representing the Dutch vowel contrast /ɑ/~/a/. In all four studies, listeners to an 218 

enhanced bimodal distribution improved significantly more in categorization accuracy than 219 

listeners to music.
4
 This result could be due to distributional learning, and thus to the presence of 220 

two peaks in the enhanced bimodal distribution. However, the use of a music control group 221 

instead of a unimodal control group leaves open the possibility that the reported effect is related 222 

to the wide range of presented acoustic values in the enhanced bimodal distribution. 223 

 224 

<Insert Figure 3 around here> 225 

 226 

 227 

The second measure of dispersion, the standard deviation, is larger for the bimodal 228 

distribution than for the unimodal distribution across studies with a unimodal control group. For 229 

instance, if we take typical unimodal and bimodal distributions with stimulus frequencies as in 230 

Maye et al. (2008) and if we take a hypothetical acoustic continuum in which each step along the 231 

continuum has an identical psychoacoustic distance of 1 (see Figure 3), the standard deviation of 232 

the unimodal distribution is 1.7 and that of the bimodal distribution is 2.3.
5
 In studies with a 233 

music control group, the standard deviation of the (enhanced) bimodal distribution cannot be 234 

compared to that of the music condition, so that here too (i.e., just as in the studies with a 235 

unimodal control group) the possibility remains open that the reported effects of distributional 236 

training are related to the large standard deviation in the bimodal distribution rather than to the 237 

presence of two peaks. 238 

 239 

Our third measure of dispersion is the “edge strength”. This term refers to the density of 240 

stimuli in the leftmost and rightmost tails of the distribution (the “edges”). It is conceivable that a 241 

large edge strength can draw participants’ attention to the relevant differences between stimuli, 242 

just as a wide range and standard deviation may do (section 1.3). Specifically, the more stimuli 243 

are sampled at the edges rather than in the middle of the distribution, the more the listeners' 244 

attention can be drawn towards the end points of the continuum, rather than towards the middle. 245 

In view of the above, the reported effect of distributional training in the studies with a music 246 

control group may have been due to the large edge strength in the enhanced bimodal distribution 247 

rather than to the presence of two peaks. Many studies with a unimodal control group and an 248 

eight-step discontinuous distribution ensured that the stimuli with minimum and maximum 249 

values were equally frequent in the unimodal and the bimodal training (e.g., Maye et al., 2008; 250 

see Figure 3: stimuli number 1 and 8 were each presented eight times in both distributions). 251 

                                                 
4
 In Escudero and Williams (2014), who investigated longer-term effects of distributional training (i.e., after 6 and 

12 months rather than only after a few minutes), a significant difference between listeners to an enhanced bimodal 

distribution and listeners to music, was only found in a subset of the tests. 
5
 Notice that the standard deviations of the distributions are compared, not those of the individual peaks. (In Figure 

3, the standard deviations of the individual peaks would be 0.8 for each peak in the bimodal distribution and 1.7 for 

the unimodal peak). A smaller standard deviation of each bimodal peak than of the unimodal peak is not problematic 

in a distributional-learning experiment, because it supports the experimental design. Specifically, in the bimodal 

distribution both the presence of two peaks and the smaller standard deviation of each peak than in the unimodal 

distribution promote the distributional learning of two separate categories, while conversely in the unimodal 

distribution both the presence of a single peak and the larger standard deviation of this peak than in the bimodal 

distribution promote distributional learning of a single category (Guenther and Gjaja, 1996). 
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Thus, when computed with edges at 1/8 of the range, the bimodal and unimodal distributions in 252 

these studies have equal edge strengths. However, when computed with edges at a larger portion 253 

(e.g., 1/6) of the range, the bimodal distributions have a greater edge strength. This illustrates 254 

that the edge strength depends on the chosen width of the edges. Since it is not known how wide 255 

edges must be to avoid a confounding influence of attention to the edges, it remains a possibility 256 

that the reported effect of distributional training in the studies with a unimodal control group 257 

(just as in the studies with a music control group) was based on a larger edge strength in the 258 

bimodal group than in the control group. 259 

  260 

In sum, previous research on distributional learning has not fully excluded a possible 261 

learning effect based on measures of dispersion, such as the range (in some studies), the standard 262 

deviation (in all studies), and the edge strength (depending on the choice of the edges in some or 263 

all studies). 264 

 265 

1.5. No adequate control for processing speech versus non-speech 266 
 267 

A significant difference in categorization improvement after distributional training between a 268 

group exposed to an enhanced bimodal distribution and a group exposed to music (Escudero et 269 

al., 2011; Wanrooij et al., 2013; Wanrooij and Boersma, 2013; as discussed in section 1.4) could 270 

not only be attributed to a difference in the number of peaks or to a difference in the dispersion 271 

of the acoustic values between the two conditions (as explained in section 1.4), but also more 272 

generally to a difference between processing speech as during the enhanced bimodal training and 273 

processing non-speech as during the musical training phase. Differences in processing speech 274 

versus non-speech are well-documented and include indications that speech is processed along 275 

different routes in the brain than non-speech (e.g., Dehaene-Lambertz et al., 2005). Such 276 

differences are not related to distributional learning, which is supposedly not based on different 277 

processing routes during the bimodal training than the control training, but rather, as supported 278 

by computer simulations, on a different tuning of neurons in low-level cortical areas such as the 279 

primary auditory cortex (Guenther and Gjaja, 1996). 280 

  281 

In sum, the previously reported effects of distributional training in studies with only a 282 

non-speech control group, could be related to a difference between processing speech and 283 

processing non-speech rather than to a difference in the number of peaks in the distribution. 284 

