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English abstract 

 

A computational neural network can be seen as a simplified model of the human brain. It exists 

of several layers of nodes, which are connected just like the neurons in the brain are connected. 

For this study neural networks are used to answer the question how the phonological 

development of late bilingual speakers proceeds. Three scenarios are taken into account: (1) A 

speaker acquires a second language that contains more phonemes than her first language, (2) a 

speaker acquires a second language that contains fewer phonemes than her first language, and 

(3) a speaker acquires a second language that contains a contrast that is similar to a contrast in 

her first language, although the boundary between the two categories is different in the two 

languages (e.g. a difference in Voice Onset Time). 

 Considering the phonological system of a bilingual speaker two common theories are 

taken into account: (1) the bilingual speaker has two separate phonological systems, one for her 

first language and one for her second language, and (2) a bilingual speaker develops a bilingual 

phonological system, in which the phonologies of the two languages are merged. 

 In order to test the two theories for all the three scenarios three neural networks are 

used: one per scenario. These three networks consist of four layers: (1) an auditory layer, (2) a 

phonological layer, (3) a lexicon for the first language and (4) a lexicon for the second language 

(see figure). 

 In most cases the networks show the development of two separate phonological systems. 

This was predicted by the theory (1). However, the choice for separate lexicon layers and the 

amount of language input the networks are exposed to play an important role in the way the 

networks are able to separate the phonological systems and whether the networks forget their 

first language.  
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Dutch abstract 

 

Een computationeel neuraal netwerk kan gezien worden als een vereenvoudigd model van het 

menselijk brein. Het bestaat uit verschillende lagen knopen die met elkaar in verbinding staan, 

net zoals zenuwcellen in het brein met elkaar verbonden zijn. In mijn scriptie heb ik neurale 

netwerken gebruikt om de vraag te beantwoorden hoe de fonologische ontwikkeling van laat-

tweetalige sprekers zich ontwikkelt. Daarbij is gekeken naar drie scenario’s: (1) een spreker 

leert een tweede taal die meer fonemen bevat dan haar eerste taal, (2) een spreker leert een 

tweede taal die minder fonemen bevat dan haar eerste taal, en (3) een spreker leert een tweede 

taal die eenzelfde soort contrast bevat als haar eerste taal, maar waarbij de grens tussen dit 

contrast verschilt in de twee talen (bv. een verschillende Voice Onset Time).  

 Voor het fonologische systeem van een tweetalige spreker zijn twee mogelijkheden: (1) 

de spreker heeft twee aparte fonologische systemen, één voor haar eerste taal en één voor haar 

tweede taal, of (2) een tweetalige spreker ontwikkelt een tweetalig fonologisch systeem, waarin 

de fonologie van beide talen wordt samengebracht en zelfs aangepast wordt op basis van de 

twee talen.  

 Om deze twee hypotheses voor de drie geschetste scenario’s te testen is gebruik gemaakt 

van drie neurale netwerken; één voor elk scenario. Deze drie netwerken bestaan uit vier lagen: 

(1) een auditieve laag, (2) een fonologische laag, (3) een lexicon laag voor de eerste taal, en (4) 

een lexicon laag voor de tweede taal (zie afbeelding).  

 In de meeste gevallen ontwikkelen de netwerken twee gescheiden fonologische 

systemen, zoals voorspeld werd door hypothese (1). Echter, keuze voor twee gescheiden 

lexicons en de hoeveelheid taalinput die de netwerken krijgen zijn sturend voor de manier 

waarop de netwerken de fonologische systemen scheiden en of de netwerken hun eerste taal 

verleren. 
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1. GENERAL INTRODUCTION 

 

Over the course of time phonologists and psychologists have investigated how late second 

language learners learn phonemes that exist in their second language, but that do not exist in 

their first language, how late second language learners learn a differently located boundary 

between two phoneme categories, or how late second language learners learn a second language 

that contains fewer phonemes than their first language. In this thesis I use computational neural 

networks to gain more insight in this question. Please note: I use the terms artificial neural 

networks, neural networks, artificial neural nets and neural nets interchangeably. 

 

This thesis consists of four parts. The first part includes, apart from this general introduction, 

definitions for the most commonly used terminology in this work. The second part of this thesis 

starts with a closer look on the phonology acquisition of a second language learner. After that 

more modalities that may affect the phonology of the second language learner are discussed. In 

all cases the second language learner is referred to as a female speaker. The second part 

concludes with a detailed explanation of computational neural networks. In the third part the 

neural networks that are used in this thesis are explained in more detail, after which the results 

that are obtained by the neural networks are presented and discussed. The fourth and final part 

of this work contains the conclusion of this study. Next to that ideas for further research are 

discussed. The scripts that are used to model the neural networks can be found as appendices at 

the end of this thesis. 
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2. TERMINOLOGY 

 

Although many readers may be familiar with the terminology used in this thesis, in this section I 

will provide an overview of the most important terminology used in this study.  

 

Early and late bilinguals 

The distinction between early and late bilinguals is not very clear-cut. Studies have shown an 

age effect for learners of a second language (e.g.  Lee, 2011; Lehtonen, Hultén, Rodríguez-

Fornells et al., 2012; Piske, Flege, MacKay and Meador, 2002). However, the exact border 

between ‘early’ and ‘late’ is very difficult to define. Famous work by Lenneberg (1967) has 

introduced the so-called critical period for language learning. During this period the human 

brain is still able to learn a new language at a native-like level. After this period this capacity 

diminishes, which results in a foreign accent in the second language. Before Lenneberg’s study 

was published, Penfield and Roberts (1959) already proposed a comparable sensitivity to 

language learning at a young age. However, Penfield and Roberts on the one hand and 

Lenneberg on the other hand disagree on when this critical period exactly ends and what the 

exact causes are. Penfield and Roberts state that children can learn a new language till 

approximately the age of nine, as after this age the brain has lost the plasticity it needs to learn a 

second language fluently, whereas Lenneberg argues that by the onset of puberty the process of 

lateralization in the brain has completed, which causes the end of the critical period. More 

authors have contributed to the discussion on the critical period hypothesis, which has resulted 

in several borderlines for the end of the critical period (e.g. Scovel, 1988, who argues that the 

critical period ends around the age of twelve, also due to a lack of brain plasticity during that 

age, or Patkowski, 1980, 1990, who discusses a critical period for speech and morphosyntax that 

ends at the age of fifteen). Generally it seems that the earlier someone has learned a second 

language the more native-like this person becomes in her second language, and that several 

modalities (like phonology and phonetics) may be more difficult to learn at a native-like level 

than other modalities (like syntax), but see exceptions like Julie (Ioup et al., 1994), who started 

to learn Egyptian Arabic at the age of 21. Native speakers of Egyptian Arabic were not able to 

recognize a foreign accent in her Egyptian Arabic. Because of exceptions like Julie some people 

argue against the notion of the critical period hypothesis. After all, one exception is already 

enough to reject a hypothesis, according to these authors, in the spirit of Popper (1959).   

 The research on the critical period hypothesis presented until now, but criticised by e.g. 

Birdsong & Molis, (2001), DeKeyser (2000), Birdsong, (2005) and Birdsong (2006), assumed a 

very clear decrease of the ability to learn a second language at the end of the critical period. 

However, other research has reasoned against this clear border and has proposed another view 
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in which the ability to learn a second language continuously decreases over the course of time 

(e.g. Hyltenstam & Abrahamsson’s, 2003). 

 For this thesis I decided to stay on the safe side and to teach the neural networks their 

first language very thoroughly, to make sure that late bilingual speakers were modelled. In this 

thesis, ‘bilingualism’ or ‘bilingual speaker’ always refers to late bilingualism, or late bilingual 

speakers, even if this is not explicitly mentioned.  

 

First and second formant 

According to Ladefoged (1996), the vocal tract can be seen as a tube. Air in this tube is set into 

motion by the vocal cords flipping apart and together at the beginning of the vocal tract. The 

vocal tract is not one straight tube, but contains some inequalities, holes and curves. The air in 

the vocal tract resonates in these inequalities, holes and curves. The resonances of the vocal 

tract are called ‘formants’. The speech signal contains many formants, but for vowels the first 

two formants are the two most important ones to look at. The first formant is referred to as the 

F1 and the second formant is referred to as the F2. The formants of a vowel can be found in the 

spectrum and the spectrogram of the vowel. The spectrum of a vowel shows the resonances of 

the vocal tract and in a spectrogram the energy of the speech signal is plotted against the time. 

 

Language modes 

The notion of language modes has been introduced by François Grosjean (cf. Soares and 

Grosjean, 1984; Grosjean, 1988). Grosjean states that bilinguals can move along a language mode 

continuum. The ends of this continuum are occupied by the first and the second language and 

represent monolingual modes. The middle of the continuum is occupied by the bilingual 

language mode. See figure 2.1. 

 

 

 

 

 

 

 

Figure 2.3 – Language mode continuum (based on Grosjean) 

 

The language mode of a bilingual speaker changes depending on the situation. For example, if a 

bilingual speaker is surrounded by monolingual speakers of her first language, then she will only 

speak her L1, as speaking her L2 would cause misunderstandings. In this situation the bilingual 

L1 

Monolingual Monolingual 

L2 

Bilingual 

L1-L2 

Language mode continuum 
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speaker is in a complete monolingual L1 mode. However, if she is in surroundings where two 

languages are spoken, she will not arrive in one of the two ends of the continuum, but she will 

stay in her bilingual mode in the middle of the continuum.  

 In this study the term ‘language mode’ is used in a slightly different way than just 

described. As it turned out the neural networks that are used to simulate bilingual speakers 

were not able to switch between their two languages as easily as real bilingual speakers. The 

networks needed quite some language input in the target language. Due to this terms like ‘L1 

language mode’ or ‘L2 language mode’ still refer to a state in which the networks perceive and 

produce sounds in either of their two languages, but the difference is that the networks are not 

able to switch as fast as real humans. 
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3. THE SECOND LANGUAGE LEARNER: PHONOLOGY 

 

Before the acquisition of sound categories can be modelled by a neural network, it is important 

to address some theoretical issues considering the acquisition of phonology. This chapter starts 

with briefly discussing the acquisition of phonological categories in the first language. After that 

three possible scenarios for the phonological categories in a second language are presented. 

Considering the phonological system of a late bilingual speaker two theories are taken into 

account: (1) a late bilingual speaker has two separate phonological systems, one for her first 

language and one for her second language, and (2) a late bilingual speaker develops a bilingual 

phonological system, in which the phonologies of the two languages are merged. Later in this 

study neural networks are used to try to provide evidence against one of the two theories. 

Ultimately the goal of this study is to choose one of the two theories as the most probable one. 

This chapter ends with a section in which fossilization is addressed. The question of that section 

is to what extent late bilingual speakers are still able to learn their second language on a native-

like level.     

 

3.1 The first language acquisition 

When infants are born they are still sensitive to all phonemic contrasts (cf. van der Stelt and 

Koopmans-van Beinum, 2000). This means that they can distinguish between phonemic 

contrasts that exist in the language that is spoken in their surroundings, but also between 

phonemic contrasts that do not exist in the language that is spoken in their surroundings, but 

that do exist in other languages. This ability diminishes during the language development of the 

infant. Around their first birthday children have acquired a language-specific sound perception: 

children perform better on discriminating language-specific phoneme contrasts than before 

their first birthday and they are no longer able to distinguish between phonemic contrasts that 

are not part of the language spoken in their surroundings. Kuhl, Kritani et al. (1997) illustrate 

this development with an experiment on the perception of the [r] and [l] in Japanese. Japanese 

does not have the phonemic contrast between those two sounds, whereas American English 

(amongst others) does have this contrast. Kuhl, Kritani et al. showed that at 6-8 months of age 

American and Japanese children were both able to perceive the phonemic contrast between [r] 

and [l]. However, at 10-12 months of age American children had become better at the contrast 

between the two sounds whereas the performance of the Japanese children had decreased.  

 

Distributional learning plays a major role in the acquisition of language-specific sound 

perception by infants. Figure 3.1a and 3.1b show for both American English and Japanese how 

the [r]-[l] continuum can be roughly displayed. On the y-axis is plotted how much the infants are 
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exposed with a certain sound along the [r]-[l] continuum. The [r]-[l] continuum is plotted on the 

x-axis.  

 

 

 

 

 

 

 

 

Figure 3.1a – Bimodal distribution for the [r]-[l] continuum in American English 

 

 

 

 

 

 

 

 

Figure 3.1b – Unimodal distribution for the [r]-[l] continuum in Japanese 

 

Infants use this statistical distribution of speech sounds. Maye, Werker et al. (2002) showed that 

infants that are exposed to a new bimodal distribution are able to learn the distinction between 

the two ends of the continuum, whereas children that are only exposed to a unimodal 

distribution are not able to make this same distinction.  

 The language-specificity of sound perception shows that speakers of different languages 

perceive the same phonetic sounds differently on a phonological level. Speakers have to map the 

auditory signals they hear in their surroundings to the right phonological units in their language. 

Escudero (2005) argues that a listener follows a maximum-likelihood strategy for an optimal 

target perception, i.e. an optimal listener will perceive and categorise the different sounds she 

hears in her surroundings according to the distribution of phonetic contrasts in her language. 

Later, when speakers have developed a lexicon, combinations of these phonological units have to 

be mapped to the lexicon. After the mapping to the lexicon the right concept is assigned to the 

selected word in the lexicon, which gives the semantic meaning to the auditory signal (Escudero, 

2005). After the child has learned the phonological categories of its language and after the child 
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has learned some words of its language, the child’s speech comprehension can be displayed as in 

the scheme in figure 3.2. 

 

 

 Auditory signal:   

 

 Surface form:  /khæt/   

 

 Underlying form: /khæt/   

  

 Concept:   

 

  

Figure 3.2 – Human speech comprehension 

 

3.2 Three possible modifications to the phonology layer 

When a monolingual speaker learns a second language, this may involve learning a new 

distribution of phonological categories, in order to develop an optimal L2 target perception and 

production. One can imagine three possible scenarios for this (cf. Escudero, 2005). Here those 

three scenarios are explained and a closer look is taken at what this means for the bilingual 

speaker. Examples are given of research that argues that the bilingual speaker has two separate 

phonological systems and of research that argues that the bilingual speaker has one, merged 

phonological system. 

 

3.2.1 – The new scenario 

In this scenario the second language learner needs to learn new sound categories that do not 

exist in her first language. This means that one category in the L1 needs to be divided into two or 

more categories in the L2. This situation is schematically displayed in figure 3.3. Figure 3.3a 

shows the abstract situation and in 3.3b the situation is clarified with an example, adapted from 

Escudero (2005). This example shows an L1 speaker of Spanish, who has to learn English as her 

L2. 
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L1   L2     L1 (Spanish) L2 (English) 

   

   Category 1     /i/ 

Category 1      /i/ 

   Category 2     /ɪ/ 

 

Figure 3.3a – Situation 1    Figure 3.3b – Example situation 1 

 

Whenever a monolingual speaker starts to learn a second language, she will start in her L1 

‘position’. E.g. a speaker whose first language is Spanish, will not hear the difference between the 

English /i/ and /ɪ/. Several studies show that the ability to hear the difference between two 

categories in the second language that both belong to the same category in the first language 

increases with the increase of proficiency in the L2 (e.g. Boomershine, 2013; Flege, Bohn and 

Jang, 1997; Fox, Flege and Munro, 1995; Boersma and Escudero, 2002).  

 To the best of my knowledge, all research on the acquisition of new sounds in a second 

language shows that L2-learners are, at least to a certain extent, able to learn the new categories 

in their second language. In the remaining part of this section, the two theories about the 

bilingual phonological system(s) that are briefly presented in the beginning of this chapter (the 

bilingual speaker either has separate phonological systems or the bilingual speaker has one 

merged bilingual phonological system) are further discussed with respect to the new scenario.  

 Escudero (2005) presents the L2LP model for second language acquisition. This model 

predicts that the bilingual speaker ends with an optimal L1 perception and with an optimal L2 

perception, if the bilingual speaker has received enough language input. In order to achieve this 

optimal end state the bilingual language learner starts with an optimal L1 perception, also for 

her second language. During the acquisition of the second language the second language learner 

ultimately acquires two separate phonological systems: one for her first language and one for 

her second language. However, note that Escudero (2005) has not been able to present evidence 

for this last prediction yet. 

 Evidence that bilingual speakers do not have separate phonological systems is presented 

as well. Here I will provide some research that is based on the Speech Learning Model (SLM),  by 

Flege (1995). With the SLM Flege tries to cover all aspects of speech learning across someone’s 

lifespan, which includes the acquisition of a second language. The SLM proposes that processes 

and mechanisms that children use to learn the sound system of their first language do not 

disappear over the course of time. However, other aspects prevent monolingual speakers from 

acquiring a second language later in their lives, for example the fact that most bilinguals 
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continue to speak their first language (Flege, 2002). Moreover, the SLM states that the 

phonological categories of the bilingual’s L1 and of the bilingual’s L2 interact with each other 

through assimilation and dissimilation (Flege, 2003; Flege, Schirru and MacKay 2003). 

