
C Praat scripting

A script is a text that contains Praat menu and action commands. When you run the script, all

actions and commands will be executed. A script can be useful in various circumstances.

• To automate repetitive actions. You have to do the same series of analyses on a large

corpus and you don’t want to sit for months at the computer clicking away to do your

analyses on thousands of files. Instead, you write a script that performs all necessary

steps, for example, reading a sound file from disk, performing the analysis and saving

the results. Test the script thoroughly on a small number of files and then order Praat to

run the script on all the files in the corpus. You sit back when all the analyses are carried

out automatically.

• To fixate a sequence of actions. You have a series of actions on a selected Sound that

have a prescribed order. You may script these actions and define a new button in the

dynamic menu and every time you click that button, the actions in the associated script

are carried out in the right order.

• To log actions. If you want to repeat what you have done, the script serves as a guide.

• To communicate to other people what you have done and how they may achieve the

same results. In this book many examples are accompanied by a script.

• To make drawings in the picture window. Nearly all drawings in this book were pro-

duced with a script.

We will start by showing you how simple it is to add functionality to Praat once you know how

to script. To start scripting you do not have to learn completely new commands to address the

functionality of Praat. Simply copy the text that is on the command button. For example if

you have created a Sound and want a command in the script to play this Sound, a single script

line with only the text “Play” suffices.

C.1 Mistakes to avoid in scripting

• Praat commands in scripts have to be spelled exactly right. Text on menu options and

buttons are Praat commands and as you can see, they always starts with an uppercase

letter. For example, if you want to play a sound from a script and type “play” instead

of “Play” you will receive the message “Unknown command: play” and the script will

stop running.

41

C.4 Create and play a tone

at once. Buttons are divided into the categories that are shown in the editor just above the

scrollable part. The dynamic menu buttons are divided into two groups of Actions. One for

objects that start with a character in the range A-M and one for N-Z. Because the script works

on a selected Sound and Sound starts with an “S”, we choose the option “Actions N-Z”, like the

following figure shows. Lots of lines are shown and we scroll until we see the line that starts

Figure C.5: Part of the ButtonsEditor after first choosing “Actions N-Z” followed by scrolling

to the actions for a Sound.

with “ADDED”. If we click on “ADDED” the text in the ButtonsEditor immediately changes

to “REMOVED” and the “Play twice” button disappears from the dynamic menu. Clicking

that same line again, will change the text back to “ADDED” and will make the button reappear.

C.4 Create and play a tone

The previous “Play twice” example was easy. We now create a substantially more powerful

script that

• pops up a form to choose a frequency,

• creates a tone2 of 0.2 seconds with this frequency,

• plays the tone,

• removes the tone.

We will start with a crude version of the script and in a number of small steps improve upon

this script until we reach a final version in section C.4.5. In the meantime we introduce the

use of variables and how to create simple forms.

The script version we start with will be derived from the commands and actions we perform

by pointing and clicking the mouse. Start the New>Sound>Create Sound from formula...

command. It will show a form as in figure C.6. Now click OK and a new Sound appears in

the list of objects named “sineWithNoise”. It is a mono Sound with a duration of 1 second

45

C.4 Create and play a tone

Note that the fields shown vertically in the form, are shown horizontally in the script. We

must always maintain this correspondence between the position of a field in a form and the

position of the field in a line of text in a script.

We will edit these lines until they do what we want. The first thing is to get rid of the noise.

Delete the “+ randomGauss(0,0.1)” text in the “Formula” field. Next we change the “End

time” to 0.2. Finally we change the “Name” fields text to ‘tone’. The script is now:

Create Sound from formula ... tone Mono 0 0.2 44100

... 1/2 * sin (2*pi *377*x)

Play

Remove

When you run this script, the duration of the sound is shorter, it sounds like a pure tone and

you won’t hear the noise anymore.

The script plays a tone but it is the same tone any time we run the script. We want to vary

the tone’s frequency. We can do that by typing another number instead of the ’377’ in the sine

function in the Formula field of the first command. Lets say we change ‘377’ into ‘1000’. If

we run the script again, you will hear a higher tone, one of 1000 Hz. By using this script we

have actually saved some time. Instead of the three actions: creating a tone, playing the tone

and removing the tone, we only have one action now: running the script.