 285 

1.6. Solving the problems: an equally wide unimodal control distribution 286 
 287 

The present study followed four previous distributional training studies (Escudero et al., 2011; 288 

Wanrooij et al., 2013; Wanrooij and Boersma, 2013; Escudero and Williams, 2014) in the choice 289 

of the population and of the vowel continuum appropriate for these listeners: native speakers of 290 

Spanish were exposed to distributions along the spectral contrast between the Dutch vowels /ɑ/ 291 

and /a/. /a/ has a higher F1 and a higher second formant, F2 (Pols et al., 1973; Adank et al., 292 

2004). This spectral contrast is difficult to learn to perceive for Spanish listeners (Escudero et al., 293 

2009; Escudero and Wanrooij, 2010), but it is the main cue for most native speakers of Dutch 294 

(Escudero et al., 2009; Van Heuven et al., 1986). Also in line with the four previous studies, 295 

participants were tested on their categorization accuracy of naturally produced [ɑ]s and [a]s 296 

before and after training. 297 
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 298 

In order to determine whether the number of peaks (factor 1) in a speech sound 299 

distribution tunes participants’ perception, and is thus the factor behind the results in 300 

distributional-learning experiments, it was necessary to exclude dispersion (factor 2) and 301 

processing differences between speech and non-speech (factor 3) as possible confounding 302 

factors. This can be done by using an experimental distribution and a control distribution that 303 

only differ in the number of peaks (factor 1 still present), and which thus have an equal 304 

dispersion (factor 2 excluded) and are both speech sound distributions (factor 3 excluded). 305 

 306 

The experimental distribution in the current study was based on the “enhanced” bimodal 307 

distribution used by Escudero et al. (2011) and Wanrooij et al. (2013) for the same continuum 308 

and population, because these studies found a significantly better improvement in vowel 309 

categorization after exposure to this distribution than after exposure to music. The control 310 

distribution in the present study was a unimodal distribution of speech sounds with the same 311 

dispersion (as defined by the range, standard deviation and edge strength; section 1.4) as this 312 

bimodal distribution. We will henceforth refer to the participants listening to the bimodal 313 

distribution as the Bimodal group, and to the participants presented with the unimodal 314 

distribution as the Unimodal group. 315 

 316 

By using bimodal and unimodal distributions with an equal dispersion, we rule out the 317 

possibility that differences in improvement of categorization between the Bimodal and Unimodal 318 

groups can be due to differences in dispersion (factor 2). By using only speech sound 319 

distributions, we preclude that dissimilar processing of speech versus non-speech (factor 3) plays 320 

a role in any differences found between the two groups. Thus, if we find that the Bimodal group 321 

improves significantly more than the Unimodal group, we can confidently attribute this 322 

difference to an effect of the number of peaks (factor 1). There will be no straightforward 323 

explanation if the reverse result occurs, i.e., if the Unimodal group improves more than the 324 

Bimodal group. 325 

  326 

If no significant difference (in terms of p-values) between the two groups emerges, we 327 

are confronted with a null result that does not allow us to conclude whether the number of peaks 328 

plays a role or not. This problem will be addressed by the computation of Bayes factors (e.g., 329 

Kass and Raftery, 1995; Rouder et al., 2009), which allow us to quantify the relative credibilities 330 

of the alternative hypothesis (e.g., that the Bimodal group will improve by a certain amount more 331 

than the Unimodal group) and the null hypothesis (that there will not be a difference in 332 

improvement between the two groups). 333 

 334 

2. Method 335 
 336 

Unless stated otherwise, the method was identical to that used in Escudero et al., 2011 337 

(henceforth: EBW2011), Wanrooij et al., 2013 (henceforth: WER2013) and Wanrooij and 338 

Boersma, 2013 (henceforth: WB2013). Spanish adult learners of Dutch (section 2.1) went 339 

through a training phase (section 2.2.1), and before and after this training they performed a test 340 

that assessed their categorization of several Dutch [ɑ]- and [a]-tokens (section 2.2.2). A 341 

comparison of post-test to pre-test accuracy scores determined participants’ improvement in 342 

categorization performance. 343 
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 344 

2.1. Participants 345 
 346 

The participants were adult native speakers of Spanish, who had been raised monolingually, at 347 

least until the age of 18. They were semi-randomly assigned to either the Unimodal group or to 348 

the Bimodal group (section 1.6), each eventually containing 60 participants. Assignment to the 349 

groups was not completely random, because we balanced the groups in terms of age, sex and 350 

length of residence in the Netherlands, in this order of importance. Table 1 presents the mean 351 

age, age range and mean length of residence, in the Unimodal (32 men, 28 women) and Bimodal 352 

(26 men, 34 women) groups. 353 

 354 
Table 1: Participants’ age, age range, and length of residence (in years) in the Netherlands, and 355 

Dialang score, for the Unimodal and Bimodal groups. The numbers between parentheses give the 356 

standard deviations within each group. 357 

 358 

Group Mean age Age range Mean length of 

residence 

Dialang score 

Unimodal 30.2 (7.3) 20.0 – 56.3 1.2 (1.4) 2.27 (1.28) 

Bimodal 31.0 (8.0) 18.7 – 52.6 1.4 (2.0) 2.25 (1.42) 

 359 

Previous research has shown that experience with new languages after adolescence does 360 

not significantly alter the perception of isolated vowels (e.g., Dutch adults listening to English 361 

vowels: Schouten, 1975; Broersma, 2005; Catalan adults listening to English vowels: Cebrian, 362 

2006; Spanish adults listening to Dutch vowels: Escudero and Wanrooij, 2010). Therefore, we 363 

did not expect such experience to affect our results. Nevertheless, we examined whether there 364 

was a difference between the Unimodal and Bimodal groups in the participants’ second language 365 

profiles. Such differences were not observed. Nearly all participants had experience with English 366 