Assimilation is explained as the merging of an L1 sound category and an L2 sound category. 

Assimilation is expected to happen when these two sound categories do not differ enough to 

receive different categories in the bilingual speaker’s phonological system.  Dissimilation, on the 

other hand, is expected to take place when a new L2 sound category differs enough from the 

already existing L1 sound categories to receive its own phonemic category in the phonological 

space. However, dissimilation also means that the distance between the new category and the 

old categories is increased as much as possible. Due to this increase in distance the new and the 

old sound categories move further apart from each other. In the end all the sound categories that 

have moved apart are not native-like anymore, but adapted to the bilingual situation.  

 Flege, Schirru and MacKay (2003) argue that assimilation and dissimilation have been 

found in a research on four groups of Italian-English participants. The participants in the first 

group had learned English early in their lives and still had a high L1 use. The participants in the 

second group had learned English early in their lives as well, but did not use their L1 as often 

anymore. The participants in the third group had learned English later in their lives and had a 

high L1 use, whereas the participants in the fourth had learned English later in their lives but 

had a low L1 use. The participants of the four groups were all asked to pronounce the English 

/eɪ/. Italian lacks this phonemic category. Instead it contains the /e/, which is produced with less 

tongue movement than the English /eɪ/.  The results were compared to the results of native 

English speakers. The participants in the third and in the fourth group (the late bilingual 

speakers) were found to pronounce the English /eɪ/ with less tongue movement than native 

English speakers. Flege, Schirru and MacKay take this result as evidence for the assumption that 

the speakers merged the phonetic properties of the English /eɪ/ and the Italian /e/: a case of 

assimilation. On the other hand, the participants in the second group (the early bilinguals with a 

low L1 use) tended to pronounce the English /eɪ/ with more tongue movement than native 

English speakers. This was taken as evidence for the assumption that these speakers had 

acquired a new category for the English /eɪ/ from the Italian /e/, but in such a way that the two 

categories moved as far apart from each other as possible: a case of dissimilation. 
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3.2.1 – The similar scenario 

In this scenario a sound contrast exists in both the L1 and the L2. However, the boundary 

between these two sounds is differently placed in the L1 and the L2, see figure 3.4a. An example 

of this, adapted from Escudero (2005), is shown in figure 3.4b. Figure 3.4 shows the difference 

between Canadian French (CF) and Canadian English (CE), considering /ɛ/ and /æ/. Speakers of 

either language that learn the other language, will have to learn that the boundary between the 

two categories is different in the two languages. 

 

       L1       Sound continuum     L2     L1 (CF)     Sound continuum L2 (CE) 

 

  -       - 

Category 1 -  Category 1   /ɛ/  -  /ɛ/ 

  -       - 

  -       - 

Category 2 - Category 2   /æ/  -  /æ/ 

  -       -   

 

Figure 3.4a – Situation 2    Figure 3.4b – Example situation 2 

 

Also for this scenario one can find research that presents evidence for the assumption that 

bilingual speakers shift between two phonological systems, depending on the language 

environment and research that is supporting the SLM (Flege, 2005). Evidence for two separate 

phonological systems is presented by Garcia-Sierra, Diehl and Camplin (2009). This research 

investigated the categorization of the /ga/-/ka/ continuum by Spanish-English bilinguals and 

monolingual English speakers. Garcia-Sierra, Diehl and Camplin found a phonemic boundary 

shift, depending on the language environment, both for bilingual speakers and monolingual 

speakers. However, bilingual speakers were found to make a larger shift than monolingual 

speakers. I.e. these speakers classified certain sounds differently, depending on the language 

environment. 

 On the other hand, after the development of the SLM (Flege, 1995), Flege (1987) was 

adopted as evidence for the notion of assimilation. In this research Flege (1987) compared the 

production of /t/ and /d/ by English monolinguals and French monolinguals with the 

production of /t/ and /d/ by late English-French and late French-English bilinguals. All the 

participants in the four groups were asked to read English and French phrases like “Two little X” 

and “Tous les X”. The Voice Onset Times (VOTs) of the /t/ pronounced by French monolinguals 
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were found to be longer than the VOTs of the /t/ pronounced by English monolinguals, whereas 

the VOTs of the /t/ pronounced by bilingual speakers were found to lay in between the 

monolingual VOT values.  

 One needs to realise that the first research presented here focusses on the perception by 

bilingual speakers whereas the second research focusses on the production by bilingual 

speakers. 

 

3.2.1 – The subset scenario 

In this scenario two L1 categories merge into one category in the L2. The set of sound categories 

in the L2 forms a subset of the set of sound categories in the L1.  This is the case for L1 speakers 

of English that have to learn that in Dutch the distinction between /æ/ and /ɛ/ is not made. 

Figure 3.5a and figure 3.5b show this situation, again adapted from Escudero (2005).  

 

L1   L2     L1 (English) L2 (Dutch) 

   

Category 1      /æ/ 

   Category 1     /ɛ/ 

Category 2      /ɛ/ 

 

Figure 3.5a – Situation 3    Figure 3.5b – Example situation 3 

 

Also in this scenario the L2-learner starts in the initial state of an optimal L1 speaker and 

listener. This means that the L2-learner distinguishes more phonemic categories than the 

optimal L2 speaker and listener. There is a not a lot of research on this scenario. Escudero 

(2005) argues that this may be because at first sight scenario 3 does not result in a lexical 

problem for the L2 learner. However, Escudero and Boersma (2002) do present evidence for 

what they call Multiple-category assimilation (MCA). In their research is focussed on Dutch 

learners of Spanish. The Dutch vowel inventory contains twelve monophthongs, namely (i y u ɪ ʏ 

ɛ ɔ ɑ aː eː øː oː), whereas the Spanish vowel inventory only consists of five monophthongs: (i e a 

o u). A Dutch L2-learner of Spanish will have to learn which vowels of the Dutch vowel inventory 

do exist in Spanish and which vowels do not. Escudero and Boersma describe the subset 

problem in acquisition as “the general problem of how the learner can learn on the basis of 

positive evidence alone that some feature does not exist in the target language”. Escudero and 
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Boersma have designed three tasks to test the nature of the problematicity of  MCA. The three 

tests are briefly discussed below.  

 The first test aimed to prove that MCA actually exists. In order to test this participants 

listened to the Spanish vowels /i/ and /e/, embedded in Dutch carrier phrases. Participants 

thought they were listening to Dutch vowels and they could classify them as /i/, /ɪ/ and /ɛ/. The 

participants were divided into three groups, based on their level of expertise in Spanish: (1) 

Dutch only, (2) Beginners, (3) Intermediate, (4) Advanced and (5) Bilingual.  All participants 

used all three Dutch categories to classify the Spanish vowels, which is taken as evidence for the 

assumption that multiple-category assimilation exists.  

 In the second test the same vowel stimuli were used, but embedded in Spanish carrier 

phrases. This time the participants were told that they were listening to Spanish. However, they 

were asked to listen  with their “Dutch ears”. This means that the participants had to classify the 

Spanish vowels as Dutch vowels. The results showed that the participants did classify the sounds 

differently than in the first task, namely in a more Spanish way. Escudero and Boersma (2002) 

suggest that this shows that people switch between language modes and are not able to listen 

with “the ears of the other language mode”.  

 In the third test participants were asked to listen to the same stimuli as in the second 

task, but now they had to classify the sounds as one of the five Spanish vowels. It was expected 

that Dutch learners of Spanish would make more mistakes with the front vowels than with the 

back vowels, due to the MCA. This was exactly what was found. The more proficient the Dutch 

learners were, the fewer errors they made with the front vowels.   

 Escudero and Boersma (2002) conclude that MCA exists and that it is problematic for the 

categorization of L2 vowels. Proficiency plays a major role in acquiring the optimal L2 

perception and Escudero and Boersma also state that the learners make use of language modes, 

between which they can shift without changing their L1 perception. 

 

3.3 Real life: fossilization and an end state 

Flege’s Speech Learning Model (Flege, 2005) accounts for an accent in a foreign language, as it 

states that new categories in a second language will never be the same as these categories in a 

first language, either due to assimilation or to dissimilation. The SLM also predicts an accent in 

the first language, since assimilation of categories has taken place (Flege, 1987b). On the other 

hand, the work on two phonological systems is less explicit as to foreign accent, mainly because 

this works focusses on speech perception rather than on speech production. 

 Apart from the question which hypothesis is the right one, and besides the fact that 

research has shown that late bilinguals have more difficulties with learning a second language 

than early bilinguals (see chapter 2), late bilinguals also often lack the ability to learn a foreign 
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language at a native-like level at all, despite their continuous effort. Selinker (1972) introduced 

the term fossilization for this process. At some point L2-learners arrive in a so called end state of 

their foreign language learning, in which they cannot improve their level of speaking and their 

level of understanding their second language anymore. However, Birdsong (2009) argues that 

this end state is not to be thought of in an absolute way. The L2 of a bilingual speaker will still be 

subject to change over time, with respect to, for example, vocabulary learning, but also with 

respect to the influence the L1 has on the L2. 

 Various causes have been proposed for the observed fossilization. A few of these causes 

are already mentioned before: a decrease of brain plasticity, which was first suggested by 

Penfield and Roberts (1959) and the completion of the lateralization of the brain, which was 

proposed by Lenneberg (1967). Apart from these more neurological causes, also more social and 

psychological causes have been proposed, as it seems that the age of onset of the second 

language is confounded with many other factors. Flege (2002) provides an overview of research 

that has investigated the fossilization and the end stage of L2-learning. Many of the proposed 

factors can be related to the kind of language input. First of all both the quantity and the quality 

of the L2 input seem to influence the end state in which the L2-learner arrives. Flege describes a 

study by Stevens (1999) that showed that late bilinguals often receive L2 input that is of less 

quality than the input the early bilinguals receive. The early, young, bilinguals may be exposed to 

the L2 spoken by native speakers at school, whereas the late bilinguals may interact in a 

multicultural environment where they are exposed to several foreign accents in the L2. Other 

studies described by Flege show that the more the L2-learners are exposed to their second 

language, the better they learn the second language, despite age differences.  
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4. NEURAL NETWORKS 

 

In this thesis I use artificial neural networks to gain a better insight in the question whether late 

bilingual speakers develop two separate phonological systems (one for their first language and 

one for their second language) or whether their monolingual phonological system is expanded 

by the acquisition of new L2 phonemes. In this chapter artificial neural networks are explained. 

In order to understand the networks that I use to answer my research question it is important to 

understand the biological underpinnings of an artificial neural network. This is briefly explained 

in section 4.1. Section 4.2 deals with artificial neural networks in general and the comparison is 

made between a biological neural network and an artificial neural network. Section 4.3 finally 

focusses on the specific neural networks that are used for this study. 

 

4.1 Neural networks from a biological point of view 

Artificial neural networks are based on the animal nervous system. This system consists of the 

central nervous system and the peripheral nervous system. The central nervous system contains 

the brain and the spinal cord, whereas the peripheral nervous systems contains the rest of the 

nerves that are spread through the body. In the nerves several neurons are grouped together. 

The neurons are the building blocks of the nervous system: the neurons transport information 

through the entire nervous system. A neuron consists of four parts: the cell body, an axon, a 

synapse and dendrites. The cell body (the soma) also contains the cell nucleus and controls the 

cellular function. The axon transports the information that is produced by the cell body to the 

synapse. In the synapse the information is transferred to another neuron. The neuron receives 

the information via its dendrites. The sending neuron is called the presynaptic neuron, whereas 

the receiving neuron is called the postsynaptic neuron (see figure 4.1) 

 

 

Figure 4.1- A typical structure of a sending and a receiving neuron (Watson, n.d.) 

 

From the cell body to the synapse, information is spread via electric pulses of around 0.07 Volt. If 

the frequency of the pulses (or the firing rate) is high enough, a so-called neurotransmitter is 
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released at the synapse. (Note: the voltage of the pulses cannot increase or decrease, only the 

frequency of the pulses can.) The neurotransmitter is released in the synaptic cleft; the gap 

between the presynaptic and the postsynaptic neuron. The neurotransmitter is then bound to 

receptors at the postsynaptic neuron. This causes a change in membrane potential of the 

postsynaptic neuron. (This is done by transferring Na+ and K+ through the cell membrane, via 

active and passive transport, but the detailed procedure is not relevant for the current study.) 

The potential of the membrane can change in two ways: excitatory and inhibitory. An excitatory 

activation causes the activation of the postsynaptic neuron. If the activation is beyond a certain 

threshold, the action potential is transferred via the postsynaptic neuron as well. On the other 

hand, an inhibitory activation lowers the chances that the threshold for a new action potential 

on the postsynaptic neuron is reached. This lowers the chances that the postsynaptic neuron is 

going to fire (cf. Byrne, (2014) and Seinhorst, 2012). 

 

4.2 Neural networks from a computational point of view 

Although highly abstracted, artificial neural networks are based on the biological structure 

described in the previous section. Exactly this biological validity makes that one can argue that 

the use of artificial neural networks should be preferred over other models that are often used in 

Linguistics. In this section the general outlines of an artificial neural network are discussed and 

important properties of artificial neural networks are mentioned. At the end the reader should 

have a good basis for understanding the properties of the artificial neural networks that are 

used for this specific study. In this thesis solely neural networks that can be modelled by the 

computer program PRAAT (Boersma and Weenink, 2013, version 5.3.65) are discussed, for all the 

networks that are used in this study are modelled and run in this program. 

 

Figure 4.1 schematically shows an artificial neural network. This network is just a small toy 

network, but it shows all the important properties of the neural networks that are used in this 

thesis.  
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Figure 4.2 – An artificial neural network 

 

As can be observed in figure 4.2, an artificial neural network consists of several nodes. The 

nodes of a neural network can be compared to the cell bodies in real, biological neurons. The 

nodes of a neural net are connected via excitatory or inhibitory connections. The excitatory 

connections can increase the activity of the interconnected nodes, whereas the inhibitory 

connections can decrease the activity of the interconnected nodes. The amount of activation of a 

node depends on (1) the amount of activation of the interconnected nodes and (2) the weights of 

the connections that lead to the node that becomes activated. The weight of the connections can 

be seen as the strength of the connections. Figure 4.2 also distinguishes between clamped and 

unclamped nodes.  Clamped nodes are the nodes that are kept fixed, whereas the unclamped 

nodes are the nodes that are not fixed. E.g. the second node of the network has been activated 

completely (which is a fixed state) and it spreads its activity via the connections to the fourth 

and the fifth node. The fourth and the fifth node become activated, but the amount of activation 

depends on certain aspects (such as whether the second node is activated or not, the connection 

weights between the second and the fourth and the fifth node, the inhibition of the connections 

to the fifth and the second node, etc.). Because the activation depends on those aspects and 

because those aspects are variable, the activation of these nodes is not fixed, so, the nodes are 

unclamped.  

 In the remaining part of this section more can be read on the activity and the excitation 

of the nodes (section 4.2.1) and the weights of the connections (section 4.2.2). In these two 

subsections also the comparison with the biological nervous system is made. Boersma, Benders 

and Seinhorst (fc.) is used as the main source for this explanation. 

 

4.2.1 Activity and excitation of the nodes 

In figure 4.2 the second node was completely activated. To gain a better insight in what this 

means and what effect this has on the other nodes in the network, imagine the node had an 

activation of 1.00 (for now the unit of the activation is not important; just assume the activation 
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reaches from 0.00 to 1.00). Activity in the network can be compared to the firing rate of a neuron 

in the biological nervous system. This means that node two in figure 4.2 is maximally firing. 

Node two is connected to node four and node five. The activity of 1.00 has to be divided between 

the connection to the fourth node and the connection to the fifth node. In figure 4.2 the 

connection between node two and node four is stronger than the connection between node two 

and node five. One can imagine that the strongest connection has a weight of 0.70 and the 

weakest connection a weight of 0.30 (these numbers are directly adapted from Boersma, 

Benders and Seinhorst, fc.). How the weights strengths are exactly determined is explained in 

the next section. This division causes that 70% of the activation of the second node is 

transferred to the fourth node and 30% of the activation of the second node is transferred to the 

fifth node. 

 In a neural network all the inputs a node receives can be added up to calculate the total 

excitation of this node. So, for now not taking into account the inhibitory connections that 

actually play a role as well, the excitation of the fourth node in the network becomes  0 + 0 + 0.70 

= 0.70. However, if the third node had been activated as well and if this node had sent an activity 

of 0.20, the total excitation would have been 0.90. One could smooth the excitations to make 

sure the excitation of a node cannot exceed 1.00. The excitation of a node can be compared to the 

change in the membrane potential, which is described in section 4.1. 