C.4.1 Improvement 1

To change the frequency of the tone we had to edit the number ‘377’ in the formula. A typing

error is difficult to locate. Praat, of course, generates an error message with detailed informa-

tion in which line and approximately where it could not continue the script, but nevertheless,

we have to carefully check the formula. It would be nice if we didn’t have to change at all the

most complicated line in the script whenever we want another frequency. We can achieve this

by introducing a variable for the frequency as the following script shows.

frequency =1000

Create Sound from formula ... tone Mono 0 0.2 44100

... 1/2 * sin (2*pi*frequency*x)

Play

Remove

The first line introduces a variable with the name “frequency” and assigns the value “1000”

to it.4 The formula will now use this assigned value, i.e. when the “Create Sound form for-

mula...” evaluates the formula, the value of the variable will be substituted. If you run the

modified script, the results will be exactly as they were. However, if you now want to change

the frequency, it can be done more easily.

C.4.2 Improvement 2

Now we like to skip editing the script each time we want a tone with a different frequency. We

like the script to raise a form in which we can type the desired frequency. The following script

improves on what we had.

4Variables in a Praat script never start with an uppercase character, commands start with an uppercase character.

47

C.4 Create and play a tone

form Play tone

positive frequency 377.0

endform

Create Sound from formula ... tone Mono 0 0.2 44100

... 1/2* sin (2*pi*frequency*x)

Play

Remove

The form that pops up is like the form in figure C.7 but now shows the number 377.0 in the

frequency field.

C.4.4 Improvement 4

The next improvement is only cosmetic, but nevertheless important. We want to see “Fre-

quency” as the title of the field instead of “frequency”, another Praat convention. To avoid a

conflict Praat automatically converts the first character of the associated variable to lowercase.

In this way the field name, Frequency, can start with an uppercase character and the associated

variable, frequency, with a lowercase character.

The other cosmetic change: the second line is indented to let the form and endform stand

out. The first three lines of the script now read as follows.

form Play tone

positive Frequency 377.0

endform

C.4.5 Final form

The final improvement is cosmetic again. We want to communicate that the unit for the

“Frequency” field is Hz. In this script the name of the field has been changed to “Fre-

Algorithm 2 The final Play tone example.

form Play tone

positive Frequency_(Hz) 377.0

endform

Create Sound from formula ... s Mono 0 0.2 44100

... 1/2* sin (2*pi*frequency*x)

Play

Remove

quency_(Hz)”. Despite this change, the associated variable is still named “frequency”. During

the creation of the form, Praat chops off the last part “_(Hz)” to create the variable. Actually,

Praat chops off “_(” and everything that follows at the end of the field name.

C.4.6 Variation

Suppose you want to keep the Sounds that were created by the script. You remove the last line

in the script and all the newly created Sounds will be kept in the list of objects. However, they

49

C.5 Conditional expressions

example, a frequency has to be a positive number, like in the examples of the previous section.

Here the positivity condition was automatically maintained by the form and we didn’t have

to test it explicitly in the script. However, if you happen to fill out a frequency larger than

the Nyquist frequency, aliasing occurs and the frequency of the generated tone will not be as

you typed. More on aliasing in section B.6.4. If we want to prevent this from happening, two

options remain. The first option is to increase the sampling frequency of the Sound in order

to faithfully represent the desired frequency. You probably would need a special sound card

to create Sounds with a sampling frequency above 44100 Hz. Given the right hardware, you

would not be able to hear this ultrasonic Sound. May be your dog would hear the Sound if

the frequency does not exceed 45 kHz. If your tone is even higher, maybe a nearby swimming

dolphin could hear it.8 The other option is: exit the script with an error message. Change lines

4 and 5 in the script and include the following conditional expression in the Play tone script:

if frequency >= 22050

exit The frequency must be lower than 22050 Hz.

else

Create Sound from formula ... s_ 'frequency ' Mono 0 0.2 44100

... 1/2* sin (2*pi*frequency*x)

endif

In this way the generated tone will always have the frequency filled out in the form. A

notational variant that would have the same effect is

if frequency >= 22050

exit The frequency must be lower than 22050 Hz.