(57 in Unimodal, 59 in Bimodal). Many indicated to have experience with Dutch (17 in 367 

Unimodal, 23 in Bimodal) or another language (23 in Unimodal, 22 in Bimodal). To pinpoint the 368 

level of Dutch, participants did a Dialang general listening comprehension test 369 

(www.dialang.org; Alderson and Huhta, 2005) after the distributional training experiment, just as 370 

in EBW2011 and WER2013. Table 1 lists the mean Dialang scores per group (Dialang has six 371 

levels: A1, A2, B1, B2, C1 and C2, which we converted to scores running from 1 to 6. Hence, the 372 

lowest possible mean score is 1 and the highest is 6). Just as in EBW2011 and WER2013, there 373 

was no significant difference in the Dialang scores between the Unimodal and Bimodal 374 

participants (Mann-Whitney U test, p = 0.55. 375 

 376 

2.2. Stimuli and procedure 377 
 378 

2.2.1. Training 379 
 380 

Figure 4 shows the unimodal (top) and bimodal (middle) training distributions used in the current 381 

experiment. The unimodal distribution is representative of the Spanish vowel /a/ and the bimodal 382 

distribution is representative of the Dutch vowel contrast /ɑ/~ /a/. As is apparent in Figure 4, we 383 

created continuous (section 1.1) distributions, just as in WB2013 and in contrast to EBW2011 384 

and WER2013. The training stimuli were made with the Klatt synthesizer in the program Praat 385 
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(Boersma and Weenink, 2013) in line with the procedure described in WB2013. The manipulated 386 

acoustic dimensions were F1 and F2. Only the F1 continuum is shown in Figure 4. 387 

 388 

Just as in WB2013, the bimodal distribution was created on the basis of two Gaussian 389 

curves. The means and standard deviations were slightly adapted from the previously used values 390 

(see below) to accommodate the requirement that both distributions should have the same 391 

dispersion (section 1.6). The unimodal distribution was created on the basis of a single Gaussian 392 

curve.  393 

 394 

<Insert Figure 4 around here> 395 

 396 

 397 

We defined the dispersion of the distributions with the three variables that were also 398 

mentioned in the Introduction (section 1.4): the range, the standard deviation and the edge 399 

strength. The range of both distributions was set to run from 11.52 to 14.35 ERB for F1 (as is 400 

visible in Figure 4) and from 15.29 to 18.15 ERB for F2. The term “range” below applies to both 401 

F1 values and F2 values. We positioned the means of the underlying bimodal Gaussians at 20% 402 

and 80% of the range, and set the standard deviation of these underlying Gaussians at 10% of the 403 

range. In addition, we skewed the two peaks in the distribution slightly outwards.
6
 The mean of 404 

the underlying unimodal Gaussian was placed at 50% of the range and had a standard deviation 405 

of 100% of the range. With these settings, the standard deviations of the bimodal and unimodal 406 

training distributions were similar, namely 29.3% and 28.4% of the range respectively.
7
 The two 407 

edges for determining the edge strength were each placed at 1/6 of the range of the distribution 408 

(see Figure 4). With the settings for the range and the standard deviations as outlined above (this 409 

section), the edge strength was 0.954 for the unimodal distribution and 0.933 for the bimodal 410 

distribution. These numbers are based on a normalized distribution, i.e., a distribution with a 411 

range from 0 to 1 and a mean probability density of 1. Table 2 summarizes the ranges of F1 and 412 

F2 values, the standard deviations and edge strengths of the unimodal and bimodal distributions. 413 

 414 
Table 2: Three measures for the dispersion of the unimodal and bimodal distributions: the range 415 

of F1 and F2 values, the standard deviation (SD) and the edge strength. 416 

 417 

Distribution Range F1 

(ERB) 

Range F2 

(ERB) 

SD 

(% of range) 

Edge strength 

Unimodal 11.52 to 14.35 15.29 to 18.15 28.4 0.954 

Bimodal 11.52 to 14.35 15.29 to 18.15 29.3 0.933 

 418 

                                                 
6 The formula used for the skewed bimodal distribution is: exp (-0.5 * ((x – μ1) / σ) ^ 2) + exp (-0.5 * ((x – μ2) / σ) 

^ 2) + 0.2 * exp (-0.5 * ((x - 0.50) / σSkew) ^ 2), where μ1 and μ2 are 20% and 80% of the range respectively, σ is 

10% of the range, and σSkew is set at 15% of the range. (The first two elements are the sum of the two Gaussian 

curves, the last element adds the skew).  

7 Notice that the standard deviations of the Gaussians defining the shape of the distributions (e.g., 100% of the range 

for the unimodal distribution) are not identical to the standard deviations of the peaks in the distributions used in the 

experiment (e.g., 28.4% of the range for the unimodal distribution), which are not truly Gaussian. This is because 

the tails of the unimodal and bimodal distributions are cut off at the maximum and minimum acoustic values of F1 

and F2, and because the bimodal distribution is a sum of two Gaussians. 
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 419 

It was not simple to obtain a unimodal and bimodal distribution that were as equal as 420 

possible in all three measures of dispersion. The chosen range was identical to the range of the 421 

enhanced bimodal distributions in EBW2011, WER2013 and WB2013. Widening the F1 and F2 422 

range would lead to including vowels extending into the /ɔ/- region, so that the bimodal 423 

distribution would be more representative of the /ɔ/~/a/ contrast than the /ɑ/~/a/ contrast. 424 