 A node in a neural network that is excited with an excitation higher than 0.00 becomes 

activated. This node can now spread its activation to other nodes in the network that are 

connected with this particular node. This spreading of activation can be compared to the firing 

of the neuron. A neuron will only fire if the firing frequency of the action potential is high 

enough. The excitation of nodes and the activity spreading continues till all the nodes that could 

be activated are activated. A connection between two nodes can either be unidirectional or 

bidirectional. A connection that is unidirectional can only spread the activity in one direction, 

whereas a bidirectional connection can spread the activity in two directions. The nodes of the 

neural networks that are used for this study are connected via bidirectional connections. 

 

4.2.2 The weight of the connections 

The strengths of the connections between the nodes change, based on whether and how often 

two nodes are activated together at the same time. It would be appealing to assume that the 

connection weights change according to Hebb’s famous rule: “Cells that fire together, wire 

together” (Hebb, 1949). However, this would also mean that the connection weights can 

increase unlimitedly. Boersma, Benders and Seinhorst (fc.) propose several solutions to avoid 

this unlimited increase. The best solution, which is also the method that is used for the neural 

nets in this thesis, is called inoutstar learning. This means that the weights of the connections 
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depend on the probability that the input node is on, given that an output node is on (which is 

instar learning) and the probability that the output node is on, given that the input node is on 

(which is outstar learning). Because the weight of the connections depends on both these two 

probabilities the bidirectional character of the network is taken into account. Next to that the 

inoutstar learning algorithm still causes that the strength of a connection between two activated 

nodes increases. If only one of the two nodes is activated, the strength of the connection between 

these nodes decreases and if none of the nodes are activated, the strength of the connection 

between these nodes does not change. This means that the weight leak is set to zero. (If the 

weight leak is not set to zero, the connection weights decrease even if the interconnected nodes 

are not activated, see Boersma, Benders and Seinhorst.) The weights of the connections are 

updated after all the activity has been spread through the network. 

 

4.3. The BiPhon model 

The neural networks that are used in this study are based on earlier constructed neural nets 

used in Seinhorst (2012), Benders (2013), Chládková (2014) and Boersma, Benders and 

Seinhorst (fc.). These networks are inspired by Boersma’s BiPhon model (2007a). For this 

reason the BiPhon model is discussed below. 

 

The BiPhon model models phonological and phonetic knowledge of language users. Figure 4.3 

on the next page shows the layers of the model and the connections between these layers, as 

presented in Seinhorst (2012). 
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Figure 4.3 – The BiPhon Model 

 

In the model semantic representation is modelled on the ‘meaning’ layer. The Underlying Form 

(UF) and the Surface Form (SF) represent the phonological structures of a word.  The SF is the 

layer for the discrete phonological structure of a word, whereas the UF refers to a word stored in 

the mental lexicon (Escudero, 2005). The Auditory Form (AudF) is the phonetic layer of the 

network. It represents phonetic aspects such as duration, pitch, formants, etc. As can be seen in 

figure 4.3, the Articulatory Form (ArtF) is only connected in the speaking mode of the model. 

This is because the Articulatory Form represents the motoric plan for realising a certain sound. 
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5. MODALITIES THAT COULD AFFECT THE PHONOLOGY LAYER 

 

The research question of this study is whether late bilingual speakers acquire separate 

phonological systems, or whether they develop one merged bilingual phonological system. This 

question is addressed by using neural networks. The SF layer of the neural network is of main 

interest to answer this question. Boersma, Benders and Seinhorst (fc.) already use neural 

networks to model a language learner that has learned three categories in her native language. 

Then she moves to a different area, where a four category language is spoken. Importantly, 

Boersma, Benders and Seinhorst use a network with only two layers to model this situation, 

namely an AudF and an SF (adapted from the BiPhon model, see the previous chapter). Boersma, 

Benders and Seinhorst write that the network is easily able to adapt to the new situation and 

that the network is able to learn the new language with four categories. The opposite situation (a 

learner’s first language contains four categories, whereas her second language contains only 

three categories) gave comparable results. Boersma, Benders and Seinhorst conclude that “the 

network has a high degree of plasticity, adapting itself to changes in the environment as well as 

to changes in its own structure”. However, the network presented by Boersma, Benders and 

Seinhorst is a very simplistic model. To simulate a situation that comes nearer to reality, many 

adaptations to the current network are required. In this chapter these adaptations are discussed 

one by one. 

 

5.1 The auditory form 

The network as presented in Boersma, Benders and Seinhorst (fc.), changes from an optimal 

distribution of three categories at the AudF to an optimal distribution of four categories at the 

AudF (see figure 5.1a and figure 5.1b). The horizontal axes in figure 5.1 represent the AudF and 

the vertical axes represent how often a certain sound occurs on the AudF. The peaks are formed 

according to Gaussian distributions. 

 

 

 

 

Figure 5.1a – A distribution with three peaks 

 

 

 

Figure 5.1b – A distribution with four peaks 
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However, it is not very plausible that the phonemic categories of the learner’s L1 all take exactly 

one third of the AudF, whereas the phonemic categories of the learner’s L2 all take exactly one 

fourth of the AudF. In order model a more realistic situation, the three scenarios that are 

explained in chapter three of this work (new, similar and subset) should be modelled. For the 

new scenario peaks should be added to the already known categories, whereas for the subset 

scenario peaks should be deleted from the language input. For the similar scenario the means of 

the categories need to change. In chapter six these adaptations are discussed in more detail. 

 Moreover, in the network in Boersma, Benders and Seinhorst (fc.), only the nodes at one 

particular part of the AudF are activated for a certain sound. If one wants to model the bilingual 

acquisition of vowel categories, it would be better to train the model on the F1 and the F2 of 

these vowels. This can be achieved by activating the AudF at two points for one vowel. The first 

couple of nodes are activated for the F1 and the second couple of nodes are activated for the F2 

(cf. Chládková, 2014). This approach is discussed and explained in chapter 6. 

 By combining these two adaptations one is able to model a bilingual speaker whose first 

and second language have different vowel inventories, e.g. a bilingual’s first language vowel 

inventory exists of /a/, /i/ and /u/, whereas this bilingual’s second language vowel inventory 

exists of /a/, /i/, /u/, /e/ and /o/. 

 

5.2 A more realistic language environment 

In the current network the second language learner is taught her first language, after which the 

language environment changes and she is exposed to her second language. After this, the first 

language is not presented anymore. However, in a more realistic situation the bilingual speaker 

is also exposed to her first language again, even though she has acquired (the basics of) a new 

second language now. For this reason it is important to change the language environment of the 

network every now and then, so that the model is exposed to the first language as well as to the 

second language. 

 

5.3 The lexicon 

As mentioned before, the network in Boersma, Benders and Seinhorst (fc.) contains only two 

layers: an Auditory form and a Surface Form. However, it could well be possible that another 

layer, e.g. a lexicon layer, affects the phonology layer as well. The question is how this lexicon 

layer should be modelled in a neural network.  

 The bilingual lexicon is a topic that is often addressed within psycholinguistics. Three 

possibilities for the bilingual lexicon are taken into account: (1) bilingual speakers have two 

lexicons, one for their first language and one for their second language (cf. Kolers, 1963), (2) 

bilingual speakers have one single lexicon, which is simply larger than the lexicon of a 
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monolingual speaker (cf. Kirsner, Lalor and Hird, 1993), and (3) bilingual speakers start with 

one lexicon, but as the words of their first language are always used together and the words of 

their second language are always used together, the connections between the words of one 

language strengthen and the connections between words of different languages weaken. In the 

end this creates two separate lexicons (cf. Paradis, 2004). However, it is not always clear 

whether early or late bilingual speakers are examined or how terms such as ‘separate lexicons’ 

or ‘integrated lexicons’ are defined.  

 Priming experiments are often used to investigate the question whether a bilingual 

speaker has two separate lexicons or not (cf. Larsen, Fritsch and Grava, 1994; Jiang and Forster, 

2001; Duñabeitia et al., 2010). In this kind of research bilingual participants are usually 

presented with words in either of their two languages (or non-words that could have been 

words). These words are preceded by primes, which consist of either words in the same 

language or words in the other language. Participants are asked whether the presented word 

(not the prime) is a genuine word, or not. If the lexicons are separated, primes in the other 

language will not affect the decision time of the participants, these studies argue. However, 

primes in the same language will affect the reaction times. Different results are found and many 

factors (such as proficiency and language dominance) seem to play a role. 

 Despite these divergent results, often it is assumed that bilingual speakers have two 

lexicons that can be activated at the same time. E.g. Dijkstra et al. (1999) and  Haigh and Jared 

(2007) showed that bilingual speakers activate both their lexicons when presented with 

homophones (words that sound the same in the two languages). In these two studies bilingual 

speakers performed a lexical decision task. In a lexical decision task participants have to decide 

whether a presented word is a genuine word or not. In Dijkstra et al. and Haigh and Jared a 

bilingual lexical decision task was used in which participants had to judge whether the 

presented word was a genuine word in either of their two languages. E.g. Dutch English bilingual 

speakers could have to identify whether a word that is presented on the screen is a Dutch word 

or not. If so, the participants should press ‘yes’, if not (the word was a non-word, or a word in 

another language, including English) the participants should press ‘no’. Homophones were 

expected to change the reaction times of the participants. This was found in both studies. For 

this reason in both studies the conclusion is drawn that bilingual speakers activate both their 

lexicons while listening to speech. Only at a later moment in time the right word, in the right 

lexicon, is selected.  

 Even if bilingual speakers have two lexicons that can be activated simultaneously, the 

questions whether or not these lexicons are completely separated or whether the words in the 

different lexicons are still connected is still to be answered. The possible connections between 

words in the lexicon could be directly between two words, but the words could also be 
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connected via another layer. In by now classic research Potter, So, Von Eckardt and Feldman 

(1984) state that the two lexicons are connected via an additional concept layer. Over the course 

of time many researches have argued against this concept mediation theory, whereas the current 

research is rather in favour of this theory (see De Groot (2011) for a detailed overview).  

  For this study I have chosen to model two separate lexicons that are connected via a 

phonological layer (see chapter 6 for a detailed explanation). A model like this can account for 

the double lexical activation in the case of homophones. In the neural networks that are used for 

this research the nodes of a lexicon layer are connected via inhibitory connections.  

 Two other options would account for the double activation for homophones as well. One 

could model one lexicon layer, on which homophones are represented only once. In this case the 

lexicon layer should be connected to a concept layer, which has separate representations for 

homophones. The nodes on the lexicon layer that represent the homophones should be 

connected to different concepts. However, a concept layer negatively influenced the results of 

the networks, so I have chosen not to include a such a layer (see chapter 6). A second option 

would be a model with only one lexicon layer, on which all the meanings of a homophone are 

represented. A concept layer would not be necessary. The only difference between this model 

and the model I have chosen to use (with complete separate lexicons) is that in the model that is 

used for this thesis no connections between the two different lexicons are modelled, whereas for 

the second option described here, inhibitory connections are added between all the nodes of the 

lexicon. 

 

5.4 Plasticity 

In 1890 William James has introduced the term plasticity for the ability of the brain to change 

(Cotman en Berchtold, 2002). Since then it has been widely held and assumed that over the 

course of time the brain has to contend with a decreasing plasticity. Due to this decrease the 

ability of the brain to make new connections and, due to that, the ability to learn, declines. In 

chapter two of this study it is already mentioned that the a decrease of brain plasticity could be 

one of the causes for the difficulties late second language learners experience during their 

second language acquisition. For this study a decreasing brain plasticity is not directly taken into 

account, but see chapter 9, in which ideas for further research are discussed.  

 

5.5 Sensorimotor constraints 

Bilinguals may also face a sensorimotor problem. This would mean that the bilingual speaker 

has already acquired the fine articulatory movements that belong to her first language. After 

having acquired these small movements, it could be difficult to learn the new fine muscle 

movements for the second language. This in turn may cause articulatory problems. This would 
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mean that the late bilingual language learner does not necessarily have another phonological 

representation than a monolingual speaker, but that she has difficulties pronouncing the new 

sounds. Sensorimotor constraints are not directly considered in this study either, but again, see 

chapter 9 for ideas for further research.  
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PART III: APPLICATION 
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6. THE DETAILS OF THE NETWORKS 

 

For this study three different neural networks are modelled: (1) a network for the new scenario, 

(2) a network for the similar scenario, and (3) a network for the subset scenario. In this chapter 

the details and characteristics that are applicable to all the networks are discussed and 

explained. After that a closer look is taken at the single networks, one by one. Simple toy 

languages are used to simulate the different scenarios. 

 

6.1 The general outlines of the networks 

The BiPhon model (see chapter 4) has been the inspiration for the layout of the current, and 

previous, neural networks (e.g. Seinhorst (2012), Benders (2013), Chládkova (2014) and 

Boersma, Benders and Seinhorst (fc)). The neural networks that are used for this study consist 

of four layers: (1) the Auditory Form, (2) the Surface Form, (3) the Underlying Form for the first 

language, and (4) the Underlying Form for the second language (see figure 6.1). As stated in 

chapter 4, the Underlying Form represents the mental lexicon. In the remaining part of this 

thesis the word ‘lexicon’ is used to refer to the Underlying Form. 

 Excitatory connections are present between the nodes at the Auditory Form and the 

nodes at the Surface Form, between the nodes at the Surface Form and the L1 lexicon nodes and 

between the nodes at the Surface Form and the L2 lexicon nodes. Nodes on the same layer are 

connected via inhibitory connections. Note that these inhibitory connections are present 

between all the nodes on one layer, so not only between the neighbouring nodes. Excitatory 

connections are needed to activate the nodes on the next layers, whereas inhibitory connections 

are needed to make sure that not all the nodes on one layer are activated, but only a limited 

amount. The values for the inhibition are determined on the basis of the ideal L1 learning 

situation. This means that the model had to be able to learn the L1 without any mistakes, just 

like a real child that has to learn its first language.  

 

 

Figure 6.1 – Schematic overview of the used neural networks 
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The learning phase of the network contains several learning steps (see section 6.2, 6.3 and 6.4 

for a detailed explanation of the learning phase per scenario). During one learning step the 

network is presented with a sound-meaning pair, i.e. sounds on the AudF belong to words on the 

lexicon layer and during a learning step certain AudF nodes and the corresponding lexicon 

nodes are activated. The activation is spread through the network and the weights of the 

connections are updated, following the learning algorithm (inoutstar learning, see chapter 4). 

Due to this learning algorithm patterns emerge on the Surface Form for every sound-meaning 

pair. The spreading rate of the network is set at 0.01. 

 The mapping of a single sound to a single word shows that the used networks are only 

simplifications of reality. However, the current state of the development of the neural networks 

that are used in phonology does not allow the combination of sequences of sounds in order to 

form a word.  

 In the remaining part of this section the different layers and their characteristics during 

the learning phase are discussed in more detail. This section ends with a brief explanation on the 

production and the perception of the network, i.e. the network while it speaks and the network 

while it listens. 

 

6.1.1 The Auditory Form (the AudF) 

The Auditory Form consists of forty nodes, following Chládková (2014), which are clamped 

during the learning phase. The AudF represents a certain auditory continuum. Depending on the 

scenario that is modelled (new, similar or subset) this auditory continuum is either the 

frequency spectrum along the basilar membrane in the ear (the spectrum increases from left to 

right and this makes it possible to model vowels in the network) or the Voice Onset Time. The 

toy languages that are used to model the three scenarios contain several categories, which are 

divided over the auditory continuum. Every category is defined according to a Gaussian 

distribution. For every learning step one or two nodes (depending on whether or not vowels 

with two formants are modelled) on the AudF are randomly selected and activated, but 

following the Gaussian distributions for the categories. This means that nodes on the AudF in the 

middle of the Gaussian distribution are selected more often than nodes on the AudF that lay at 

the ends of the Gaussian distributions. Due to this distributional learning can take place (see 

chapter 3). The AudF nodes in the direct surroundings of the selected AudF nodes are also 

activated according to (another) Gaussian distribution. Then the activation is spread to the SF 

layer (see next section) via the excitatory connections. Note that the network, just like a real 

human, does not ‘know’ to what category a certain presented sound belongs (in the beginning at 

least).  
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6.1.2 The Surface Form (SF) 

The SF layer is connected with the AudF and the lexicon layers. In all cases the Surface Form 

contains twenty nodes, again following Chládková (2014). During the learning phase (but also 

during perception and production, see section 6.1.5 and 6.1.6) the SF nodes are unclamped. By 

making use of unclamped SF nodes, unsupervised learning can be guaranteed. During 

unsupervised learning the network itself ‘decides’ which nodes on the SF should be activated, 

based on the learning algorithm (inoutstar learning, see chapter 4).  