endif

Create Sound from formula ... s_ 'frequency ' Mono 0 0.2 44100

... 1/2* sin (2*pi*frequency*x)

Frequencies too low for us to hear, say lower than say 30 Hz, are called infrasonic frequen-

cies. Elephants use infrasound to communicate. You could extend the script with an extra test

for infrasound:

if frequency >= 22050

exit The frequency must be lower than 22050 Hz.

elsif frequency <= 30

exit Don 't pretend to be an elephant.

endif

Create Sound from formula ... s_ 'frequency ' Mono 0 0.2 44100

... 1/2* sin (2*pi*frequency*x)

We can combine tests with “and” and “or” like in the following:

if frequency <= 30 or frequency >= 22050

exit Frequency must be larger than 30 and smaller than 22050.

endif

Create Sound from formula ... s_ 'frequency ' Mono 0 0.2 44100

... 1/2* sin (2*pi*frequency*x)

or in another variant

8According to George M. Strain’s website on hearing at Louisiana State University (http://www.lsu.edu/

deafness/HearingRange.html).

51

C Praat scripting

if frequency > 30 and frequency < 22050

Create Sound from formula ... s_ 'frequency ' Mono 0 0.2 44100

... 1/2* sin (2*pi*frequency*x)

else

exit The frequency must be higher than 30 Hz and lower than 22050 Hz.

endif

For the conditional expression in a formula with commands like Create Sound from formula...,

we have to use a syntactical variant. Because a formula is essentially a one-liner we use the

form

if bla then blabla else blablabla fi

in which the bla-parts are expressions and the else part is not optional. For example, the

following one-liner creates a tone with a gap in it (or two tones if you like).

Create Sound from formula ... gap Mono 0 0.3 44100

... if x>0.1 and x <0.2 then 0 else 1/2* sin (2*pi *500*x) fi

If you select an interval you can do this by combining the lower limit and upper limit with

“and” as the previous script does or with “or” as in following one. Both scripts result in exactly

the same sound.

Create Sound from formula ... gap Mono 0 0.3 44100

... if x <=0.1 or x >=0.2 then 1/2* sin (2*pi *500*x) else 0 fi

Another variant involves the use of the variable self.

Create Sound from formula ... gap Mono 0 0.3 44100

... 1/2* sin (2*pi *500*x)

Formula ... if x>0.1 and x <0.2 then 0 else self fi

We create a tone first and then modify the existing tone with a formula. In the else part the

expression self essentially says “leave me alone”. The self indicates that the else part applies

no changes here.

C.5.1 Create a stereo Sound

One of the ways to create a stereo Sound is with the Create Sound from formula... command.9

In this section you will make the same sound in both channels and you will learn how to use

a conditional expression to make different sounds in the left and right channel. Also you will

learn something about beats.10

Start by creating a stereo Sound that is a combination of two tones that slightly differ in

frequency:

Create Sound from formula ... s Stereo 0 2 44100

... 1/2 * sin (2*pi *500*x) + 1/2 * sin (2*pi *505*x)

Play

9Another way is to select two mono sounds together and combine them via the Combine Sounds - >Combine

to stereo command.
10A beat is an interference between two sounds of slightly different frequencies, perceived as periodic variations

in volume whose rate is half the difference between the two frequencies.

52

C.5 Conditional expressions

This command differs from the previous ones in your choice of the “Stereo” option in the

“Channels” field. Furthermore, the formula part contains a sum of two tones. Click OK, and

the new sound appears in the list of objects. To check that the Sound is stereo, click the “Edit”

button in the dynamic menu. If two sounds appear in the editor, one above the other, the

selected Sound has two channels and is a stereo file.

Another way to check for stereo is to click the “Info” button at the bottom of the Object

window when the Sound is selected. A new “Info” window pops up, showing information

about the selected Sound. The info window starts with general information about the Sound.

Object type: Sound

Object name: s

Date: Mon Feb 18 20:39:12 2008

Number of channels: 2 (stereo)

Time domain:

Start time: 0 seconds

End time: 2 seconds

Total duration: 2 seconds

Time sampling:

Number of samples: 88200

Sampling period: 2.2675736961451248e-05 seconds

Sampling frequency: 44100 Hz

First sample centred at: 1.1337868480725639e-05 seconds

Figure C.9: The first part of the text in the Info window for a stereo Sound.