Shrinking the F1 and F2 range would make the test stimuli too similar. (In order to ensure the 425 

discriminability of the test stimuli, we required them to be at least 1 ERB apart in F1 and F2. As 426 

will be explained in below (section 2.2.2), the acoustic values of the test stimuli were based on 427 

the intersections of the training distributions. Shrinking the range would shorten the acoustic 428 

distance between the intersections too much). 429 

 430 

The standard deviations of the unimodal and bimodal distributions could only be made 431 

similar by adapting the distribution in WB2013. That distribution had been created on the basis 432 

of the sum of two Gaussians with means at 25% and 75% of the range, and each with a standard 433 

deviation of 11% of the range. The standard deviation of the resulting distribution was 26.8% of 434 

the range. In order to make the standard deviation of the unimodal distribution similar to this 435 

percentage, while at the same time ensuring that (1) the range would remain as determined, (2) 436 

the acoustic distance between the test stimuli [ɑ] and [a] would not become too small (as just 437 

explained), and (3) the edge strength in 1/6 of the edges remained similar in both distributions, 438 

the enhanced bimodal distribution of WB2013 had to be adapted by changing the means and 439 

standard deviation of the Gaussians, and introducing some skewness (as specified above). 440 

 441 

If distributional learning would occur, a small effect size (i.e., of the difference in 442 

categorization improvement between unimodally and bimodally trained participants) could be 443 

expected. This is because EBW2011, WER2013 and WB2013 found 95% confidence intervals 444 

close to zero when they quantified the difference in improvement in the categorization of Dutch 445 

[ɑ]- and [a]-tokens between Spanish listeners exposed to an enhanced bimodal distribution of 446 

Dutch /ɑ/ ~/a/ and Spanish listeners in the control condition. To increase the chance of detecting 447 

such a small effect, we used twice as many stimuli in the training distributions as in these 448 

previous studies, namely 256 in each distribution. (For the purpose of clarity, only 64 stimulus 449 

values are shown in each distribution in Figure 4). 450 

 451 

Following several distributional learning studies with a unimodal control group (Maye 452 

and Gerken, 2000, 2001; Shea and Curtin, 2006; Hayes-Harb, 2007), we added fillers to the 453 

training stimuli. Specifically, the 256 experimental training stimuli were supplemented by 128 454 

fillers, of which 64 were tokens of Dutch [i] and 64 were tokens of Dutch [u]. The F1 values of 455 

these fillers were sampled randomly from Gaussian distributions (one for each vowel), with a 456 

mean set at 50% of the range and a standard deviation of 30% of the range. The F1 range was 457 

5.81 to 6.93 ERB for both vowels. The F2 values were generated in the same way. The F2 range 458 

was 22.10 to 23.46 ERB for [i] and 10.84 to 12.20 ERB for [u]. Just as the stimuli in the training 459 

distributions, the fillers were created with the Klatt synthesizer in Praat (Boersma and Weenink, 460 

2013). 461 

 462 
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Each stimulus presented during the training phase (i.e., each experimental stimulus and 463 

each filler) had a fundamental frequency (F0) contour that declined from 150 to 100 Hz and a 464 

duration of 140 milliseconds (ms). The durational difference between /ɑ/ and /a/ (/a/ is longer; 465 

Adank et al., 2004) did not appear in the training distributions, so that participants could only 466 

hear the spectral difference, which is difficult to perceive for these Spanish listeners (Escudero et 467 

al., 2009; Escudero and Wanrooij, 2010; section 1.6). 468 

 469 

The order of presentation of the 384 stimuli (= 256 experimental stimuli + 128 fillers) 470 

was randomized for each participant individually. The stimuli were presented with an offset-to-471 

onset inter-stimulus interval (ISI) of 750 ms. The total duration of the training was 5.7 minutes. 472 

Participants were asked to listen to the training vowels carefully, because they would perform a 473 

post-test afterward. 474 

 475 

2.2.2. Pre- and post-tests 476 
 477 

The pre- and post-tests were identical XAB categorization tasks, which were the same as in 478 

EBW2011, WER2013 and WB2013 except for the two response options A and B (see below). 479 

Each of the 80 trials presented participants with a natural token (the X-stimulus) of [ɑ] or [a], 480 

followed by two synthetic response options (the A- and B-stimuli), which were [ɑ] followed by 481 

[a] or reverse. There were 40 unique X-stimuli, which were a subset of the corpus reported by 482 

Adank et al. (2004). Twenty stimuli were [ɑ] and 20 were [a]. Ten stimuli of each vowel were 483 

produced by men and 10 by women. Each X-stimulus appeared twice in each test, once with the 484 

response options in the order [ɑ] – [a] and once with the response options in the reverse order. 485 

 486 

The response options A and B were created with the Klatt synthesizer in Praat (Boersma 487 

and Weenink, 2013). In order to ensure that the F1 and F2 values of these response options were 488 

trained equally intensively in the unimodal and bimodal distributions, we calculated the 489 

intersections of the two distributions (the circles in Figure 4, bottom). These values differed 490 

slightly from the ones used in EBW2011, WER2013 and WB2013, namely for [ɑ] F1=12.44 491 

ERB, F2=16.21 ERB, and for [a] F1=13.43 ERB, F2=17.23 ERB.
8
 Each response option had the 492 

same F0 contour (i.e., declining from 150 to 100 Hz) and duration (140 ms) as the training 493 

stimuli. The duration was the same for both options in order to isolate participants’ learning of 494 

the spectral contrast (section 2.2.1). 495 

  496 

Before the pre-test and the post-test, participants performed a practice test with [i] and [y] 497 

stimuli to make sure that they understood the test, and that they did not have problems hearing 498 

the vowels.
9
 499 

                                                 
8 The F1 and F2 values of the two response options in the test in EBW2011, WER2013 and WB2013 were for [ɑ]: 

F1 = 12.5 ERB, F2 = 16.1 ERB and for [a] F1 = 13.3 ERB, F2 = 17.4 ERB. 