 

6.1.3 The Underlying Form (UF, or lexicon layers) 

As stated before, the networks make use of two lexicon layers to represent the mental lexicon of 

the first language and the mental lexicon of the second language. The lexicon layers are 

connected with the SF, but not with each other. Before having been exposed to the L2, the L2 

lexicon is not yet connected to the rest of the network. As stated before, for one learning step the 

lexicon nodes that belong to the selected AudF nodes are activated. During the learning phase 

the nodes of both lexicon layers are clamped and the activation of the lexicon that does not 

belong to the presented language is set to zero. Four consecutive nodes in the lexicon belong to 

one word, i.e. the more words a language contains, the more nodes the lexicon layer consists of. 

 

6.1.4 The concept layer: not included in the networks 

During the early stages of setting up the network a concept layer was part of the network as 

well, following psycholinguistic research (e.g. Potter et al., 1984; Kroll et al., 2002; de Groot, 

2012 (for an overview)). In these networks the concept level was connected to the two lexicon 

layers, in order to simulate the idea that the same concept can be expressed by different words 

in different languages. However, as it turned out, the concept layer was rather negatively 

influencing the activation in the network. The excitatory connections between the nodes on the 

concept layer and the nodes on the lexicon layers were influencing the lexicon layer, not only for 

production, but also for perception. It is to be wondered whether this is a natural situation. For 

this reason the models in this study do not make use of a concept layer. However, a concept layer 

would be a good addition in further research (see chapter 9). 

 

6.1.5 The state of the network during production 

After the learning phase the neural networks are able to ‘speak’ their newly learned language. 

This is called the production of the network. In the networks a speaking bilingual is simulated by 

selecting a word in one of the two lexicons, after which the activation of the lexicon nodes is 

spread through the rest of the network, first to the Surface Form and then to the Auditory Form. 

This causes the activation of the nodes on the SF layer that belong to the activated word in the 
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lexicon and the activation of the nodes at the AudF that belong to the activated word in the 

lexicon. Furthermore, during the production, the lexicon nodes are clamped, whereas the nodes 

on the Surface Form and the nodes on the Auditory Form are unclamped. 

 

6.1.5 The state of the network during perception 

After the learning phase the networks are not only able to speak their new language, they are 

also able to understand their new language. This is called the perception of the network. In order 

to simulate a listening bilingual speaker, the AudF nodes are clamped and activated. Which AudF 

nodes are activated depends on the scenario (new, similar or subset). The rest of the nodes in 

the network are unclamped. The activity of the AudF nodes is spread through the rest of the 

network, first to the Surface Form and then to the lexicon layers. This causes the activation of the 

nodes on the SF layer that belong to the activated AudF nodes and the activation of the words in 

the lexicon layers that belong to the activated AudF nodes. Note that both lexicons can be 

activated, in order to account for homophones (see chapter 5). 

 

6.2 The network for the new scenario 

In this section the layout and the properties of the network that is modelled for the new scenario 

are discussed. In the new scenario a second language learner has to learn a new sound category 

that does not exist in her first language (see chapter 3).  

 The network has the same general layout as is described in section 6.1. The network 

starts with learning its first language. For the new scenario, the L1 consists of three vowels: the 

/i/, the /a/ and the /u/, which are the three outer vowels of the vowel chart (see figure 6.2). 

These three vowels are chosen because languages with only a limited number of vowels often 

have at least these three vowels (Maddieson, 2013).  

 

 

Figure 6.2 – The vowel chart (Ladefoged, 2008) 
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Following Chládková (2014) I have decided to model the vowels with the F1 and an the F2 only, 

although the F1 and the F2 are not the only distinctive features for the vowels, as the /i/ and the 

/u/ on the one hand and the /a/ and the /u/ on the other hand also differ in roundedness. 

However, Chládková obtained promising results with this approach. The F1 and the F2 are 

represented on the AudF layer. Chládková is also followed in which AudF nodes are exactly 

activated. This is based on the ratio between the different formants of the vowels.  Table 6.1 

shows the mean F1 and F2 values for the three vowels. In the previous section is explained that 

the categories are formed according to a Gaussian distribution. That means that the values for 

the F1 and the F2 are not always the ones that are shown in table 6.1, but vary according to the 

Gaussian distribution. The standard deviation of all the means in table 6.1 is 1.95. To know 

which node is activated on the AudF one needs to multiply the F1 or the F2 value with the 

number of AudF nodes. E.g. if the mean F1 and F2 values are selected, the fourth and the 36th 

node are activated for the /i/: 0.10 * 40 = 4 and 0.90 * 40 = 36. Next to these two nodes also 

some of the neighbouring nodes are activated, according to the Gaussian function that belongs to 

AudF layer (see chapter 4).  

 

Vowel F1 F2 

/i/ 0.10 0.90 

/a/ 0.40 0.75 

/u/ 0.10 0.60 

Table 6.1 – Vowels of the L1 with the means of the corresponding AudF nodes. 

 

As written in the previous section, every vowel belongs to a word on the lexicon layer. As the 

lexicon layer contains four nodes for every word, the lexicon layer for the L1 consists of twelve 

nodes. During the learning phase of the neural net, the network is presented with sound-

meaning pairs of the language, as explained in the previous section. 

 Figure 6.3 shows the neural network before any learning steps. One can see that the 

lexicon for the L2 is not yet connected to the SF layer, so that it cannot influence the acquisition 

of the first language. 
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Figure 6.3 – The untrained network for the new scenario 

 

In order to acquire the first language, the network is presented with 50.000 L1 sound-meaning 

pairs. Although the network has learned its first language after fewer learning steps already, I 

have chosen for 50.000 sound-meaning pairs to make sure that the network has thoroughly 

learned the first language, before it is exposed to the second language. In an earlier stage of this 

study the network was taught the L1 in 10.000 learning steps, after which the network was 

presented with the L2 sound-meaning pairs. For the new scenario, the results did not differ, but 

for the similar scenario they did. For this reason in this section only the more ‘solid’ version of 

the test, with 50.000 learning steps is presented, whereas for the similar scenario, both versions 

of the test are discussed. 

 

After 50.000 learning steps the L2 lexicon is connected to the SF, via excitatory connections with 

a random weight between 0.0 and 0.1. For the L2 the /e/ and the /o/ are added to the vowel 

inventory. This brings the total number of vowels to five (two vowels more than in the L1). 

These two new vowels are situated in the middle outsides of the vowel chart. See figure 6.4. An 

example of a language in which only these five vowels are present is Spanish (Boersma and 

Escudero, 2002).  

 

 

Figure 6.4 – The vowel chart (Ladefoged, 2008) 

 

L1 lexicon L2 lexicon 

SF layer 

AudF layer 
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Again I will follow Chládková (2014) in which nodes are activated on the AudF. The means of the 

F1 and the F2 can be found in table 6.2. The same calculation as described above for the L1 

should be applied to know which nodes on the AudF layer are activated. Again the standard 

deviation of the means of the F1 and the F2 is 1.95. 

 

Vowel F1 F2 

/e/ 0.25 0.6625 

/o/ 0.25 0.8375 

Table 6.2 – Extra vowels of the L2 and the means of the corresponding F1 and F2 values.  

 

Since the L2 contains five vowels, which all belong to a word in the L2 lexicon, the L2 lexicon 

consists of fifteen nodes. This can be seen in figure 6.2. 

 

The network is exposed to 5.000 L2 sound-meaning pairs, after which the network is trained on 

3000 L1 sound-meaning pairs. Then the network is trained on 10.000 L2 sound-meaning pairs. 

This is done to see how the phonology layer reacts if the network is trained more thoroughly on 

its second language. Finally the network is presented with as many L1 sound-meaning pairs as is 

needed to arrive in a monolingual L1 mode again. Recall from chapter 2 that a monolingual L1 

language mode is defined as the state in which the network perceives and produces sounds in an 

optimal L1 manner. For the networks this may take longer than for real humans. 

 More than one bilingual speaker needs to be modelled, in order to see whether 

comparable results are obtained in every training session. For this reason the described 

approach is repeated seven times, to simulate seven bilingual speakers. 

 

At this point it is also useful to think about what can be expected, considering the two theories 

that are discussed in the theory section of this thesis (separate phonological systems vs. one 

merged phonological system). In sections 6.2.1 and 6.2.2 the expectations are discussed. 

 

6.2.1 Expectations separate phonological systems 

The first theory about the phonological category creation of late bilingual speakers assumes that 

bilingual speakers have two different phonological systems.  Depending on the language mode, 

bilingual speakers switch between these two systems. For the neural networks this would mean 

that, both for production and for perception, a difference should be observed between the way 

in which the SF layer is activated for the first language and the way in which the SF layer is 

activated for the second language. After all, if there is no difference between the activation of the 

SF nodes for the first and the second language, one cannot speak about separate phonological 
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systems. This would also mean that sound-meaning pairs that only exist in the second language 

should be perceived differently in the first language mode than in the second language mode. It 

is to be expected that new L2 sounds that are very distinct from the already known L1 sounds 

are still perceived in an L2 manner if they are presented in the L1 surroundings. (E.g. speakers of 

languages without clicks are still able to perceive a click as a sound from a different category 

than the categories that exist in their native language.) On the other hand, new L2 sounds that 

are less distinct than the already known L1 sounds, are expected to be perceived in an L1 

manner in the L1 surroundings, but in an L2 manner in L2 surroundings. It is to be seen how 

different the new L2 sounds that are used for this scenario are from the already known L1 

sounds. 

 The nodes that are activated for the phonological categories of the first language should 

not change after or during the acquisition of the second language, because this would lead to 

Flege’s notions of assimilation and dissimilation (see next section). Note that for homophones 

either the same nodes on the SF layer could be activated for the L2 and for the L1, or different 

nodes, without rejecting the separate system theory.  

 

6.2.2 Expectations one merged phonological system 

If Flege’s SLM model (Flege, 2005) were the correct model and a bilingual speaker did not have 

separate phonological systems for her L1 and L2, but one merged bilingual system, assimilation 

and/or dissimilation should be observed, as Flege states that the acquisition of new sound 

categories always occurs either via assimilation or dissimilation. Assimilation would be 

observed if a new L2 category merges with an already existing L1 category. The same SF nodes 

should be activated for both categories in the L1 and in the L2. The activated nodes should be 

different from the nodes that were primarily activated for the category in the L1, as this would 

show the expansion of the former L1 category by the new L2 category. Dissimilation would be 

observed if the SF nodes that are activated for an L1 sound-meaning pair change after the 

acquisition of the second language (without merging with another category as this would be 

assimilation). Again it is to be seen whether the new L2 categories are similar to the L1 

categories or whether the new L2 categories are distinct from the L1. The first option would 

result in assimilation, whereas the second option would result in dissimilation. Flege does not 

give very clear conditions for this distinction. 

 Next to the perception, also the production would change. Not only would the production 

of the L2 differ from the production of the same language by a native speaker, but the production 

of the L1 would also change after acquiring the second language, as Flege predicts an L2 accent 

in the L1. 
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In chapter 7 of this work the results of the testing are presented and in chapter 8 the results are 

discussed.  

 

6.3 The network for the similar scenario 

In this section the general lay-out and the characteristics of the network for the similar scenario 

are discussed. As explained in chapter 3, the number of categories does not change in the similar 

scenario; only the place of the boundary between the categories. In order to test this scenario, 

two very simple toy languages are constructed. Both languages contain two categories, but the 

place of the boundary between those two categories is slightly different for both languages. One 

can imagine that the different VOT boundary between /t/ and /d/ in French and in English is 

investigated (see chapter 3). Table 6.3 gives an overview of the means of the two categories in 

both languages. The nodes that are activated on the AudF should be calculated in the same way 

as is explained in section 6.3. Again the standard deviation of the means of the F1 and the F2 is 

1.95. Figure 6.5 shows the distribution graphically. 

 

L1 L2 

Mean of category 1 Mean of category 2 Mean of category 1 Mean of category 2 

0.45 0.65 0.50 0.70 

Table 6.3 – Sound categories in the L1 and the L2 and their corresponding means 

 

 

 

 

 

Figure 6.5a – The distribution in the L1 

 

 

 

 

Figure 6.5b – The distribution in the L2 

 

Figure 6.6 shows the untrained network for the similar scenario. Again, the L2 lexicon is already 

in place, but not yet connected to the SF, as the network starts with learning the L1.  
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Figure 6.6 – The untrained network for the similar scenario 

 

As already mentioned in the previous section, this scenario has been tested in two ways. In an 

early phase of testing, the L1 was learned in 10.000 learning steps, after which the network was 

exposed to the L2 sound-meaning pairs. Also the more solid version, in which the L2 is only 

presented after 50.000 learning steps has been tested. The differences in results that are 

obtained with these two different ways of testing are very interesting. For this reason I have 

decided to present the two ways of testing here and to present the results of both testing 

sessions in the next chapter.  

 

In the first testing situation, the L2 lexicon is connected to the SF layer after training the network 

on the L1 for 10.000 times, via excitatory connections with random weights varying from 0.0 to 

0.1. After this the network is exposed to 5.000 L2 sound-meaning pairs. Then 5.000 L1 sound-

meaning pairs are presented, after which the network is trained on the L2 for 10.000 learning 

steps. Finally the network is exposed to the first language again and is trained on as many L1 

sound-meaning pairs as is necessary to arrive in a full monolingual L1 mode again (see chapter 2 

for a detailed explanation on language modes). Just like in the previous section it is to be 

remarked that this takes longer than one may expect, so again, see chapter 9 for ideas for further 

research. This training procedure is repeated for seven new networks, again in order to simulate 

seven bilingual speakers. 

 In the second testing situation, the L2 lexicon is connected to the SF layer after 50.000 L1 

learning steps, again via excitatory connections with random weights varying from 0.0 to 0.1. 

After that the network is exposed to 5.000 L2 sound-meaning pairs. After these 5.000 learning 

steps the network is exposed to 10.000 L1 sound-meaning pairs. Finally the network is trained 

on the L2 for 10.000 learning steps and successively on the L1 for 10.000 learning steps. As the 

reader may have noticed this procedure is slightly different from the procedure that is followed 

during the training of the model for the new scenario. I have decided to train the model for the 

similar scenario this way because best insights were obtained following this approach. Just like 

L1 lexicon L2 lexicon 

SF layer 

AudF layer 
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before, this procedure is repeated for seven new networks in order to simulate seven bilingual 

speakers. 

 

Also for this scenario different theories about the bilingual phonological system(s) lead to 

different expectations on how the network will behave. In the next two sections (6.3.1 and 6.3.2) 

the different expectations are discussed. 

 

6.3.1 Expectations separate phonological systems 

If a bilingual speakers has two separate phonological systems, sounds that lay in between the 

two different category boundaries in the L1 and the L2, are classified different in an L1 language 

mode than in an L2 language mode, just like described by Garcia-Sierra, Diehl and Camplin 

(2009), see chapter 3. Figure 6.7 shows this graphically. The two red lines show the category 

boundaries in the two languages. One can observe that a sound between these two red lines 

belongs to the second category in the one language and to the first category in the other 

language. For production this would mean that the sounds between the two boundaries are 

pronounced differently, depending on the language environment, whereas for perception this 

would mean that the sounds between the two boundaries are perceived differently, depending 

on the language environment, i.e. a boundary shift occurs for both perception and production. 

 

 

 

 

 

Figure 6.7 – The distribution in the L1 and in the L2 

 

A different activation of the SF nodes for categories in the L1 and in the L2 is not necessarily 

required for a separate system hypothesis but it would strengthen the hypothesis of separate 

phonological systems. I.e. if different SF nodes are activated for the first category in the L1 than 

for the first category in the L2, this may show that the bilinguals have two separate phonological 

systems. However, if the same nodes are activated for the first category in the L1 and the first 

category in the L2, this does not necessarily mean that the bilingual speaker does not have 

separate phonological systems. It is more important to examine whether the place of the 

boundary between the two categories is different in the L1 and in the L2. 
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6.3.2 Expectations one merged phonological system 

If one assumes bilinguals to have one single bilingual phonological system the first category in 

the L1 is expected to assimilate with the first category in the L2, just like the second L1 category 

is expected to assimilate with the second L2 category. Because of that one would expect that, 

both for production and for perception, the nodes that are activated on the SF are the same for 

the two categories in the L1 and in the L2, but that the nodes that are activated in the L1 change 

after the acquisition of the L2, due to assimilation. Besides that the network should show a 

difference in production of the sounds in the L1 after acquiring the L2.  

 

In chapter 7 of this work the results of the testing are presented and in chapter 8 the results are 

discussed. 

 

6.4 The network for the subset scenario 

The last network that is presented here is a network that models the subset scenario. As 

explained in chapter 3, the subset scenario can be seen as the opposite of the new scenario. This 

means that the bilingual’s first language contains more categories than her second language.  

 

The network that is used to model this scenario is, just like the scenario itself, the opposite of the 

network to test the new scenario. The network starts to learn a first language that contains five 

sound-meaning pairs. The sound categories are exactly the same sound categories as the ones 

that are summed up in table 6.1 and table 6.2. The untrained network that is used to model the 

subset scenario can be seen in figure 6.8. 