On the fourth line the number of channels will show 2, which means that it is a stereo Sound.

The next lines show information on the time domain, followed by information on the digital

representation of the Sound.

Listen to the Sound. You will hear beats: the sound increases and decreases in intensity.

The sound is equal in both channels.

Now create the following new stereo Sound with the following script:

Create Sound from formula ... s Stereo 0 1 44100

... if row=1 then 1/2 * sin (2*pi *500*x) else 1/2 * sin (2*pi *505*x) endif

or with the notational variant:

Create Sound from formula ... s Stereo 0 1 44100

... 1/2 * sin (2*pi*(if row=1 then 500 else 505 endif)*x)

A stereo Sound in Praat is represented internally as two rows of numbers: the first row of

numbers is for the first channel, the second row is for the second channel. The conditional

expression in the formula part of the script above, directs the first row (channel 1) to contain

a frequency of 500 Hz and the other row (channel 2) to contain a frequency of 505 Hz.11

Listen to this Sound but don’t use your headphones yet. Instead use the stereo speaker(s)

from the computer. If everything works out fine, you will hear beats again.

11The part if row=1 then tests if the predefined variable row equals 1. The equal sign ‘=’ after the ‘if’

expression is an equality test and is not an assignment. For more predefined variables see section E.1.1.

53

C Praat scripting

Now use headphones, play the Sound several times but listen to it only with the left ear and

then only with the right ear. You will hear tones that differ slightly in frequency. Finally, listen

with both ears and you will hear beats. In contrast to the beats in the previous examples, these

beats are constructed in your head.

In figure C.10 the difference between the two stereo Sounds we have created in this section

becomes very clear. In upper part (a) you see the separate channels of the first stereo Sound.

It contains the same frequencies and beats in both channels. In contrast with this, the channels

of the last Sound as displayed in part (b) only show two slightly different frequencies in the

two channels. No sign of beats here!

Time (s)
0 0.4

-1

1

0

-1

1

0

(a)

0 0.1 0.2 0.3 0.4

Time (s)
0 0.1

-1

1

0

-1

1

0

(b)

Figure C.10: The stereo channels for the Sounds that (a) have beats in the signal and (b)

generate beats in your brain.

C.6 Loops

With a conditional expression you can change the execution path in the script only once.

Sometimes you need to repeat an action. In this section we will introduce a number of con-

structs that enable repetitive series of actions by reusing script lines.

54

C.6 Loops

C.6.1 For loops

The following script creates five Sounds with frequencies that increase from 500 Hz to 900 Hz

in steps of 100 Hz. The statements between the “for” and the matching “endfor” will be

Algorithm 3 A for loop.

for ifreq from 5 to 9

frequency = ifreq *100

Create Sound from formula ... s_ 'frequency ' Mono 0 0.5 44100

... sin (2*pi*frequency*x)

endfor

executed exactly 5 times in this script. The logic of this for loop is as follows:

1. At start, the variable ifreq is assigned the value 5.

2. Test if ifreq is less than or equal to 9. If the test returns false, continue after “endfor”.

3. The code inside the loop is executed

a) The frequency variable is assigned the value ifreq*100, i.e. the current value of

ifreq is multiplied by 100.

b) A new tone of frequency Hz is created. The name of the object will be an “s_”

followed by the frequency as a number.

4. The endfor is reached: the value of the variable ifreq is increased by 1 and continue with

“for” in step 2.

A shorthand notation is possible if the loop variable starts with 1. We skip the “from 5” part.

The previous example could also have been written as

for ifreq to 5

frequency = 400+ ifreq *100

Create Sound from formula ... s_ 'frequency ' Mono 0 0.5 44100

... sin (2*pi*frequency*x)

endfor

If the frequencies you have to generate are not related to each other, you can use an array

of variables:

freq1 =111

freq2 =231

freq3 =277

freq4 =512

freq5 =601

for ifreq to 5

frequency = freq 'ifreq '

Create Sound from formula ... s_ 'frequency ' Mono 0 0.5 44100

... sin (2*pi*frequency*x)

endfor

55

C Praat scripting

C.6.1.1 What goes on in a Formula...

