
2 SSP2012 / Assignment 2:

2.1 Scripting a melody

In Western music we are using the octave with its twelve notes �a-a#-b-c-c#-d-d#-e-f-f#-g-g#�:
the next note would be an �a� again. To label all notes we also have to know from which octave
they were taken. Each note corresponds to a frequency. In our notation the �a� has a frequency of
440Hz. The frequencies of the notes in an octave have equal distances on a logarithmic frequency

scale and can be calculated as fk = f02
k/12 if we start counting from k = 0 to k = 11 and f0 is

the base frequency. Check: k = 12 gives f12 = 2f0 and k = −12 gives f−12 = f0/2.
A very simple song goes like this: cdec− cdec− efg− efg− ga1gfec− ga1gfec− cg0c− cg0c,

where a1 = 2a and g0 = g/2, i.e. they fall in the higher and lower octave.

1. Make a script that plays this song, don't make all notes of the same duration.

2. Generalize the script to play a score. The musical score consists of an array with frequency
duration pairs like for example:

s co r e$ = " ' c ' 0 . 4 'd ' 0 . 3 . . . "

You can use the function extractWord$(text$, precursor$) to extract frequencies and du-
rations from a text variable. If you use this function make sure that for the next extraction
you either change the text$ or the precursor$ otherwise you will get the same number
extracted over and over again.

Steps:

• Calculate the frequencies of the notes, e.g. a = 440, b = a*2^(2/12), etc...
Watch out: don't assign values to a variable named �e� it is a constant just like pi.

• Compose the score: score$ = "'c' 0.4 'd' 0.3 'eh' 0.3"

• Create a large enough sound of say 5 s duration.

Process the score to extract the (frequency, duration) pairs and do a Formula to synthesise the
frequency

startTime = 0
repeat

ex t r a c t a f , d pa i r
endTime = startTime + d
put the tone f in the sound between startTime and endTime
startTime = endTime

un t i l l a s t in s co r e

2.2 DFT

Reproduce the decomposition of the 8-point signal s = (−8,−8,−4, 5,−2, 4, 7, 9) from the
�gure above (book of Harrington & Cassidy (1999)). This means a plot with 8 sinoids below
each other. These 8 sinoids, when added together, should reproduce the signal s exactly.

• In Praat each sound sample represents the (average) amplitude in an interval of duration
T seconds, where T is the sampling time. The �rst sample is at time T/2 and sample si
therefore at time T/2 + (i− 1)T . In this assignment we only care for sample numbers and
we don't care about times, so sampling frequency is totally irrelevant and can be chosen
as you wish. To associate time in seconds with sample numbers you might choose �Start
time� as -0.5 and �End time� as 7.5 (for the 8 samples in the example), with a �Sampling
frequency� of 1.

• You can set the value at a sample number with the �Modify>Set value at sample number...�
command.

• The DFT is give by Hn =
∑
{ak cos() + bk sin()}. The ak and bk can be obtained by

multiplying the signal s with the corresponding cos() or sin() and taking the average value
(mean).

The following code fragment summarizes how to obtain the ai for the i
th component:

s e l e c t Sound s
Copy . . . cos ' i '
Formula . . . cos (2∗ pi ∗ i ∗x/n)∗ s e l f
a i = Get mean . . . A l l 0 0

• For the sine part you do something analogous to �nd the bi.

• The signal to display can then be calculated with the formula:

Formula . . . a i ∗ cos (2∗ pi ∗ i ∗x/n) + bi ∗ s i n (2∗ pi ∗ i ∗x/n)

• The �printline� command can be handy to display intermediate results in the Info window.
For example, to print out the values for ai and bi with four digit precision use something
like

p r i n t l i n e a ' i ' , b ' i ' : ' a i : 4 ' , ' b i : 4 '

• Because we don't have many points it is nice to also draw dots at the sample points:

Draw . . . 0 0 −1 1 no Speck l e s
Draw . . . 0 0 −1 1 no Curve