9 In the region of Dutch /i/ and /y/ in the F1-F2 vowel space, Spanish has the vowel /i/ only. However, Spanish 

listeners tend to hear a rather clear difference between tokens of Dutch /i/ and /y/, possibly because the rounding of 

/y/ makes them perceive tokens of /y/ as close to Spanish /u/ (Escudero and Wanrooij, 2010). Listeners in the current 
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 500 

3. Analyses and results 501 
 502 

3.1. Descriptives 503 
 504 

Table 3 lists the pre-test and post-test accuracy percentages, and the difference (i.e., the post-test 505 

minus the pre-test accuracy percentage), for the Unimodal and Bimodal groups separately. This 506 

difference is a measure of improvement after training, and thus reflects the improvement score. 507 

 508 

Table 3: Pre- and post-test accuracy percentages, and improvement score (= post- minus pre-test 509 

accuracy percentage) per group. Standard deviations between participants in each group are 510 

given between parentheses.  511 

 512 

Group Pre Post Improvement 

Unimodal 60.35 (10.28) 66.33 (12.07) 5.98 (8.32) 

Bimodal 59.98 (10.03) 65.25 (13.57) 5.27 (9.62) 

 513 

 514 

3.2. Significance tests 515 
 516 

The first set of analyses is based on common (frequentist) significance testing. This was done to 517 

assess the outcomes in the context of the previous results on distributional learning in Spanish 518 

adults presented with distributions of Dutch /ɑ/~/a/ (EBW2011, WER2013, WB2013), which 519 

were all based on such tests. 520 

 521 

In line with EBW2011, WER2013 and WB2013, we performed a one-sample t-test for 522 

each group (i.e., one for Unimodal and one for Bimodal), that compared the group’s 523 

improvement score against zero. The results show a significant difference from zero, and thus 524 

better categorization accuracy after than before training, for both groups (Unimodal: 95% 525 

confidence interval [henceforth CI] = +3.83 ~ +8.13%, t[59] = 5.56, p < 0.0001, standardized 526 

effect size d = 0.72; Bimodal: CI = +2.79 ~ +7.76%, t[59] = 4.25, p < 0.0001, d = 0.55
10

). 527 

Accordingly, both unimodal and bimodal training yield improved categorization performance for 528 

Spanish learners of Dutch /ɑ/~/a/. 529 

 530 

An independent-samples (Unimodal vs. Bimodal) t-test, with the improvement score as 531 

the dependent variable, did not show a significant difference between the Unimodal and Bimodal 532 

groups (mean difference in improvement score, i.e., Bimodal – Unimodal score = –0.71%, CI = –533 

3.96 ~ +2.54%, t[118]= –0.43, p = 0.67, d = –0.08
11

). This result does not enable us to say with 534 

                                                                                                                                                             
experiment, as in EBW2011, WER2013 and WB2013, did not show any difficulties with the practice test.

 
10

 The effect sizes d are calculated as: (the group's mean improvement) / (the standard deviation of the 

improvements of the group members). 
11

 The calculation of effect size d is explained in section 3.3. 
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confidence that Spanish learners’ perception of Dutch /ɑ/~/a/ is affected by the number of peaks 535 

in a training distribution.  536 

 537 

3.3. Bayes factors 538 
 539 

From having found a p-value above 0.05 we cannot draw any conclusions about whether the null 540 

hypothesis is true or false. Because we wanted to be able to quantify evidence in favor of both 541 

the alternative and the null hypothesis, we computed Bayes factors (henceforth “BFs”) (e.g., 542 

Kass and Raftery, 1995; Rouder et al., 2009; Gallistel, 2009; Kruschke, 2010). A BF denotes the 543 

likelihood ratio of the data occurring under the null hypothesis (H0) versus the data occurring 544 

under the alternative hypothesis (H1): 545 

 546 

BF01 = 
𝑝(𝑑𝑎𝑡𝑎|𝐻0)

𝑝(𝑑𝑎𝑡𝑎|𝐻1)
 547 

 548 

The “01” in this equation refers to H0 and H1 respectively. Thus, if BF01 = 10, the observed data 549 

are 10 times more likely to occur if H0 is true than if H1 is true; if BF01 = 0.1, the observed data 550 

are 10 times more likely to occur if H1 is true than if H0 is true. If we assume that H0 and H1 are 551 

equally likely a priori (as is common and as we do henceforth), the Bayes factor BF01 can be said 552 

to quantify the evidence in support of H0 over H1. Thus, if BF01 = 10, H0 is 10 times more likely 553 

to be true than H1 (i.e., the odds are 10 to 1 in favor of H0); if BF01 = 0.1, H1 is 10 times more 554 

likely to be true than H0; (i.e., the odds are 10 to 1 in favor of H1). Whether a clear choice 555 

between the two hypotheses is possible, depends on the magnitude of the Bayes factor. If BF01 > 556 

20, there is said to be strong support for H0, and if BF01 < 1/20, there is said to be strong support 557 

for H1; if, however, BF01 lies between 3 and 20, the data are said to moderately favor H0, and if 558 

BF01 lies between 1 and 3, the data are said to only trivially favor H0 (Kass and Raftery, 1995). 559 