We now try to make explicit what goes on in the formula part of the Create sound from formula...

command. This one command performs two consecutive actions: it starts by creating a silent

Sound, i.e. all the sample values equal 0. In the next action the silent Sound is modified with

the formula. In the following script this is shown by the last two lines. Two equal sounds

result whose contents is described by the formula ‘blablabla’.

Create Sound from formula ... s Mono 0 0.5 44100 blablabla

Equivalent to the following two steps

Create Sound from formula ... s Mono 0 0.5 44100 0

Formula ... blablabla

Before we can go on, we first need to know how Sounds are represented in Praat. Internally

Sounds are rows of numbers. A mono Sound is one row of numbers, a stereo Sound is two

rows of numbers. Each number in a row, i.e. each column, represents the average value of

the amplitude of an analog sound in a small time interval, the sampling period. The total

duration of the Sound is the sampling period multiplied by the number of samples in the row.

To be able to calculate this duration, Praat keeps the necessary extra information, together

with the rows of numbers, in the Sound object itself. In the script you have access to this extra

information: the number of samples is the predefined variable nx and the sampling period is

the predefined variable is dx. Instead of the duration Praat keeps the start and the end time

of a Sound. The variables xmin and xmax give you access. In this way the duration can be

calculated as xmax-xmin. To associate a time with the columns in a row we do as follows. The

first sample in the Sound is at the midpoint of the first sampling period and, therefore, at a time

xmin+dx/2. There is a predefined variable associated with the time value of the first sample, x1.

The second sample will be at a time that lies dx from the first sample at x1+dx, the third sample

will be dx further at x1+2*dx, et cetera. The last sample in the row will be at time x1+(nx-1)*dx.

The big picture now is that the Formula... command is expanded by Praat like this:

for col to nx

x = x1+(col -1)*dx

self[1,col]= The actual text of formula in Formula ... comes here

endfor

the self[1,col] is the element at position col in the first row.

For example, Formula... sin(2*pi*500*x) is internally expanded like

for col to nx

x = x1+(col -1)*dx

self[1,col] = sin (2*pi *500*x)

endfor

For a stereo Sound there is one extra loop for the rows. The number of rows can be read via

the predefined ny variable.

for row to ny

for col to nx

x = x1+(col -1)*dx

self[row ,col] = The actual text of formula in Formula ... comes here

endfor

endfor

56

C.6 Loops

The formula command is more powerful than we have shown here. The next section will

show you more.

C.6.1.2 Modify a Matrix with a formula

With Formula... you can modify all data types that have several rows of numbers (matrices).

The most important ones are probably Sound, Spectrum and Spectrogram. As we saw in the

previous section things make more sense if you are aware of the implicit loops around the

formula text. You can do very powerful things with ‘self’ in a formula.

• Multiply the sound amplitudes with two

Formula ... self*2

• Rectify a sound, i.e. make negative amplitudes positive

Modify ... if self < 0 then -self else self fi

• Square the Sound

Formula ... self^2

• Chop off peaks and valleys

Formula ... if self < -0.5 then -0.5 else self fi

Formula ... if self > 0.5 then 0.5 else self fi

• Create white noise

Create Sound from formula ... white_noise Mono 0 1 44100 0

Formula ... randomGauss (0,1)

• Create pink noise

Create Sound from formula ... white_noise Mono 0 1 44100 0

Formula ... randomGauss (0,1)

To Spectrum ... no

Formula ... if x > 100 then self*sqrt (100/x) else 0 fi

To Sound

C.6.1.3 Use multiple Sounds in Formula...

Suppose you have two Sounds in the list of objects named “s1” and “s2” and you want to create

a third Sound that is the average of the two. There are two ways to accomplish this in Praat.

The following examples will show you the difference between calculating with interpretation

and without interpretation.

57

C Praat scripting

1 Create Sound from formula ... s1 Mono 0 1 44100 0

2 Formula ... sin (2*pi *500*x)

3 Create Sound from formula ... s2 Mono 2 3 44100 0

4 Formula ... sin (2*pi *505*x)

5 Create Sound from formula ... s3 Mono 0 3 44100 0

6 Formula ... (Sound_s1 []+ Sound_s2 [])/2

7 Create Sound from formula ... s4 Mono 0 3 44100 0

8 Formula ... (Sound_s1(x)+ Sound_s2(x))/2

Line 1 creates a new Sound named s1 in the list of objects that will be selected automatically.