 

 

 

 

 

 
 
 
Figure 6.8 – The untrained network for the subset scenario 
 
 

Whereas the L1 of this learner contains five sound-meaning pairs, the L2 of this learner contains 

only three sound-meaning pairs. The L2 that is used to model the subset scenario is the same 

language as the L1 that is used to model the new scenario: the three sound categories that are 

used are the same sound categories as the ones in table 6.1. 

 

L1 lexicon L2 lexicon 

SF layer 

AudF layer 
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Also this scenario is tested twice. Again, during the first testing phase the network was taught its 

first language in 10.000 learning steps, and during the second testing phase the network had to 

learn its first language in 50.000 learning steps. The results for these two ways of testing did not 

differ. For this reason I have chosen to limit the description of the testing and the presentation of 

the results in the next chapter to the networks that have learned their first language in 50.000 

learning steps.  

 After 50.000 L1 learning steps the excitatory connections between the SF and the L2 

lexicon are added to the network. Also these connections are given a random weight between 

0.0 and 0.1 again. Then the network is exposed to 5.000 L2 learning steps. Then the network is 

trained on the L1 again, for 3000 learning steps. After that the network is presented with 10.000 

L2 sound-meaning pairs, after which the network is exposed to at least 5.000 L1 sound-meaning 

pairs. This procedure is repeated seven times, in order to simulate seven late-bilinguals. One 

may recognise that this is the same approach as the one that is used for the new scenario. 

 

Just like for the other two scenarios, also here it should be investigated what the network is 

expected to do, depending on the two theories that are discussed through this entire work. In 

the next two sections the expectations are discussed. However, one will notice that the less 

radical differences between the two theories are expected for this scenario.  

 

6.4.1 Expectations separate phonological systems 

As for the new scenario all the L2 sounds already exist in the first language, all the L2 sound-

meaning pairs have a homophone in the L1. In section 6.2 it was already argued that, both for 

perception and for production, the SF nodes that are activated in the L1 could either be different 

from the SF nodes that are activated for the same sounds in the L2, or the same nodes could be 

activated.  

 

6.4.2 Expectations one merged phonological system 

Following the reasoning of Flege’s SLM (Flege, 2005), for the merged phonological system the 

nodes that are activated on the SF should be the same for the L1 and the L2. In the previous two 

scenarios the activation of the nodes could differ due to assimilation and dissimilation, but as for 

the subset scenario no new categories need to be learned, this is not to be expected. 

 

If the same SF nodes are activated for the L2 sounds as for the already existing L1 sounds, it will 

be difficult to argue against one of the two theories. Next to that, and this could be predicted by 

both theories, the second language learner can have difficulties categorizing speech sounds in 

the correct sound category, due to the fact that she has ‘too much’ knowledge of how the speech 
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sounds continuum could be divided as well (see chapter 3 and Escudero and Boersma (2002). In 

chapter 7 of this work the results of the testing are presented and in chapter 8 the results are 

discussed. 
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7. THE RESULTS 

 

In this chapter the results of the simulations are presented. Every scenario is given a separate 

section. As the results for the different networks within a situation are very comparable, I have 

chosen to present the results of one particular instance per scenario, in order to give the best 

insight in the results.  

 

7.1 The new scenario 

In this section the results for the new scenarios are presented. Only the results of the model that 

has acquired its first language in 50.000 training steps are taken into account. In section 7.1.1 

the results for the production of the networks are presented and in section 7.1.2 the results for 

the perception of the networks are presented. 

 

7.1.1 The production of the network for the new scenario 

Figures 7.1a-c show a neural network after 50.000 learning steps. The figures show the network 

in the production phase: the lexicon nodes are clamped, whereas the SF nodes and the AudF 

nodes are unclamped (see chapter 6). One can see that the networks have successfully learned 

their first language, as the correct nodes at the AudF are activated after activating the lexicon, 

e.g. for the ‘I’ the beginning and the end of the AudF are activated, according to its F1 and its F2. 

Phonological categories have been formed on the SF layer, i.e. certain nodes on the SF layer 

belong to certain sound-meaning pairs. Next to that certain connections have been strengthened, 

whereas other connections have been weakened. Some connections have disappeared. For 

example, there is no connection left between the first L1 lexicon node and the first SF node. Note 

that the nodes for the L2 lexicon are already in place, but not yet connected to the SF layer. 
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Observations: Two nodes are activated on the SF: 5 and 6. 

 

Figure 7.1a – Production of the ‘I’ in the L1 

 

 

 

Observations: Two nodes are activated on the SF: 2 and 18. 

 

Figure 7.1b – Production of the ‘A’ in the L1 

 

 

 

Observations: Two nodes are activated on the SF: 7 and 17. 

 

Figure 7.1c – Production of the ‘U’ in the L1 
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Figures 7.2a-e show the distribution of the SF nodes after training the model on the second 

language for 5.000 sound-meaning pairs. One may notice that the first word in the L2 lexicon 

does not correspond to the ‘I’, as it did in the L1, and that the other sound-meaning pairs have 

changed position as well. This is done to make sure that the order of the words in the lexicon 

does not influence the acquisition of the sound categories. However, this is rather an adaptation 

that was made during the time that the network still contained a concept layer (see chapter 5), 

so it is not very important to look at now. 

 Next to that one may observe that now the L2 lexicon layer is connected to the Surface 

Form. Besides that, some of the connections between the L1 lexicon layer and the Surface Form 

have become weaker. Recall from chapter four that the connection strength between two nodes 

decreases when one of the nodes is activated, whereas the other node is not. This can be seen by 

comparing figures 7.1a and 7.2c: the connection between SF node number 5 and the L1 lexicon 

layer and between SF node number 6 and the L1 lexicon have become weaker, because, during 

the L2 acquisition, these two SF nodes are activated together with nodes on the L2 lexicon layer, 

whereas the L1 lexicon layer is not activated. The subscript ‘2’ is used for words in the L2 that 

belong to sounds that were already known in the L1, e.g. ‘I2’ in the second language belongs to 

the same sound as ‘I’ in the first language. 

 

 

 

Observations: Two/ three nodes are activated at the SF: (6), 14 and 18. Node 6 is also activated 

for the ‘I’ and the ‘I2’. Node 18 is also activated for the ‘A’ in the L1. 

 

Figure 7.2a – Production of the ‘A2’ in the L2 
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Observations: Three nodes are activated at the SF: 4, 9 and 13. Four nodes are activated for the 

F1 on the AudF, whereas till now always three nodes per formant were activated at the AudF. 

This changes after training more thoroughly. 

 

Figure 7.2b – Production of the ‘E2’ in the L2 

 

 

 

Observations: Three nodes are activated at the SF: 5, 6 and 17. Nodes 5 and 6 are also activated 

for the ‘I’ in the L1. Node 17 is also activated for the ‘U’ and the ‘U2’. The /u/ and the /i/ have 

their first formant in common. Node 6 is also slightly activated for the ‘A2’.  

 

Figure 7.2c – Production of the ‘I2’ in the L2 
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Observations: Two / three nodes are activated at the SF: 3, 5 and (12). At the AudF five nodes 

are activated for the F2, three nodes are activated around 0.10 and three nodes are activated for 

the F1. The activation around 0.10 is caused by the fact that the fifth SF node is also activated 

for the ‘I’ and the ‘I2’. After training more thoroughly the AudF is only activated for the F1 and 

for the F2. 

 

Figure 7.2d – Production of the ‘O2’ in the L2 

 

 

 

Observations: Two nodes are activated at the SF: 7 and 17. These are exactly the same nodes as 

were activated for the ‘U’ in the L1 (see figure 7.1c). 

 

Figure 7.2e – Production of the ‘U2’ in L2 

 

7.1.2 The perception of the network for the new scenario 

Figures 7.3a-c and figures 7.4a-e show the perception of the network: the nodes at the AudF are 

clamped, whereas the nodes at the SF and the nodes on the lexicon layers are unclamped (see 

chapter 6). Figures 7.3a-c show the perception of the first language, whereas figures 7.4a-e show 

the perception of the second language. One can see that the networks have successfully acquired 
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the perception, i.e. the correct lexicon nodes are activated for the activation at the AudF and next 

to that the same phonological categories are used as during the production of the network. 

 

 

 

Observations: Two nodes are activated at the SF: 5 and 6. These nodes are the same as during 

the production of the ‘I’. 

The activated nodes on the AudF are not exactly the same as in figure 7.1a. Due to distributional 

learning also sounds near the mean of the F1 and the mean of the F2 of the /i/ are recognised as 

such.  

 

Figure 7.3a – Perception of the ‘I’ in the L1 

 

 

 

Observations: Two nodes are activated at the SF: 2 and 8. These nodes are the same as during 

the production of the ‘A’. 

The activated nodes on the AudF are not exactly the same as in figure 7.1b. Due to distributional 

learning also sounds near the mean of the F1 and the mean of the F2 of the /a/ are recognised as 

such.  

 

Figure 7.3b – Perception of the ‘A’ in the L1 
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Observations: Two nodes are activated at the SF: 7 and 17. These nodes are the same as during 

the production of the ‘U’. 

The activated nodes on the AudF are not exactly the same as in figure 7.1c. Due to distributional 

learning also sounds near the mean of the F1 and the mean of the F2 of the /u/ are recognised as 

such.  

 

Figure 7.3c – Perception of the ‘U’ in the L1 

 

The perception of second language is shown in the next five figures. The perception of the 

categories is acquired, but the influence of the first language is still visable. 

 

 

 

Observations: Three SF nodes are activated: 2, 14 and 18. Node 2 is not activated during the 

production of the ‘A2’ (see figure 7.2a), but this node is activated during the production of the ‘A’ 

(see figure 7.1b). The L1 lexicon is still activated, even though the network had been trained on 

the L2 for 5.000 steps. This was predicted for homophones (see chapter 5 and 6). 

 

Figure 7.4a – Perception of the ‘A2’ in the L2 
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Observations: Three SF nodes are activated: 4, 9 and 13. These are the same nodes as were 

activated during the production of the ‘E’. The perception of this new L2 sound is correctly 

acquired. 

 

Figure 7.4b – Perception of the ‘E’ in the L2 

 

 

 

Observations: Three SF nodes are activated: 5, 6 and 17. These are the same nodes as are 

activated during the perception and the production of the ‘I’ in the L1. The L1 lexicon is also 

activated, for the ‘I’, but not as much as the L2 lexicon is activated for the ‘I2’. 

 

Figure 7.4c – Perception of the ‘I2’ in the L2 
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Observations: Two / three nodes are activated at the SF: 3, 5 and (12). These are the same 

nodes as were activated during the production. The perception of this new L2 sound is correctly 

acquired. In addition, the ‘I’ in the L1 lexicon is slightly activated. For the ‘I’ and the ‘O’ the fifth 

SF node is activated. This causes the activation in the L1 lexicon. 

 

Figure 7.4d – Perception of the ‘O’ in the L2 

 

 

 

Observations 

Two nodes are activated at the SF layer: 7 and 17. These are the same nodes as during the 

production of the ‘U2’. The network has correctly acquired the perception of the /U2/. In the L1 

lexicon the nodes for the ‘U’ are activated.  

 

Figure 7.4e – Perception of the ‘U2’ in L2 

 

It is interesting to investigate how sounds that are present in the L2 but not in the L1 are 

perceived when the network is in the L1 surroundings. Figures 7.5a-d show that the networks 

perceive the unknown L2 sounds as sounds in the L1. Note that these figures show a network 

that has not learned a second language yet. The /e/ is either perceived as /a/, but most often it is 

perceived as /u/ (figures 7.5a-b), depending on the exact point of activation of the AudF. The /o/ 



56 

 

is either perceived as /i/ or as /a/ (figures 7.5c-d), also depending on the exact point of 

activation of the AudF. 

 

 

 

 

Figure 7.5a - /e/ perceived as /a/    Figure 7.5b - /e/ perceived as /u/ 

 

 

 

 

Figure 7.5c - /o/ perceived as /i/              Figure 7.5d - /o/ perceived as /a/ 

 

7.1.3 Production and perception after more training 

Up until this point stages of the networks have been presented after 50.000 L1 learning steps 

and 5.000 L2 learning steps. As explained in chapter 6, the networks have been trained on their 

first and their second language more often, after these initial 55.000 steps. The question here is 

whether the networks that are more thoroughly trained behave the same for production and 

perception as the networks that are presented above.  

 After the initial 50.000 L1 learning steps and the subsequent 5.000 L2 learning steps, the 

networks switch to the first language surroundings again. Already without having been exposed 

to any additional L1 sound-meaning pairs, the network is able to produce the L1 words in an L1 

manner (so, in the same way as in figures 7.1a-c). However, the SF nodes and the AudF nodes are 

slightly less activated, as the connections between the L1 lexicon and the SF layer have become 

weaker due to the exposure to the L2 (see chapter 4 and section 7.1.1). In most cases this effect 

disappears after presenting the network with another 3000 L1 sound-meaning pairs.  

 These 3000 L1 sound-meaning pairs were also needed to achieve a successful L1 

perception again for the L1 sounds (comparable to figures 7.3a-c). For sounds that occur in both 

languages, both lexicon layers are activated. Sounds that only occur in the L2 are sometimes still 

perceived as L2 sounds and words, although the L1 lexicon is activated as well (see figure 7.6a). 

On the other hand, sometimes new L2 sounds are perceived as sounds in the L1 and then also 

the words in the L2 lexicon that belong to that sound are activated (see figure 7.6b for an 

example). Note that this is different from the results that were presented in figures 7.5a-d.   
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Figure 7.6a – The /o/ is still perceived in an L2           Figure 7.6b – The /o/ is perceived as /i/, both 

manner after training the network on the L1           in L1 and in the L2 lexicon 

 

Now the networks switch back to the L2 surroundings. Again, without any additional training on 

the L2 the networks produce the L2 words in an L2 manner. Now the networks are exposed to 

10.000 L2 sound-meaning pairs. After this training the networks are able to perceive the 

incoming sounds in an L2 manner and the L1 lexicon is less activated than it was before (see 

figure 7.7 for an example). Once double activation within one lexicon layer could be observed, 

i.e. more nodes than the nodes for one word were activated: the /i/ activated the nodes in the L2 

lexicon for both the ‘I2’ and the ‘U2’ and so did the /u/. 

 

 

Figure 7.7 – Less activation in the L1 lexicon 

 

Finally the networks are exposed to 5.000 L1 sound-meaning pairs. As is to be expected by now, 

the networks are able to correctly produce the L1 words already before this training. The 

networks did not acquire a full L1 perception after the 5.000 learning steps. However, more L1 

learning steps did cause that the networks perceived the L1 sounds in a pure L1 manner again, 

except in a few instances. In these few instances the networks kept activating L2 SF nodes for 

certain sounds. 

 As a general remark it is still left to say that for the production, even though the SF nodes 

were immediately activated in the ‘correct’ language mode, sometimes more AudF nodes were 

activated than before the exposure to the other language (see figure 7.8, in which one can also 

observe that the SF nodes are less activated). More training on the same language mode let the 

activation of the additional AudF nodes disappear.  
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Figure 7.8 – More nodes activated on the AudF and less activation on the SF 

 

7.2 The similar scenario 

As has already been stated in the previous chapter, it is interesting and important to present the 

results of teaching the networks for the similar scenario their first language in 10.000 steps and 

the results of teaching the networks their first language in 50.000 steps.  

 Following the same approach as in the previous section, the results of training the 

networks on the L1 for 50.000 steps are presented first. This is done by looking at the specific 

example of one trained network, as this example is comparable to the results that were obtained 

by the other training instances. Noteworthy different results will be added to the specific 

example. 

 

The main question that needs to be answered for this scenario is whether a boundary shift 

occurs between the two language environments. Recall from chapter six that sounds between 

the two boundaries are classified differently in one language than in the other language (figure 

6.7 is repeated below). 

 

 

 

 

 

Figure 6.7 – The distribution in the L1 and in the L2 

 

For this reason all three figures 7.9, 7.10 and 7.11 show two stages of the network: first the 

network that is exposed to the first language for 50.000 training steps and then the network that 

is trained on the second language for 5.000 times. Figures 7.9 and 7.10 show the network during 

the production (the lexicon nodes are clamped, the other nodes are unclamped) and figure 7.11 

shows the network during perception (only the AudF nodes are clamped, whereas the rest of the 

nodes are unclamped). By visually presenting the models this way, the reader will get the chance 
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to see whether a boundary shift occurs. This time the AudF is only activated at one point. Recall 

from chapter 6 that, in order to test the similar scenario, the acquisition of the Voice Onset Time 

in two languages is modelled, instead of the acquisition of vowels. Considering the production, 

the networks successfully acquired their first and second language. Considering the perception, 

the networks successfully acquired their first language, but not necessarily their second 

language. This is illustrated by the figures. 

 

 

 

Observations: Two nodes are activated on the SF: 10 and 12. 