  560 

 In the current paper, the null and alternative hypotheses are defined in terms of the 561 

standardized effect size of the difference in the improvement score (= the post-test minus the pre-562 

test accuracy percentage) between the Unimodal and Bimodal groups, i.e., in terms of how much 563 

the two groups differ in their improvement of categorization accuracy after as compared to 564 

before training. An observed effect size d can be calculated as the number of standard deviations 565 

difference between two improvement scores: 566 

 567 

d = (improvement score of group 1 – improvement score of group 2) / standard deviation 568 

 569 

where the standard deviation is the pooled standard deviation.
12

 In our case group 1 is the 570 

Bimodal group and group 2 the Unimodal group. 571 

 572 

The null hypothesis (Figure 5, top) is always the same, namely that there is no difference 573 

in the improvement score between the Unimodal and Bimodal groups, and that accordingly the 574 

effect size d is exactly zero: 575 

 576 

H0: d = 0 577 

 578 

                                                 
12

 The pooled standard deviation is calculated as the within-sums-of-squares / (N1+N2-2). 
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<Insert Figure 5 around here> 579 

 580 

The value of the BF depends on the definition of the alternative hypothesis. To accommodate 581 

different a priori beliefs about the effect size, we computed the BF in four different ways, i.e., 582 

with four different alternative hypotheses, which are increasingly less specific about the expected 583 

value of the effect size. The first and second alternative hypotheses (H1 and H2) include 584 

information about the effect size obtained from EBW2011, WER2013 and WB2013; the third 585 

and fourth alternative hypotheses (H3 and H4) do not. Table 4 provides an overview of the four 586 

alternative hypotheses and the resultant BFs, which we will now discuss in detail.
13

 587 

 588 
Table 4: The four alternative hypotheses (H) and the resulting Bayes factors (BF). 589 

 590 

H  BF 

H1:  d = + 0.50 BF01 = 137.86 

H2:  d is a random value drawn from a uniform distribution 

between 0 and 1. 

BF02 = 5.97 

H3:  d is a random value drawn from a Gaussian distribution with 

mean 0 and standard deviation 1. 

BF03 = 5.32 

H4:  d is a random value drawn from a Cauchy distribution  BF04 = 4.73 

 591 

 592 

 Alternative hypothesis 1 (Figure 5, second from top) stipulates that the effect size d is a 593 

specific value: 594 

 595 

H1: d = + 0.50 596 

 597 

This value of +0.50 is based on effect sizes derived from the improvement scores observed in 598 

EBW2011, WER2013 and WB2013, as follows. In EBW2011 and WER2013, one group of 599 

listeners was exposed to a non-enhanced bimodal distribution (the Bimodal group), a second 600 

group to an enhanced bimodal distribution (the Enhanced group), and a third group to music (the 601 

Music group). In WB2013, improvement in categorization was compared between a Music group 602 

and two Enhanced groups, one presented with a discontinuous distribution and the other to a 603 

continuous distribution. As mentioned in the Introduction (section 1.4), in all three studies the 604 

                                                 
13 The four Bayes factors can be computed in R (R Core Team, 2013) with the equation dt (t, df) / 

(mean (weight * dt (t, df, ncp = d * sqrt(n))) / mean (weight)). In this equation, dt is the R function that computes 

the t probability density, and ncp is the non-centrality parameter of this density; t is the between-groups t value of 

our experiment, i.e. -0.43; df is the number of degrees of freedom for a t test, i.e. 60+60-2 = 118; n is half the 

geometric mean of the two group sizes (Rouder et al. 2009, p.234), i.e. 60*60/(60+60) = 30; d is the hypothesized 

range of possible effect sizes, and weight is the shape of the distribution for all these d values. For H1, d is 0.5 

and weight is 1. For H2, d is (-0.5+1:1e5)/1e5 and weight is 1. For H3, d is ((-10e5*width+0.5):(10e5*width-

0.5))/1e5 and weight is exp(-0.5*(d/width)^2), where width is 1. For H4, d is ((-

1000*1e4*width+0.5):(1000*1e4*width-0.5))/1e4 and weight is 1/(1+(d/width)^2)), where width is sqrt(2)/2 (our 

equations for H3 and H4 are formulated in such a way that they will also work for other values of width). At the time 

of writing the computations for H3 and H4 are also available on Rouder's website 

(http://pcl.missouri.edu/bayesfactor).
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improvement score was significantly larger for the Enhanced group than for the Music group. In 605 

EBW2011 and WER2013, the improvement score for the Bimodal group was not significantly 606 

different from that of the Music group and also not from that of the Enhanced group. For the 607 

current analysis, we considered the improvement scores of the previous Enhanced groups as 608 

proxies for the expected improvement score of our Bimodal group (which was also exposed to an 609 

enhanced bimodal distribution, just as the Enhanced groups in the previous studies; section 1.6). 610 

Because it was not clear whether our Unimodal group would behave more similarly to the 611 

previous Music groups or to the previous Bimodal groups, we considered the improvement 612 

scores of the previous Music and Bimodal groups as proxies for the expected improvement score 613 

of our Unimodal group. When calculating the effect sizes observed in the three studies, we used 614 

the above-mentioned formula for the effect size d, and took a previous Enhanced group as group 615 

1, and either a previous Bimodal group or a previous Music group as group 2. The improvement 616 

scores for the Enhanced, Bimodal and Music groups were 6.04% (CI = +2.76 ~ +9.31%), 0.80% 617 

(CI = –2.22 ~ +3.83%) and –0.15% (CI = –3.50 ~ +3.21%) respectively in EBW2011, and 6.63% 618 

(CI = +4.05 ~ +9.20%), 3.83% (CI = +0.97 ~ 6.68%) and 2.00% (CI = –0.50 ~ +4.50%) 619 

respectively in WER2013. The improvement scores for the Enhanced and Music groups in 620 