The Sound starts at time 0 and lasts for 1 second. Line 2 modifies the selected silent Sound by

changing it into a tone of 500 Hz. In line 3 a second Sound with a duration of 1 s is created,

but now the Sound’s starting time is at 2 s. In lines 5 and 7 we create two silent Sounds s3 and

s4, both start at 0 s and end at 3 s. The two fundamentally different ways to do the averaging

are in lines 6 and 8 in the use of the indexing with [] and ().

1. Let us magnify what happens in line 6 where the formula works on the selected Sound

s3:

for col to 3*44100

self[1,col]=(Sound_s1 [1,col]+ Sound_s2 [1,col])/2

endfor

The Sound s3 lasts 3 seconds, therefore the last value for col is 3*44100. The assignment

in the loop to self[1,col] refers to the element at position col in the first row of the

selected Sound s3. The value assigned is the sum of two terms divided by 2. Each

terms refers to a data item that is not in the current selected object! The first term,

Sound_s1[1,col], refers to the element at position col in the first row of a Sound with

name s1. The second term refers to an element at the same position but now in a Sound

with name s2.

In a Formula..., the syntax Sound_s1[1,col] and Sound_s2[1,col] refer to the element at

position col in row 1 from Sound s1 and Sound s2, respectively.

The loop in more detail now. The first time, when col=1, the value from column 1 from

Sound s1 is added to the value from column 1 from the Sound s2, averaged and assigned

to the first column from the selected Sound s3. Then, for col=2, the second numbers in

the rows are averaged and assigned to the second position in the row of s3. This can go

on until col reaches 1*44100+1 because then the numbers in the s1 and the s2 sound are

finished, (they were each just one second duration). Praat then assigns to the Sounds s1

and s2 zero amplitude outside their domains. Then indexes that are out of scope for a

Sound, like 44101 is for s1 and s2, will be valid indexes but have a zero amplitude. In

this way, the final second and third seconds of s3 are filled with zeros, i.e. silence. When

you listen to the outcome of the formula, Sound s3, you will hear frequency beats just

like you did in section C.5.1.

2. In line 8 the Sounds are also summed but now their time domains are taken into account.

We magnify what happens.

for col to 3*44100

58

C.7 The layout of a script

x = x1 + (col -1)*dx

self[1,col]=(Sound_s1(x)+ Sound_s2(x))/2

endfor

In the third line of this script, the two Sounds are queried for their values at a certain

time. Now the time domains of the corresponding Sounds are used in the calculation.

The domains of s1 and s2 are not the same, the domains don’t even overlap. Just like in

the previous case Praat accepts the non-overlapping domains and assumes the Sounds to

be zero amplitude outside their domains. The resulting Sound s4 is now very different

from Sound s3.

The difference between the indexing of the Sounds with [] versus () is very important. In

indexing with [] the Sounds were treated as a row of amplitude values. Amplitude values

at the same index were blindly added, irrespective of differences in domains or differences

in sampling frequencies.12 In indexing with () the Sounds are treated as Sounds, amplitude

values of the Sounds at the same time were added and averaged.

Only if sampling frequencies are equal and Sounds start at the same time, the two methods

result in the same output.

C.6.2 Repeat until loops

throws = 0

repeat

eyes = randomInteger (1,6) + randomInteger (1,6)

throws = throws +1

until eyes = 12

printline It took 'throws ' trials to reach 'eyes ' with two dice.

C.6.3 While loops

Given a number m find n, the nearest power of two, such that m ≤ n.

n = 1

while n < m

next line is shorthand for: n = n * 2

n *= 2

endwhile

C.7 The layout of a script

The layout of a script is important for you. It enables you to see more easily the structure of

the script. Layout is not important for Praat: as long as the script text is syntactically correct,

Praat will run the script.

12Create Sound s2 with a sampling frequency of 22050 Hz instead of 44100 and investigate the difference

between the behaviour of [] and () .