 

Figure 7.9a – Production of the first category in L1 

 

 

 

Observations: Two nodes are activated on the SF: 2 and 12. Node 12 is also activated for the 

first category in the L1. A boundary shift can be observed: the AudF is activated at a different 

place for the L1 and the L2.  

 

Figure 7.9b – Production of the first category in L2 
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Observations: Two SF nodes are activated: 5 and 15. 

 

Figure 7.10a – Production of the second category in the L1 

 

 

 

 

Observations: Three nodes are activated on the SF: 5, 11 and 15. Node 5 and node 15 are also 

activated for the second category in the L1. Again, a boundary shift can be observed, as the AudF 

is activated at a different place in the L1 than in the L2. 

 

Figure 7.10b – Production of the second category in the L2 

 

For production a boundary shift could be observed. The question is whether a comparable 

boundary shift can be observed for the perception of the network. Figures 7.11a and 7.11b show 

the boundary between the first and the second category in the L1 and in the L2. The left 

networks in the figures show the last AudF activation that is classified as the first category and 

the second networks in the figures show the first AudF activation that is classified as the second 

category. 
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Observations: The nodes that are activated at the AudF in the left picture are not the direct 

neighbouring nodes of the AudF nodes that are activated in the right picture: there is an area at 

the AudF that is not classified as one of the two categories. 

 

Figure 7.11a – Boundary between the two categories in the L1, perception 

 

  

 

 

 

 

Observations: There is no area at the AudF that is not classified as one of the two categories. 

Due to this a boundary shift can be observed if one compares the left images of figures 7.11a and 

7.11b, but no boundary shift is present between the right images of these figures. However, note 

that different SF nodes are activated in the L1 than in the L2, so there still is a difference in 

perception between the L1 and the L2. Next to that it is to be remarked that one instance of the 

networks did show a boundary shift in both instances.  

 

Figure 7.11b – Boundary between the two categories in the L2, perception 

 

7.2.3 Production and perception after more training 

After these 50.000 learning steps in the L1 and the 5.000 learning steps in the L2, the network is 

exposed to the L1 again. Some interesting and important observations are worth presenting 

here. Before exposing the network to L1 sound-meaning pairs, the production of the L1 words 

has changed to L2 production on the AudF layer, although the AudF nodes are less activated than 

in the L2 (see figure 7.12 in comparison to figure 7.10b). Note that the SF nodes are still 

activated according to the L1 production. This changes after presenting the network with L1 

sound-meaning pairs again. 

 



62 

 

Figure 7.12 – Production first category L1 

 

In the current examples the nodes that were activated on the SF layer for the first and second 

category in the L1 were different than the SF nodes that were activated for the first and the 

second category in the L2. This does not apply to all networks. In a very few cases exactly the 

same SF nodes are activated for this first category in the L1 and the first category in the L2 on 

the one hand and the second category in the L1 and the second category in the L2 on the other 

hand. 

 After training the network on the L1 again, for the perception the nodes that are 

activated on the SF layer follow this pattern: L1 – L1 L2 – L2 – L1 – L1 L2 – L2. This means that 

by moving over the AudF first the L1 SF nodes are activated, then a combination of the L1 and 

L2, then the L2 SF nodes, followed by the L1, the combination of L1 L2 and finally the L2. So, now 

there are boundary shifts, but within one language environment! Figures 7.13a-f illustrate this.  

 

 

 

 

Figure 7.13a – L1: SF nodes 10 and 12             Figure 7.13b – L1 L2: SF nodes 2, 10 and 12 

 

 

 

 

Figure 7.13c – L2: SF nodes 2 (and 12 )            Figure 7.13d – L1: SF nodes 5 and 15 

 

 

 

 

Figure 7.13e – L1 L2: SF nodes 5, (11) and 15           Figure 7.13f – L2: SF nodes 5, 11 and 15 
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The activation pattern is exactly following the distribution that is presented in chapter six, and 

copied here for matters of clarification: 

 

 

 

 

Figure 6.4a – The distribution in the L1 

 

 

 

 

Figure 6.4b – The distribution in the L2 

 

This distribution stays like this, even if the network has been trained on the L1 for many steps. 

The different lexicons are activated according to the same distribution. 

 

Now a closer look is taken at the networks that are trained on the first language for 10.000 

learning steps, before they are presented with their second language. The results are very 

comparable to the results described above. However, there is one very important difference 

considering the boundary shift. The networks that learn their first language in 50.000 learning 

steps did not show a boundary shift for the second category (see figure 7.11a-b). However, the 

networks that were taught their first language in 10.000 steps did show this boundary shift. 

Next to that this boundary shift was more ‘direct’ than the boundary shift for the other 

networks: the networks that learned their L1 in 10.000 learning steps classified a sound either 

as category 1 or as category 2, without any area on the AudF that was not classified as any 

category (see figure 7.11a). 

  

7.3 The subset scenario 

The results that are obtained for the subset scenario are very comparable to the results obtained 

in the new scenario. Just as for the new scenario only the results for the networks that have 

learned their first language in 50.000 steps are presented, as these results are very comparable 

to the results for the networks that acquired their first language in 10.000 steps. Besides, as the 

results of the subset scenario are very comparable to the results of the new scenario, the figures 

in this section only contain networks in the production phase. 
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7.3.1 The production of the network for the subset scenario 

After training the network on the L1 for 50.000 steps, the network has successfully learned its 

first language. Every sound-meaning pair receives its own distribution on the SF layer. In all 

cases a sound-meaning pair belongs to two or three nodes on the SF layer. In most cases 

different SF nodes are activated for different sound-meaning pairs. Figures 7.14a-e show images 

of the activation of one particular network. 

 

 

 

Observations: Two SF nodes are activated: 6 and 9. 

 

Figure 7.14a – Production of the ‘U’ in the L1 

 

 

 

Observations: Two SF nodes are activated: 4 and 10. Four AudF nodes are activated for the F2. 

This is comparable to the production of the ‘O’ in the new scenario. In the new scenario the 

production of the ‘O’ was acquired for the second language. 

 

Figure 7.14b – Production of the ‘O’ in the L1 
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Observations: Two SF nodes are activated: 12 and 13. 

 

Figure 7.14c – Production of the ‘A’ in the L1 

 

 

 

Observations: Two SF nodes are activated: 7 and 11. Four AudF nodes are activated for the F2. 

This is comparable to the production of the ‘E’ in the new scenario. In the new scenario the 

production of the ‘E’ was acquired for the second language. 

 

Figure 7.14d – Production of the ‘E’ in the L1 
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Observations: Two SF nodes are activated: 15 and 17. 

 

Figure 7.14e – Production of the ‘I’ in the L1 

 

After this, the network is exposed to the second language for the first time. The second language 

contains two vowels less than the network’s first language. Although the second language does 

not contain any sounds that do not exist in the first language, the SF nodes are not necessarily 

copied. Figures 7.15a-c show the productions of the network for the second language. 

 

 

 

Observations: Four SF nodes are activated: 9, 12, 15 and 16. Node 15 is activated for the ‘I’ in 

the L1 as well. 

 

Figure 7.15a – Production of the ‘I2’ in the L2 
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Observations: Three SF nodes are activated: 9, 13 and 19. Node 9 is also activated for the ‘I2’. 

Node 13 is also activated for the ‘A’ in the L1. 

 

Figure 7.15b – Production of the ‘A2’ in the L2 

 

 

 

Observations: Five SF nodes are activated: 3, 6, 7, 8 and 15. It is very exceptional that this many 

nodes are activated. Node 15 is also activated for the ‘I2’. Node 6 and node 9 are also activated 

for the ‘U’ in the L1. 

Four AudF nodes are activated for the F2. After more training this changes to three nodes. 

 

Figure 7.15c – Production of the ‘U2’ in the L2 

 

In figures 7.15a-c, for the sound categories that the L1 and the L2 have in common, more nodes 

are activated at the SF in the L2 than in the L1. However, in a few instances the SF nodes that are 

activated for these sound categories in the L2 are the same as for these sound categories in the 

L1. Besides, in most cases only one additional SF node is activated for a sound category in the L2 

than for this sound category in the L1, in contradiction to what can be seen in the example 

presented in this section. However, in all cases at least one SF node is shared between sounds 

that occur in the first and in the second language (see chapter 8 for a detailed explanation on 

why this happens). 
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 In the previous two scenarios, production immediately switched back after changing the 

language environment. In the majority of cases, this happened in the subset scenario as well. 

However, sometimes one SF node was left out of the production after shifting between the 

language environments. In chapter 8 it is explained why this happens. 

 

7.3.2 The perception of the network for the subset scenario 

Considering the perception not such a clear distinction between the first and the second 

language can be made. After training the model on the second language for 5.000 times, the 

networks perceived sounds in an L2 manner, even if the networks have been trained on the first 

language again, i.e. the networks forget their first language (but only for perception!).  

 Double activation in one lexicon layer is observed for this scenario as well. In some cases 

the ‘U’ and the ‘I’, which have their F1 in common, are both activated if one of the two sounds is 

presented to the network.  

 The networks perceived L1 sounds that are not present in the L2 as L2 sounds that are 

nearest to the sounds that do not exist in the L2. For example, the /e/ is perceived as /u/. The F2 

of these two sounds is comparable. For the /e/, both the SF layer and the lexicon layer were 

activated in the same way as for the /u/ in the L2. 
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8. DISCUSSION 

 

In the previous chapter the results for the different networks were presented. In this chapter the 

results are discussed. In order to be able to draw a conclusion it is important to compare the 

bilingual results with monolingual results. This is done in this chapter as well. 

 

8.1 The new scenario 

In the new scenario the bilingual’s first language contains three sound-meaning pairs, whereas 

her second language consists of five sound-meaning pairs. In order to be able to compare the 

bilingual’s second language situation with a monolingual situation, the results for the L2 in the 

new scenario can be compared with the results for the L1 in the subset scenario, as these 

languages are the same. For every network in the new scenario the total amount of SF nodes that 

are activated for the L2 categories is calculated and for every network in the subset scenario the 

total amount of SF nodes that are activated for the L1 categories is calculated. The comparison of 

the two scenarios reveals a significant difference between the language in the new scenario and 

the language in the subset scenario. For the subset scenario significantly fewer SF nodes are 

activated than for the new scenario ( U(12) = 1.0, p < .05 ), i.e. for the same language fewer SF 

nodes are activated when this language is learned as a first language than when this language is 

learned as a second language. For the bilingual speaker this could mean that the speaker is able 

to link a specific L2 sound to a specific L2 word in the lexicon, but that the bilingual speaker has 

a different phonological system for the same language than a monolingual speaker. However, see 

the next section for an explanation on why certain SF nodes are activated. 

 In the remaining part of this section a closer look is taken at the production and the 

perception of the networks. 

 

8.1.1 Production 

For the discussion of the production of the new scenario it is important to look at the SF layer 

and at the AudF layer of the networks, as the nodes on these layers are unclamped. The results 

in chapter 7 showed a clear difference between the SF nodes that are activated for the sound 

categories in the L1 and the SF nodes that are activated for the sound categories in the L2. Very 

likely this is inherent to the layout of the networks. Figures 8.1a-d show the stages of the L1 and 

the L2 acquisition and in this figure it is made clear why different SF nodes are activated for the 

same sounds in the L1 and in the L2. Figure 8.1a shows the acquisition of a sound-meaning pair 

in the first language. One can see that two SF nodes are activated for this sound-meaning pair 

and that certain excitatory connections are strengthened. Of course, in the real neural networks 

more than four connections are present, but this is only a very schematic drawing. In figure 8.1b 
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the network has just started acquiring its second language. One can see that the network has to 

learn an L2 sound-meaning pair that contains the same sound as the network already acquired 

for its L1. Because of that, the nodes on the AudF layer for that particular sound spread their 

activity to the SF via the already existing connections. Figure 8.1c shows that, because of this, 

also the connections between the lexicon layer and these SF sounds strengthen. On the other 

hand, because the L1 lexicon is not activated anymore, the connections between the L1 and the 

SF weaken (see chapter 6). Figure 8.1d shows that the activation of the L2 lexicon layer causes 

the activation of another SF node. Now one can imagine why the network is able to switch 

between the production of the L1 and the L2 without any training: after exposing the network to 

the L2 the connections between the L1 lexicon and the SF are weaker than before the L2 

acquisition, but they have not disappeared. By presenting the network with L1 sound-meaning 

pairs, these connections strengthen again. Sometimes an SF node that is activated in the L1 

surroundings, is not activated in the L2 surroundings. A possible explanation would be that the 

L1 lexicon causes most of the activation of this SF node. As the L1 lexicon is not activated in the 

L2 surroundings, it cannot activate this SF node anymore. 

 

 

 

 

 

 

 

Figure 8.1a – The L1 acquisition               Figure 8.1b – Start of the L2 acquisition 

 

 

 

 

 

 

 

Figure 8.1c – Connections between SF and L1   Figure 8.1d – Extra node activated on SF  

lexicon weaken and connections between SF  

and L2 lexicon strengthen 

 

One may argue that separate lexicon layers are affecting the results too much. However, for 

reasons that are explained in chapter 5 I have chosen to model the networks with two separate 
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lexicon layers. In chapter 9 ideas for further research are presented and the lexicon layer is 

discussed again. 

 Now a closer look is taken at the activation of the AudF. The figures in chapter 7 showed 

that for the production of the ‘E’ and the ‘O’ more nodes were activated at the AudF than for the 

production of the other words. At first sight this may look like an L2 accent, as these are the two 

sound-meaning pairs that did not exist in the L1. However, comparing these results to the L1 of 

the subset scenario reveals that this is the case for the ‘E’ and the ‘O’ in the subset scenario as 

well. 

 Next to that one may expect that other nodes are activated at the AudF during the 

production of the L2 in the new scenario than during the production of the L1 in the subset 

scenario, as that would mean the bilingual speaker has an accent in her second language. 

However, exactly the same AudF nodes were activated. Only in some sporadic cases the AudF in 

the new scenario was activated at other points than expected (recall figure 7.2d), but this 

changed after more training. This shows the importance of the amount of input. 

 

The results of the production in the new scenario show that the network has two separate 

phonological systems for its two languages. However, the layout of the lexicon layer plays an 

important role in this outcome. Next to that the amount of input is very important for which 

nodes are exactly activated on the AudF layer.  

 

8.1.2 Perception 

As was stated in the previous chapter, the networks perceive sounds differently in the L1 

languages mode than in the L2 language mode. However, the amount of input is important. If the 

networks have had no, or not enough input in one of their two languages, they perceive the 

sounds as they would do in the other language. This is caused by the same phenomenon as is 

described in figures 8.1a-d. By training a network on the one language, the connections between 

the AudF and the SF nodes for this language strengthen, whereas the connections between the 

AudF and the SF nodes for the other languages weaken.  

 Sounds that are not present in the first language, but are part of the second language, are 

either perceived as L1 words or as L2 words. This depends on the formants of the sounds. If one 

of the formants of the new L2 sounds is near to the formant of a known L1 sound, the L2 sound 

is perceived as this L1 sound. On the other hand, if none of the two formants of the new L2 

sounds is near to the formants of a known L1 sound, the L2 sound is perceived in an L2 manner 

(see chapter 7). It is important to realise that this does not happen in the L2 surroundings, i.e. in 

the L2 surroundings the network perceives the new L2 sounds as separate sounds. Due to this 

one cannot argue that assimilation has taken place. Dissimilation does not take place either, as 
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the activation of the SF layer for the L1 does not change after acquiring the second language. 

Instead, also the results for perception lead to the conclusion that the network has acquired two 

separate phonological systems: one for the first language and one for the second language. 

However, it is to be remarked that also for perception the choice for two separate lexicon layers 

plays an important role. 

 Another important observation is the activation of both lexicon layers. As could be 

expected both the lexicons are activated if a sound is perceived that exists in both languages. 

However, if the network is more thoroughly trained on the one language, the lexicon in the other 

language is less activated, because the connections between this lexicon layer and the SF layer 

weaken (see chapter 6). So, also here the input plays an important role. Sometimes other nodes 

than the expected nodes are slightly activated in the other lexicon as well. During the training 

and testing phase this has happened thirteen times. In nine occasions there were no SF nodes in 

common. This leads to the conclusion that apparently the connections between the SF nodes and 

the activated lexicon nodes do weight a bit more than the other connections. However, as these 

SF nodes are not activated in the other language, they do not normally activate the lexicon layer 

in this language. 

 

8.1.3 General discussion 

The networks for the new scenario do not reveal many results that could be explained by Flege’s 

notions of assimilation and dissimilation. For assimilation a new L2 category should have 

merged with an already existing L1 category. This did not happen. One explanation could be that 

the new categories are not near enough to an already existing L1 category. In this case 

dissimilation should be observed. However, dissimilation did not play a role either, as the 

activation of the L1 SF nodes did not change after the acquisition of the L2 (only the weight of 

certain connections between the L1 lexicon and the SF increased, but see figures 8.1a-d). 