WB2013 were 9.68% (CI=+6.80%~+12.55) and 2.00% (CI= –0.50~+4.50) respectively.
14

 The 621 

pooled standard deviation for the Enhanced and Bimodal groups was 12.00% in EBW2011 and 622 

9.57% in WER2013. The pooled standard deviation for the Enhanced and Music groups was 623 

12.09% in EBW2011, 8.94% in WER2013 and 9.50% in WB2013. Table 5 shows the resulting 624 

effect sizes d.  625 

 626 
Table 5: Effect size d in previous studies (see text). 627 

 628 

Previous study Enhanced–Bimodal Enhanced–Music 

EBW (2011) +0.44 +0.51 

WER (2013) +0.29 +0.52 

WB (2013)  +0.81 

 629 

 630 
The average of the five listed effect sizes is +0.51, which we rounded to +0.50 in 631 

hypothesis 1. Notice that this value is explicitly positive, i.e., it reflects the belief that our 632 

Bimodal group will have a higher improvement score, and thus improve more after distributional 633 

training than the Unimodal group. The BF calculated on the basis of the null hypothesis versus 634 

this first alternative hypothesis expresses strong support for the null: 635 

 636 

BF01 = 137.86 637 

 638 

Specifically, BF01 indicates that the observed data are 137.86 times more likely to have occurred 639 

under H0 (that d is exactly 0), than under H1 (that d is exactly 0.5). 640 

 641 

                                                 
14 The Enhanced group referred to here is the group presented with a continuous enhanced distribution in WB2013 

(the Continuous Enhanced group). In WB2013 the group presented with a discontinuous enhanced distribution (the 

Discontinuous Enhanced group) and the Music group were taken from WER2013. 
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In alternative hypotheses 2 through 4, the effect size is no longer defined as a specific 642 

value, but as a probability density function (Figure 5, as explained below): d is expected not to 643 

be one specific value, but a random value drawn from a distribution whose form defines the 644 

likelihood of that value. In alternative hypothesis 2, the effect size is any value between 0 and 1 645 

with equal probability (Figure 5, middle):  646 

  647 

H2: d is a random value drawn from a uniform distribution between 0 and 1. 648 

 649 

The hypothesis still includes the information mentioned in Table 5 about previously obtained 650 

effect sizes (i.e., all effect sizes in Table 5 fall within the range of the distribution), but it is 651 

vaguer about the precise value of the expected effect size than hypothesis 1. Since d is defined as 652 

0 or positive, hypothesis 2 expresses the belief that the Bimodal group will improve at least as 653 

much as the Unimodal group. The BF calculated on the basis of the null hypothesis versus this 654 

second alternative hypothesis also expresses support for the null: 655 

 656 

BF02 = 5.97 657 

 658 

That is, BF02 implies that the observed data are 5.97 times more likely to have occurred under H0 659 

(that d is exactly 0) than under H2 (that d is somewhere between 0 and 1). 660 

 661 

Hypotheses 1 and 2 show that previous observations can be incorporated in the 662 

alternative hypothesis to different extents, depending on the researcher’s belief in the truth value 663 

of these observations. Previous observations can also be deemed inappropriate for incorporation 664 

in the alternative hypothesis, for example if concerns (such as mentioned in the section 1.2) 665 

about the earlier observations create uncertainty about the applicability of the information to the 666 

experiment to be performed. In this case, the alternative hypothesis should reflect the assumption 667 

that we do not have a clear expectation about the effect size. This is done in alternative 668 

hypotheses 3 and 4. In alternative hypothesis 3, the effect size is any value around 0, with values 669 

closer to the mean being more likely than values further away from the mean as defined by a 670 

Gaussian distribution (Figure 5, fourth from top): 671 

 672 

H3: d is a random value drawn from a Gaussian distribution with a mean of 0 and a  673 

standard deviation of 1. 674 

 675 

Since d can be positive, zero or negative, the belief that the Bimodal group will improve at least 676 

as much as the Unimodal group, which was inherent in alternative hypotheses 1 and 2, is now 677 

dropped. The BF calculated on the basis of the null hypothesis versus the third alternative 678 

hypothesis still expresses support for the null: 679 

 680 

BF03 = 5.32 681 

 682 

In other words, BF03 indicates that the observed data are 5.32 times more likely to have occurred 683 

under H0 (that d is exactly 0) than under H3, (that d is a value around zero, whose probability is 684 

defined by a Gaussian distribution). 685 

 686 
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It is possible to be even less specific about the expected value of the effect size than in 687 

alternative hypothesis 3, by loosening the belief that the effect size is more likely to occur close 688 

to zero. This is done with a Cauchy distribution (for an explanation, see Rouder et al., 2009), as 689 

used in alternative hypothesis 4 (Figure 5, bottom): 690 

 691 

H4: d is a random value drawn from a Cauchy distribution, with a width of (√2)/2.
15

 692 

 693 

Notice in Figure 5 that the tails of the Cauchy distribution are much heavier than those of the 694 

Gaussian distribution, thus reflecting a much smaller confidence that the effect size should be 695 

relatively close to zero. Again, the BF calculated on the basis of the null hypothesis versus the 696 

fourth alternative hypothesis expresses support for the null: 697 

 698 

BF04 = 4.73 699 

 700 

Thus, BF04 indicates that the observed data are 4.73 times more likely to have occurred under H0 701 

(that d is exactly 0) than under H4 (that d is a value around zero, whose probability is defined by 702 

a Cauchy distribution, i.e., with more uncertainty as to the effect size than expressed in the 703 