59

C Praat scripting

You are allowed, for example, to add additional comments in the script text that may de-

scribe in your terms what is going on. The more easily you can identify what is going on in

a script the more easily you can check the semantic correctness of the script. The following

elements may help you to structure the script so your intentions become clear.13

• White space, i.e. spaces and tabs. White space at the beginning of a script line is ignored

in Praat.14 You can use whitespace to help you see more easily the structure of your

script. For example in conditional expression you should indent every line between

the if and the endif. In all the examples we presented, white space was used with this

function. See for example the scripts in section C.5. However, see section C.1 for

possible pitfalls.

• Besides white space for laying out the structure you can use comments. Comments are

lines that start with “#”, “!” or “;”. Make comments useful, they should not repeat what

is already completely clear in the script. The comment in the following script is useless.

add 2 to a

a = a+2

• Continuation lines start with three dots (...). Use continuation lines whenever you want

to split a long line into several shorter lines.

13For masters of the C programming language there is a yearly contest to accomplish exactly the opposite.

Programmers try to write the most obscure code possible. For some really magnificent examples, see the

website of The International Obfuscated C Code Contest at http://www.ioccc.org.
14There are other computer languages like Python in which white space is part of the syntax of the language.

60

D Advanced scripting

D.1 Procedures

In writing larger scripts you will notice that certain blocks of lines are repeated many times

at different locations of the script. For example, when you make a series of tones but the

frequencies are not related in such a way that a simple “for loop” could do the job. One way

to do this in a for loop is by defining arrays of variables like we did in the last part of section

C.6.1. In this section we describe another way, procedures and introduce local variables.

A procedure is a reusable part of a script. Unlike loops, which also contain reusable code,

the place where a procedure is defined and the place from which a procedure is called differ. A

simple example will explain. If you run the following script you will first hear a 500 Hz tone

tone played, followed by a 600 Hz tone and a 750 Hz tone. The first line in the script calls the

Algorithm 4 Use of procedures in scripting.

1 call play_tone 500

2 call play_tone 600

3 call play_tone 750

4

5 procedure play_tone .freq

6 Create Sound from formula ... t Mono 0 0.2 44100 1/2* sin (2*pi*.freq*x)

7 Play

8 Remove

9 endproc

procedure named play_tone with an argument of 500. This results in a tone of 500 Hz being

played.

In detail: Line 1 directs that the code be continued at line 5 where the procedure play_tone

starts. The local variable .freq will be assigned the value 500 and line 6 will be executed. This

results in a tone of 500 Hz being created. Lines 7 and 8 will play and then remove the Sound.

When the endproc line is reached, the execution of the script will return to the start of line 2.

The execution of line 2 will result in the same sequence of code: execution continues at line

5. The local variable .freq will now be assigned the value 600 and execution continues until

the endproc line is reached. Then execution will continue at line 3, and the whole cycle starts

anew. The effect of the script is identical to the following script.

Create Sound from formula ... t Mono 0 0.2 44100 1/2* sin (2*pi *500*x)

Play

Remove

Create Sound from formula ... t Mono 0 0.2 44100 1/2* sin (2*pi *600*x)

61

D Advanced scripting

Play

Remove

Create Sound from formula ... t Mono 0 0.2 44100 1/2* sin (2*pi *700*x)

Play

Remove

It may be clear that defining a procedure can save a lot of typing: less typing means less

possibility for errors to creep in. A procedure is a way to isolate certain portions of the code.

You can than test it more easily and thoroughly. In a procedure you can define local variables.

A local variable is, as the naming already suggests, only known within the procedure. If

you don’t use the dot in front of the name, the variable’s scope is global and its value may be

changed outside the script, or, your script modifies an outside variable. This may create very

undesired side effects.1 To show you that .freq is a local variable, substitute in the script on

the preceding page for the empty line 4 the following line printline Frequency is '.freq'.

The Info window would only show “Frequency is ’.freq”’. No substitution occurred because

no variable .ifreq is known outside the procedure.

D.2 Communication outside the script

D.3 Files

1Consider for example the following situation. A procedure is called from within a for ifreq to 10 loop.

In the procedure the variable ifreq is assigned the number 4. Your script would never stop. . .