 On the other hand, it is true that the network had one single bilingual system during 

some parts of the training. For example, after exposing the network to the L2, the network 

needed some training on the L1 before it perceived sounds in an L1 manner again. Then there is 

the observation of the activation of more nodes on the AudF layer directly after changing the 

language environment. Also this changed after receiving more input. In general it can be said 

that both these observations should be interpreted as switching to the right language mode 

rather than as a merged phonological system or as a permanent accent due to assimilation or 

dissimilation.  
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8.2 The similar scenario 

In this section the results that are obtained for the similar scenario are discussed. The results of 

the similar scenario are compared to another test, in which the networks had to learn the second 

language of the similar scenario as their first language. For every network in the similar scenario 

the total amount of SF nodes that are activated for the L2 categories has been calculated and for 

every network in the new test the total amount of SF nodes that are activated for the L1 

categories has been calculated. In contradiction to the results that were obtained for the new 

scenario no significant differences in the activation of the SF nodes could be observed ( t(12) = 

1.7, p = 0.12 ). It has to be remarked that this may have to do with the amount of data, as in the 

similar scenario fewer phonological categories have to be acquired than in the new scenario. 

Purely looking at the means a difference can be observed. The mean amount of SF nodes that is 

activated for the language as a first language is 4.86, whereas the mean amount of SF nodes that 

is activated for this language as a second language is 6.14. If this difference is significant when 

more data are taken into account, the use of separate lexicon layers can be an explanation for 

this difference. 

 In the remaining part of this section the production of the network for the similar 

scenario is being looked at first, after which the perception of the network is discussed.  

 

8.2.1 Production 

For the production of the network a clear boundary shift could be observed. Again this can be 

explained by the choice for two separate lexicon layers (see figure 8.1a-d). The fact that an 

overlap can be observed between the activated SF nodes for the first category in the L1 and the 

activated SF nodes for the first category in the L2, and between the activated SF nodes of the 

second category in the L1 and the activated SF nodes of the second category in the L2, shows 

that the sounds are very comparable: otherwise different SF nodes had been activated.  

 Another interesting observation is that, after training the network on the second 

language, the L1 was produced according to the boundary shift on the AudF layer, and besides 

that more nodes were activated than before teaching the model the second language. This would 

mean that the network has an L2 accent in its first language. However, after training the network 

on the L1 again this accent disappeared. Again this stresses the importance of the input. Next to 

that the fact that the L2 accent disappears after training the network on the L1 again is not in 

favour of Flege’s SLM (Flege, 2005). Instead it shows that it is rather a matter of changing back to 

the right language mode (see chapter 2). Overall, production does reveal two separate 

phonological systems. Again it is to be remarked that this is caused by the choice for two 

separate lexicon layers (see previous section and chapter 9). 

 



74 

 

8.2.2 Perception 

The results in chapter 7 already revealed the importance of the input, also for the similar  

scenario, by showing that the boundary shift for perception was different in the situation in 

which the network was trained only 10.000 times on the L1, but not when the network was 

trained on the L1 for 50.000 times.  

 The results also showed that the input was very important for the end state of the SF 

layer of the network. In neither theories (separate systems or a merged system) the observed L1 

– L1 L2 – L2 – L1 – L1 L2 – L2 distribution is expected. One could argue that the speaker has one 

phonological system, because the way the SF nodes are activated does not change within the 

different language environments. On the other hand one could argue as well that the speaker has 

two different phonological systems, because the observed distribution is not the distribution one 

would expect if either assimilation or dissimilation had taken place. For assimilation the end 

state should contain two categories, whereas for dissimilation the end state should reveal four 

categories. The distribution may be nearer to what one would expect for dissimilation than to 

what one would expect for assimilation, but still the L1 L2 combination cannot be explained.  

 This L1 – L1 L2 – L2 – L1 – L1 L2 – L2 activation pattern is likely to occur if the new and 

old categories lay near to each other and only differ in one feature. I.e. such an activation pattern 

was not likely to occur for the new scenario, as the new vowel categories in the new scenario are 

more distinct from the already known vowel categories than the new first category from the 

already known first category in the similar scenario. Next to that the vowels differ from each 

other on the first and/or the second formant, whereas the categories in the similar scenario only 

differ from each other on the VOT. See chapter 9 for future research on the L1 – L1 L2 – L2 – L1 – 

L1 L2 – L2 activation pattern. 

 

8.3 The subset scenario 

In this section the results of the subset scenario are discussed. Again this is done by looking at 

production and perception separately, but only after a general remark considering the activation 

of the SF nodes. 

 The activation of the SF nodes of the second language in the subset scenario has been 

compared to the activation of the SF nodes of the first language in the new scenario, as these are 

the same languages. For every network in the subset scenario the total amount of SF nodes that 

are activated for the L2 categories has been calculated and for every network in the new 

scenario the total number of SF nodes that are activated for the L1 categories has been 

calculated. This showed that more SF nodes are activated (both for perception and for 

production) for the language if it is the network’s second language than if it is the network’s 

second language ( U(13) = 0.0, p < .05 ). This could mean that a speaker’s phonological 
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representation is different for the same language depending on whether the language is 

acquired as a first or as a second language. However, note that the separate lexicon layers seem 

to play an important role again. 

 

8.3.1 Production 

Again the network acquires two separate phonological systems for the two languages during the 

production. Again this can be explained by the choice for two separate lexicon layers (see section 

8.1). 

 

8.3.2 Perception 

Contradictory to the previous two scenarios the networks for the subset scenario were not able 

to change back to their L1 system anymore after having been exposed to their second language. 

(But note: this was only the case for perception.) After training on the L2 the networks had 

acquired a different phonological systems, which stayed like that independently from the 

language environment. Very likely this is caused by the amount of input. Presumably the 

networks have not received enough L1 input in order to be able to keep their ability to perceive 

their first language in an L1 manner. 

 Sounds that do exist in the L1 of the networks but do not exist in the L2 of the networks 

are perceived as L2 sounds in the L2. So, the networks perceive the same sounds differently 

depending on the language environment. Because the networks were not able to switch back to 

their first language anymore, it is not possible to say whether this means that the network has 

developed two separate phonological systems. 

 

8.3.3 General discussion 

Because the networks forget the perception of their first language, it is difficult to say whether 

the results are in favour of Flege’s SLM or rather in favour of the separate systems theory. The 

fact that different SF nodes are activated for production may lead to the assumption that the 

network has two separate systems. However, this is caused by the choice for separate lexicon 

layers.  
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9. CONCLUSIONS AND FURTHER RESEARCH 

 

In the previous chapter the results of this thesis are discussed. Based on these results the 

conclusion can be drawn that the amount of input plays a very important role in acquiring a 

second language. The comparisons between the SF nodes that were activated for the L1 and the 

L2 showed that the phonological system for the second language was often (for the new and the 

subset scenario, but not for the similar scenario) different than the phonological system for this 

same language but then acquired as a first language. For the production all the models acquired 

separate phonological systems. Already in the previous chapter is stated that this is inherent to 

the layout of the model. This does not necessarily mean that the results are biologically not 

plausible. If bilingual speakers have separate lexicons that behave like the lexicons that are 

modelled in the networks in this study, the results are biologically plausible. However, the 

question how the lexicon(s) of bilingual speakers should be modelled is a research question on 

its own. 

 The results for perception were less clear-cut. In the new scenario the network 

developed separate systems for perception as well, provided that the network had received 

enough language input. The similar network showed a combination of separate phonological 

systems and a combined phonological system by learning an L1 – L1 L2 – L2 – L1 – L1 L2 – L2 

distribution for the SF layer. The subset scenario did not shift back to the first language situation 

after learning a second language. However, presumably this is caused by a lack of L1 input. Of 

course the networks that are used here are only a simplification of reality. For this reason ideas 

for further research are discussed here. 

 

9.1 Further research 

The ideas for further research are divided into three sections. In the first section is focussed on 

changes that can be made considering the input to the networks. The next section discusses 

changes to the layers of the network and finally additional changes are taken into account. 

  

9.1.1 Changes to the layers 

Although I have chosen to model two separate lexicons, according to current psycholinguistic 

research (see chapter 5), a new network could be modelled with one lexicon layer. One could 

also try to do the same experiments, but then without a lexicon layer. Next to that one could 

examine a situation in which the nodes of the lexicon of the one language are unclamped during 

the acquisition of the other language, e.g. the nodes of the L1 lexicon layer would be unclamped 

during the acquisition of the L2. These three adaptations will reveal more insight in what 

happens if the separate lexicon layers do not influence the activity in the network. 
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 Next to that it would be good to experiment with connecting the lexicon layer to the SF 

layer only later during the language acquisition. This would model the acquisition of a new 

language better, as only after a while the new sounds are connected to words in the lexicon. 

 Besides this a concept layer should be added to the network. As I explained earlier in this 

thesis I decided to leave the concept layer out of the network, because it interfered with the 

lexicon layer. However, of course a network with a concept layer is a better representation of 

reality.  

 

9.1.2 Changes to the input 

It would be interesting to experiment with the amount of input. Especially for the subset 

scenario the amount of input could possibly change the inability to change back to the L1 

surroundings. For the similar scenario it would be interesting to explore how much input is 

needed to obtain results comparable to the results that have been obtained for the networks that 

had acquired their L1 in 10.000 learning steps, and how much input is needed to obtain results 

comparable to the results that have been obtained for the networks that had acquired their L2 in 

50.000 learning steps. 

 Additionally if would be interesting to look at what happens if the difference between the 

sound categories is larger or smaller. For the similar scenario a larger difference between the 

category boundaries could reveal another activation pattern at the SF than the L1 – L1 L2 – L2 – 

L1 – L1 L2 – L2 pattern. For the other scenarios it would be interesting to see what results are 

obtained by teaching the network different vowels, or changing the composition of sounds in the 

first and in the second language. E.g. in this study, in the new scenario, the vowels that were to 

be learned in addition, were quite distinct from each other. In chapter 3 the example was given 

of a Spanish L1 speaker that had to learn English as her L2 and therefore had to learn the 

difference between the /i/ and the /ɪ/, a distinction that is not known in Spanish. This difference 

may be more difficult to acquire, as the difference may be smaller than the distinction between, 

for example, the /i/ and the /e/. A next study could look at these smaller differences. 

 

9.1.3 Additional changes 

Of course, also linking single sounds to words in the lexicon is not a very good representation of 

reality. However, connecting several sounds in order to make words is not possible with the 

current state of the neural networks. It would be a very interesting research.  

 As already stated in chapter 5 of this thesis it could be possible that the speaker is 

affected by sensorimotor constraints. For now I have not included this option in the model, but 

this would be an interesting addition. It could result in a better explanation for the bilingual 

accent. Seinhorst (2012) uses an articulary node in his neural networks. This accounts for the 
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fact that certain sounds are easier to pronounce than other sounds. However, more articulatory 

nodes with inhibitory connections to the Auditory Form would be an option to model 

sensorimotor constraints.   

 Next to sensorimotor constraints, also a decrease of brain plasticity may influence the 

ability to learn a second language. In order to investigate the increase of brain plasticity one 

needs to decide on how brain plasticity declines over time. Figures 9.1a-c give examples of 

graphs that can be followed by modelling declining brain plasticity. 

 

 

 

 

 
 
 
 

Figure 9.1a –     Figure 9.1b –    Figure 9.1c – 

Linear decrease   Exponential decrease   Sigmoid function 

 

The current neural networks are not able to switch quickly between language environments. In 

order to have an optimal language perception, the networks need quite some learning steps in 

the target language. In reality bilingual speakers are able to switch easier and faster between 

two language environments. In future networks one or more parameters that help the networks 

with this switch could be included. 

 

In general can be said that many adaptations to the neural networks will increase their 

biological validity. Of course, the ultimate goal is to develop a network that exactly models the 

human brain. A computational neural network of the human brain would be extremely valuable 

for research in many scientific fields.  
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Appendix A – Script for the new scenario 

 
# Praat script for the new scenario, based on an earlier network by Boersma (2013) 
 
form growingLexicon 
 word Foreground_colour Yellow 
 word Background_colour Maroon 
 word Button_colour Olive 
 word Font Times 
 natural Font_size 35 
 real number_of_vowels_l1 3 
 real number_of_vowels_l2 5 
endform 
 
demo.foregroundColour$ = foreground_colour$ 
demo.backgroundColour$ = background_colour$ 
demo.buttonColour$ = button_colour$ 
demo.font$ = font$ 
demo.fontSize = font_size 
 
# 
# Properties of the network 
# 
 
spreadingRate = 0.01 
actMin = 0.0 
actMax = 1.0 
actLeak = 1.0 
learning_rate = 0.001  
weightMin = -1.0 
weightMax = 1.0 
weightLeak = 0.0 
xMin = 0.0 
xMax = 10.0 
yMin = 0.0 
yMax = 10.0 
instar = 0.5 
outstar = 0.5 
initialWeightMin = 0.0 
initialWeightMax = 0.1 
inhibitionAtSF = -0.5 
inhibitionAtPF = -0.5  
inhibitionAtAudF = -0.35 
artConnStrength = 1.5 
weightOfCentrArtConn = -0.25 
 
pfL1.numberOfNodes = 4 * number_of_vowels_l1 
pfL2.numberOfNodes = 4 * number_of_vowels_l2 
sf.numberOfNodes = 20 
audf.numberOfNodes = 40 
artf.numberOfNodes = 0 
 
pf.y = 7.0 
sf.y = 5.0 
audf.y = 2.0 
artf.y = 0.5 
 
artf.offsetNode = 0 
audf.offsetNode = artf.offsetNode+artf.numberOfNodes 
sf.offsetNode = audf.offsetNode+audf.numberOfNodes 
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pfL1.offsetNode = sf.offsetNode + sf.numberOfNodes 
pfL2.offsetNode = pfL1.offsetNode + pfL1.numberOfNodes 
 
peak_sharpness = 2 
auditory_sharpness = 50 
stdevOfAmbient = (audf.numberOfNodes - 1) / peak_sharpness / 10 
auditory_spreading = (audf.numberOfNodes - 1) / auditory_sharpness 
numberOfTimesOfActivitySpreading = 100  
inputExaggeration = 0.25 
 
f1_strength = 1 
weightNormalization = 0 
l2_step = 50000  
use_alternations = 1 
 
vowel1_audf1_mean = 0.10*audf.numberOfNodes 
vowel1_audf2_mean = 0.90*audf.numberOfNodes 
vowel2_audf1_mean = 0.40*audf.numberOfNodes 
vowel2_audf2_mean = 0.75*audf.numberOfNodes 
vowel3_audf1_mean = 0.10*audf.numberOfNodes 
vowel3_audf2_mean = 0.60*audf.numberOfNodes 
vowel4_audf1_mean = 0.25*audf.numberOfNodes 
vowel4_audf2_mean = 0.8375*audf.numberOfNodes 
vowel5_audf1_mean = 0.25*audf.numberOfNodes 
vowel5_audf2_mean = 0.6625*audf.numberOfNodes 
 
 
procedure createNetwork 
 network = Create empty Network... BilingualSpeaker spreadingRate  
 ... linear actMin actMax actLeak learning_rate weightMin weightMax  
 ... weightLeak xMin xMax yMin yMax 
 
 Set instar... instar 
 Set outstar... outstar 
 
 for i to artf.numberOfNodes 
  Add node... xMin+(xMax-xMin)/artf.numberOfNodes*(i-0.5) artf.y 0 yes 
 endfor 
 
 for i to audf.numberOfNodes 
  a = artConnStrength / (0.5 - 0.5 * audf.numberOfNodes ^ 2) 
  b = (1 + audf.numberOfNodes) / 2 
  Add connection... artf.offsetNode+1 audf.offsetNode+i weightOfCentrArtConn+a*(i-
  …b)^2 0 
 endfor 
 
 for i to audf.numberOfNodes   
  Add node... xMin+(xMax-xMin)/audf.numberOfNodes*(i-0.5) audf.y 0 yes 
 endfor 
 
 for i to sf.numberOfNodes   
  Add node... xMin+(xMax-xMin)/sf.numberOfNodes*(i-0.5) sf.y 0 no 
 endfor 
 
 for i to pfL1.numberOfNodes 
  Add node... xMin+i/4 pf.y 0 yes 
 endfor 
 
 for i to pfL2.numberOfNodes 
  Add node... xMin+4+i/4 pf.y 0 yes 
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 endfor 
 
# 
# Excitatory connections 
# 
 
 for i to audf.numberOfNodes 
  for j to sf.numberOfNodes 
   Add connection... audf.offsetNode+i sf.offsetNode+j    
   …randomUniform(initialWeightMin,initialWeightMax) 1.0 
  endfor 
 endfor 
 
 for i to sf.numberOfNodes 
  for j to pfL1.numberOfNodes 
   Add connection... sf.offsetNode+i pfL1.offsetNode+j    
   …randomUniform(initialWeightMin,initialWeightMax) 1.0 
  endfor 
 endfor 
 