Gaussian distribution used for H3). 704 

 705 

In sum, four different calculations of the Bayes factor, which differ in the extent to which 706 

they incorporate a priori beliefs about the expected effect size, unanimously support the null 707 

hypothesis that there is no difference between bimodally and unimodally trained Spanish 708 

participants in improvement of categorization of Dutch [ɑ]- and [a]-tokens. If we follow the 709 

interpretation of Bayes factors by Kass and Raftery (1995; section 3.3), the support for the null 710 

hypothesis ranges from moderate support (hypotheses 2 through 4, which represent less strong a 711 

priori beliefs about the effect size than hypothesis 1) to strong support (hypothesis 1, which 712 

incorporates the most explicit a priori beliefs). 713 

 714 

4. Discussion 715 
 716 

In the present study we trained Spanish adult participants on a bimodal or a unimodal 717 

distribution encompassing the Dutch vowel contrast /ɑ/~/a/, and then tested their improvement in 718 

categorization of Dutch [ɑ]- and [a]-tokens after training. For the first time in the research on 719 

distributional learning of speech sounds, the bimodal and unimodal distributions had nearly 720 

identical dispersions, as defined by the range, standard deviation and edge strength. The results 721 

show that Spanish adult participants improve their categorization of Dutch [ɑ]- and [a]-tokens 722 

irrespective of the training distribution, and that categorization accuracy does not improve 723 

significantly more after exposure to one distribution than after exposure to the other distribution. 724 

Additionally, four different Bayes factors (ranging from incorporating a priori beliefs about the 725 

expected effect size as much as possible to not incorporating previous knowledge at all) provided 726 

unanimous evidence for the null hypothesis that there is no difference between bimodally and 727 

                                                 
15 The equation used for the Cauchy distribution is: ((-1000*1e4*width+0.5):(1000*1e4*width-0.5))/1e4, 

where width is sqrt(2)/2 (see also note 12).
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unimodally trained Spanish listeners in categorization improvement. In other words, the number 728 

of peaks in the distribution does not play a role in the observed improved categorization. 729 

 730 

 The number of peaks must now also be dismissed as the factor that explains the earlier 731 

results on Spanish listeners’ larger improved categorization of Dutch [ɑ]- and [a]-tokens after 732 

enhanced bimodal training than after listening to music (Escudero et al., 2011; Wanrooij et al., 733 

2013; Wanrooij and Boersma, 2013; Escudero and Williams, 2014). Future research should 734 

determine which factor(s) do account for these results. At least two factors, which were also 735 

mentioned in the Introduction, appear to be viable candidates: “processing speech versus non-736 

speech” (since the earlier studies compared learning from exposure to a speech distribution to 737 

learning from exposure to non-speech) and the “wide dispersion” of the enhanced bimodal 738 

distributions (since the earlier studies compared learning from exposure to an enhanced bimodal 739 

distribution to learning from exposure to music, which has no relevant dispersion).  740 

 741 

The conclusion that the number of peaks in the distributions cannot explain the observed 742 

perceptual learning in Spanish adults may very well extend to all previous results on 743 

distributional learning in infants and adults. Although other studies included a control group 744 

exposed to a unimodal speech distribution (so that “processing speech versus non-speech” cannot 745 

be a factor accounting for the reported effects), none of the studies controlled for dispersion as 746 

was done in the current study. Results from other paradigms than distributional training suggest 747 

that enhancement of training stimuli (i.e., a wide dispersion in the training distributions) can 748 

advance the learning of speech sound categories through drawing participants’ attention to the 749 

relevant differences between the categories (e.g., Jamieson and Morosan, 1986; Iverson et al., 750 

2005; Kondaurova and Francis, 2010). In view of this potential influence of dispersion on 751 

attentional learning, dispersion is a high-ranking potential confounding factor whose role should 752 

be separated from that of the number of peaks before we can conclude that distributional learning 753 

based on the number of peaks is a mechanism that tunes speech perception. 754 
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Figure captions 879 

 880 
Figure 1. Distributions of first formant (F1) values (in ERB), representative of the Spanish 881 

vowel /a/ (top) and the Dutch vowel contrast /ɑ/~/a/ (bottom). Each solid vertical line 882 

represents a hypothetically measured vowel token with a specific F1 value. The grey curves are 883 

the underlying probability density functions. 884 

 885 

Figure 2. Non-enhanced (top) and enhanced (bottom) bimodal distributions of F1 values in 886 

the Dutch vowel contrast /ɑ/~/a/, as used in Escudero et al., 2011 and Wanrooij et al., 2013. 887 

 888 

Figure 3. Unimodal (top) and bimodal (bottom) training distributions of a hypothetical 889 

acoustic value (with an equal psychoacoustic distance of 1 between subsequent values along the 890 

continuum), with the frequencies of presentation as used in Maye et al. (2008: figure on page 891 

125). 892 

 893 

Figure 4. The unimodal (top) and bimodal (middle) training distributions of F1 values used 894 

in the present experiment, with an equal range and a nearly equal standard deviation and 895 
edge strength (explanation: see text). The unimodal distribution represents the Spanish vowel /a/ 896 

and the bimodal distribution is representative of the Dutch vowel contrast /ɑ/~/a/. Each vertical 897 

line shows the F1 value of a single stimulus. (For the purpose of clarity only 64 values are 898 

shown, rather than the 256 values used). The F1 values of the test stimuli lie at the intersections 899 

of the two distributions (bottom). 900 

 901 

Figure 5. Null hypothesis (H0) and four alternative hypotheses (H1 through H4) about the 902 

effect size: a point distribution at 0 (H0), a point distribution at 0.5 (H1), a uniform distribution 903 

between 0 and 1 (H2), a Gaussian distribution with mean = 0 and sigma = 1 (H3) and a Cauchy 904 

distribution (H4). Explanation: see text. 905 
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