62

E Scripting syntax

E.1 Variables

Variable names start with a lowercase letter and are case sensitive, i.e. ‘aBc’ and ‘abc’ are not

the same variable. String variables end with a ‘$’, numeric variables don’t.

Examples: length = 17.0, text$ = "some words"

E.1.1 Prede�ned variables

A number of predefined variables exist.

• Numeric variables:

macintosh: 1 on macintosh, 0 elsewhere

windows: 1 on windows, 0 elsewhere

unix: 1 on unix 0 elsewhere.

• String variables:,

newline$: the newline character

tab$: the tab character

shellDirectory$: the directory you were when you launched praat

homeDirectory$: your home directory

preferencesDirectory$: the directory where the Praat preferences are stored

temporaryDirectory$: the directory available for temporary storage

defaultDirectory$: the directory where the script resides

• Matrix variables: the following variables can only be used in a Matrix context, i.e. in

Formula

self: the value in the current matrix element

row, col: current row and column number

xmin, xmax: start time and end time

nx: the number of samples in a row

dx: the sampling period

x1: the x-value of the first point in a row

x: the x-value of the current point in a row

y, ymin, ymax, ny, dy, y1: analogous to the x variables (i.e. the column)

• Table variables:

63

E Scripting syntax

E.2 Conditional expressions

if expression1

statements1

[[elsif expression3

statements3

[elsif expressionn

statementsn]]

else

statements2]

endif

Examples:

if age < 3

prinline younger than 3

elsif age < 12

printline Younger than 12

elsif age < 20

printline Younger than 20

else

printline Older than 20

endif

E.3 Loops

E.3.1 Repeat until loop

repeat

statements

until expression

Repeats executing the statements between repeat and the matching until line as long as the

evaluation of expression does not return zero or false.

E.3.2 While loop

while expression

statements

endwhile

Repeats executing the statements between the while and the matching endwhile as long as

the evaluation of expression does not return zero or false.

E.3.3 For loop

for variable [from expression1] to expression2

statements

64

E.3 Loops

endfor

If expression1 evaluates to 1, the from part between the [and the] can be left out as in:

for variable to expression2

statements

endfor

The semantics of a for loop are equivalent to the following while loop:

variable = expression1

while variable <= expression2

statements

variable = variable+1

endwhile

65

E Scripting syntax

66

F Terminology

ADC An Analog to Digital Converter converts an analog electrical signal into a series of

numbers.

Aliasing the ambiguity of a sampled signal. See section B.6.4 on analog to digital conversion.

Bandwidth The bandwidth of a sound is the difference between the highest frequency in the

sound and the lowest frequency in the sound. The bandwidth of a filter is the difference

between the two frequencies where the

Big-endian The big-end is stored first. See endianness.

DAC A Digital to Analog Converter transform a series of numbers to an analog electrical

signal.

Endianness. Refers to the way things are ordered in computer memory. An entity that con-

sists of 4 bytes, say the number 0x0A0B0C0D in hexadecimal notation is stored in the

memory of big-endian hardware in four consecutive bytes with contents 0x0A, 0x0B,

0xCA, and 0x0D, respectively. In little-endian hardware this 4-byte entity will be

stored in four consecutive bytes as 0x0D, 0xCA, 0x0B and 0x0A. A vague analogy

would be in the representation of dates: yyyy-mm-dd would be big-endian, while dd-

mm-yyyy would be little-endian.

Little-endian The little-end is stored first. See endianness.

Nyquist frequency. The bandwidth of a sampled signal. The Nyquist frequency equals half

the sampling frequency of the signal. For example, if the sampling frequency is 44100

Hz, the Nyquist frequency is 22050Hz.

Sensitivity of an electronic device is the minimum magnitude of the input signal required

to produce a specified output signal. For the microphone input of a soundcard, for

example, it is that voltage that provides the maximum allowed voltage that the ADC

accepts if the input volume control is set to its maximum. Generally the sensitivity

levels are mentioned in the specifications of all audio voltage accepting equipment.

Transducer a device that converts one type of energy to another. A microphone converts

acoustic energy to electric energy while the reverse process is accomplished by a speaker.

A light bulb is another transducer, it converts electrical energy into light.

67