  
# 
# Inhibitory connections 
# 
  
 for i to artf.numberOfNodes 
  for j to audf.numberOfNodes 
   Add connection... artf.offsetNode+i audf.offsetNode+j    
   …randomUniform(initialWeightMin,initialWeightMax) 0.0 
  endfor 
 endfor 
 
 for .i to audf.numberOfNodes - 1 
  for .j from .i + 1 to audf.numberOfNodes 
   Add connection... audf.offsetNode+.i audf.offsetNode+.j inhibitionAtAudF 0.0 
  endfor 
 endfor 
 
 
 for i to sf.numberOfNodes - 1 
  for j from i+1 to sf.numberOfNodes 
   Add connection... sf.offsetNode+i sf.offsetNode+j inhibitionAtSF 0.0 
  endfor 
 endfor 
  
 for i to pfL1.numberOfNodes - 1 
  for j from i+1 to pfL1.numberOfNodes 
   Add connection... pfL1.offsetNode+i pfL1.offsetNode+j inhibitionAtPF 0.0 
  endfor 
 endfor 
 
 for i to pfL2.numberOfNodes - 1 
  for j from i+1 to pfL2.numberOfNodes 
   Add connection... pfL2.offsetNode+i pfL2.offsetNode+j inhibitionAtPF 0.0 
  endfor 
 endfor 
 
  
 inputDistribution = Create Matrix... inputDistribution 0.5 audf.numberOfNodes+0.5  
 …audf.numberOfNodes 1.0 1 1 1 1 1 1 0.0 
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 distanceMatrix = Create Matrix... distance 0.5 audf.numberOfNodes+0.5  
 ...audf.numberOfNodes+1 1.0 0.5 1 1 1 1 1 0.0 
 
endproc 
 
label NETWORK 
call createNetwork 
step = 0 
pfNode = 1 
audNode = 1 
l1 = 1 
l2 = 0 
repeat 
 call demo.erase 
 call demo.centredTitle BilingualSpeaker 
 demo.textY += 13 
 demo Select inner viewport... 20 80 20 80 
 select network 
 demo Draw... yes 
 demo Text... xMin right artf.y half [[ArtF]] 
 demo Text... xMin right audf.y half [[AudF]] 
 demo Text... xMin right sf.y half /SF/ 
 demo Text... xMin right pf.y half Lexicons 
 select inputDistribution 
 demo Magenta 
 demo Line width... 3 
 for i to number_of_vowels_l2  
  demo Draw rows... 0 0 i-0.5 i+0.5 0 step/3 
 endfor 
 demo 'demo.foregroundColour$' 
 demo Line width... 2 
 
 
 demo Select inner viewport... 0 100 0 100 
 demo Axes... 0 100 0 100 
 demo Text... 50 centre 10 half After step 'step'. 
 call demo.button 88 98 50 1000↑ 
 call demo.button 88 98 40 100↑ 
 call demo.button 88 98 30 5000↑ 
 call demo.button 88 98 20 1↑ 
 call demo.button 88 98 10 new 
 call demo.button 2 12 10 set... 
 
 while demoWaitForInput ( ) 
  if demoInput ("a")       
   select network 
   Zero activities... 0 0 
   
   if l1 = 1 
 
    for i to pfL1.numberOfNodes 
     Set clamping... pfL1.offsetNode+i no 
    endfor 
 
 
    for i to pfL2.numberOfNodes 
     Set clamping... pfL2.offsetNode+i no  
    endfor 
 
    audNode = max (1, min (round (audNode), audf.numberOfNodes)) + 1 
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    if audNode > audf.numberOfNodes 
     audNode = 1 
    endif 
     
    whichVowel = randomInteger (1, number_of_vowels_l2) 
    vowel.f1 = vowel'whichVowel'_audf1_mean 
    vowel.f2 = vowel'whichVowel'_audf2_mean 
 
    audNode1 = randomGauss (vowel.f1, stdevOfAmbient/2) 
    audNode2 = randomGauss (vowel.f2, stdevOfAmbient/2) 
  
    for i to audf.numberOfNodes 
     Set clamping... audf.offsetNode+i yes 
     Set activity... audf.offsetNode+i 
     ... f1_strength * exp (-0.5 * (i - audNode1) ^ 2 /   
     …auditory_spreading ^ 2) * inputExaggeration + 
     ... exp (-0.5 * (i - audNode2) ^ 2 / auditory_spreading ^ 2) * 
     …inputExaggeration 
    endfor 
 
    Spread activities... numberOfTimesOfActivitySpreading*5 
    goto NETWORK_NEXT 
    
   elsif l2 = 1 
 
    for i to pfL2.numberOfNodes 
     Set clamping... pfL2.offsetNode+i no 
    endfor 
 
    for i to pfL1.numberOfNodes 
     Set clamping... pfL1.offsetNode+i no  
    endfor 
 
    audNode = max (1, min (round (audNode), audf.numberOfNodes)) + 1 
    
    if audNode > audf.numberOfNodes 
     audNode = 1 
    endif 
     
    whichVowel = randomInteger (1, number_of_vowels_l2) 
    vowel.f1 = vowel'whichVowel'_audf1_mean 
    vowel.f2 = vowel'whichVowel'_audf2_mean 
 
    audNode1 = randomGauss (vowel.f1, stdevOfAmbient/2) 
    audNode2 = randomGauss (vowel.f2, stdevOfAmbient/2) 
  
    for i to audf.numberOfNodes 
     Set clamping... audf.offsetNode+i yes 
     Set activity... audf.offsetNode+i 
     ... f1_strength * exp (-0.5 * (i - audNode1) ^ 2 /   
     …auditory_spreading ^ 2) * inputExaggeration + 
     ... exp (-0.5 * (i - audNode2) ^ 2 / auditory_spreading ^ 2) * 
     …inputExaggeration 
    endfor 
 
    Spread activities... numberOfTimesOfActivitySpreading*5 
    goto NETWORK_NEXT 
   endif 
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  elsif demoInput ("12345") 
   select network 
   Zero activities... 0 0 
   pfNode = index ("12345", demoKey$ ()) 
 
   if l1 = 1 
    if pfNode <= number_of_vowels_l1 
     for .i to audf.numberOfNodes 
      Set clamping... audf.offsetNode+.i no 
     endfor 
 
     for .i to pfL1.numberOfNodes 
      Set activity... pfL1.offsetNode+.i 0 
      Set clamping... pfL1.offsetNode+.i yes 
     endfor 
 
     for i to pfL2.numberOfNodes 
      Set clamping... pfL2.offsetNode+i yes 
      Set activity... pfL2.offsetNode+i 0 
     endfor 
 
     for .i to pfL1.numberOfNodes/number_of_vowels_l1 
      .k = (pfNode-     
      …1)*(pfL1.numberOfNodes/number_of_vowels_l1) 
      …+ .i 
      Set activity... pfL1.offsetNode+.k 1 
     endfor 
 
     Spread activities... numberOfTimesOfActivitySpreading 
    endif 
    goto NETWORK_NEXT 
 
   elsif l2 = 1 
    if pfNode <= number_of_vowels_l2 
     for .i to audf.numberOfNodes 
      Set clamping... audf.offsetNode+.i no 
     endfor 
 
     for .i to pfL2.numberOfNodes  
      Set activity... pfL2.offsetNode+.i 0 
      Set clamping... pfL2.offsetNode+.i yes 
     endfor 
 
     for i to pfL1.numberOfNodes 
      Set clamping... pfL1.offsetNode+i yes 
      Set activity... pfL1.offsetNode+i 0 
     endfor 
     
     for .i to pfL2.numberOfNodes/number_of_vowels_l2 
      .k = (pfNode-     
      …1)*(pfL2.numberOfNodes/number_of_vowels_l2) 
      …+ .i 
      Set activity... pfL2.offsetNode+.k 1 
     endfor 
 
     Spread activities... numberOfTimesOfActivitySpreading 
    endif 
   endif 
   goto NETWORK_NEXT 
 



92 

 

  elsif demoClickedIn (2, 12, 10-4, 10+4) or demoInput ("z")   ; set... 
   beginPause ("Settings") 
    boolean ("l1", 0) 
    boolean ("l2", 0) 
   clicked = endPause ("Cancel", "Set", 2) 
    
   if clicked = 2 
    if l1 = 1 
     vowel1_audf1_mean = 0.10*audf.numberOfNodes 
     vowel1_audf2_mean = 0.90*audf.numberOfNodes 
     vowel2_audf1_mean = 0.40*audf.numberOfNodes 
     vowel2_audf2_mean = 0.75*audf.numberOfNodes 
     vowel3_audf1_mean = 0.10*audf.numberOfNodes 
     vowel3_audf2_mean = 0.60*audf.numberOfNodes 
     writeInfoLine: "l1 aan" 
    elsif l2 = 1 
     vowel1_audf1_mean = 0.40*audf.numberOfNodes 
     vowel1_audf2_mean = 0.75*audf.numberOfNodes 
     vowel2_audf1_mean = 0.25*audf.numberOfNodes 
     vowel2_audf2_mean = 0.6625*audf.numberOfNodes 
     vowel3_audf1_mean = 0.10*audf.numberOfNodes 
     vowel3_audf2_mean = 0.90*audf.numberOfNodes 
     vowel4_audf1_mean = 0.25*audf.numberOfNodes 
     vowel4_audf2_mean = 0.8375*audf.numberOfNodes 
     vowel5_audf1_mean = 0.10*audf.numberOfNodes 
     vowel5_audf2_mean = 0.60*audf.numberOfNodes 
     writeInfoLine: "l2 aan" 
    endif 
 
   endif 
 
 
   goto NETWORK_NEXT 
  endif 
 
  numberOfSteps = 
  ... if demoClickedIn (88, 98, 20-4, 20+4) or demoInput ("↑") then 1 else 
  ... if demoClickedIn (88, 98, 30-4, 30+4) or demoInput ("v") then 5000 else 
  ... if demoClickedIn (88, 98, 40-4, 40+4) or demoInput ("h") then 100 else 
  ... if demoClickedIn (88, 98, 50-4, 50+4) or demoInput ("d") then 1000 else 
  ... if demoInput ("4") then 10000 else 0 fi fi fi fi fi 
 
  if numberOfSteps <> 0 
   select network 
   for ministep to abs (numberOfSteps) 
 
    if step = l2_step 
     select network 
 
### Add Excitatory connections between the new lexicon layer and sf ### 
 
     for .i to sf.numberOfNodes 
      for .j to pfL2.numberOfNodes 
       Add connection... sf.offsetNode+.i  
       …pfL2.offsetNode+.j    
       …randomUniform 
       …(initialWeightMin,initialWeightMax) 1.0 
      endfor 
     endfor 
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     for .i to sf.numberOfNodes 
      for .j to pfL2.numberOfNodes 
       Add connection... sf.offsetNode+.i  
       …pfL2.offsetNode+.j    
       …randomUniform 
       …(initialWeightMin,initialWeightMax) 1.0 
      endfor 
     endfor 
 
    endif 
 
    step += 1 
    Zero activities... 0 0 
     
   #### L1 surroundings ####  
    
    if l1 = 1 
     whichVowel = randomInteger (1, number_of_vowels_l1) 
     
     vowel.f1 = vowel'whichVowel'_audf1_mean 
     vowel.f2 = vowel'whichVowel'_audf2_mean 
 
     audNode1 = randomGauss (vowel.f1, stdevOfAmbient/2) 
     audNode2 = randomGauss (vowel.f2, stdevOfAmbient/2) 
 
     for i from 1 to audf.numberOfNodes 
      Set clamping... audf.offsetNode+i yes 
      Set activity... audf.offsetNode+i 
      ... f1_strength * exp (-0.5 * (i - audNode1) ^ 2 /  
      …auditory_spreading ^ 2) * inputExaggeration + 
      ... exp (-0.5 * (i - audNode2) ^ 2 / auditory_spreading ^ 
      …2) * inputExaggeration 
     endfor 
 
     for i from 1 to pfL2.numberOfNodes 
      Set clamping... pfL2.offsetNode+i yes 
      Set activity... pfL2.offsetNode+i 0 
     endfor 
 
     for i from 1 to pfL1.numberOfNodes 
      Set clamping... pfL1.offsetNode+i yes 
      Set activity... pfL1.offsetNode+i 0 
     endfor 
 
     if whichVowel <= number_of_vowels_l1  
      for i to pfL1.numberOfNodes/number_of_vowels_l1
       Set activity... pfL1.offsetNode+(whichVowel-1) 
       …*(pfL1.numberOfNodes/ 
       …number_of_vowels_l1)+i 1 
      endfor  
     endif  
      
     if whichVowel <= number_of_vowels_l1 
      for i to pfL1.numberOfNodes/number_of_vowels_l1
       Set activity... pfL1.offsetNode+(whichVowel-1) 
       …*(pfL1.numberOfNodes/ 
       …number_of_vowels_l1)+i 1 
      endfor  
     endif 
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     Spread activities... numberOfTimesOfActivitySpreading 
     Update weights 
     
   #### L2 surroundings ####  
     
    elsif l2 = 1 
     whichVowel = randomInteger (1, number_of_vowels_l2) 
     
     vowel.f1 = vowel'whichVowel'_audf1_mean 
     vowel.f2 = vowel'whichVowel'_audf2_mean 
 
     audNode1 = randomGauss (vowel.f1, stdevOfAmbient/2) 
     audNode2 = randomGauss (vowel.f2, stdevOfAmbient/2) 
 
     for i from 1 to audf.numberOfNodes 
      Set clamping... audf.offsetNode+i yes 
      Set activity... audf.offsetNode+i 
      ... f1_strength * exp (-0.5 * (i - audNode1) ^ 2 /  
      …auditory_spreading ^ 2) * inputExaggeration + 
      ... exp (-0.5 * (i - audNode2) ^ 2 / auditory_spreading ^ 
      …2) * inputExaggeration 
     endfor 
 
     for i from 1 to pfL1.numberOfNodes 
      Set clamping... pfL1.offsetNode+i yes 
      Set activity... pfL1.offsetNode+i 0 
     endfor 
 
     for i from 1 to pfL2.numberOfNodes 
      Set clamping... pfL2.offsetNode+i yes 
      Set activity... pfL2.offsetNode+i 0 
     endfor 
 
     if whichVowel <= number_of_vowels_l2  
      for i to pfL2.numberOfNodes/number_of_vowels_l2 
       Set activity... pfL2.offsetNode+(whichVowel-1) 
       …*(pfL2.numberOfNodes/ 
       …number_of_vowels_l2)+i 1 
      endfor  
     endif       
        
     Spread activities... numberOfTimesOfActivitySpreading 
     Update weights 
      
    endif 
 
    select inputDistribution 
    Formula... self + f1_strength * (exp (-0.5 * (col - audNode1) ^ 2 / 
    …auditory_spreading ^ 2)) * inputExaggeration 
    ... + (exp (-0.5 * (col - audNode2) ^ 2 / auditory_spreading ^ 2)) * 
    …inputExaggeration 
    select network 
     
   endfor 
   goto NETWORK_NEXT 
  endif 
  goto NETWORK_END demoInput ("h←• →") 
 endwhile 
 label NETWORK_NEXT 
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until 0 
label NETWORK_END 
select network 
plus inputDistribution 
plus distanceMatrix 
Remove 
 
include demo.praatinclude 

 

 

Appendix B – Script for the similar scenario 

 

# Praat script for the similar scenario, based on an earlier script by Boersma (2013) 
 
form growingLexicon 
 word Foreground_colour Yellow 
 word Background_colour Maroon 
 word Button_colour Olive 
 word Font Times 
 natural Font_size 35 
 real number_of_categories_l1 2 
 real number_of_categories_l2 2 
endform 
 
demo.foregroundColour$ = foreground_colour$ 
demo.backgroundColour$ = background_colour$ 
demo.buttonColour$ = button_colour$ 
demo.font$ = font$ 
demo.fontSize = font_size 
 
# 
# Properties of the network 
# 
 
spreadingRate = 0.01 
actMin = 0.0 
actMax = 1.0 
actLeak = 1.0 
learning_rate = 0.001 
weightMin = -1.0 
weightMax = 1.0 
weightLeak = 0.0 
xMin = 0.0 
xMax = 10.0 
yMin = 0.0 
yMax = 10.0 
instar = 0.5 
outstar = 0.5 
initialWeightMin = 0.0 
initialWeightMax = 0.1 
inhibitionAtSF = -0.5 
inhibitionAtPF = -0.5 
inhibitionAtAudF = -0.35 
artConnStrength = 1.5 
weightOfCentrArtConn = -0.25 
 
pfL1.numberOfNodes = 4 * number_of_categories_l1 
pfL2.numberOfNodes = 4 * number_of_categories_l2 
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sf.numberOfNodes = 20 
audf.numberOfNodes = 40 
artf.numberOfNodes = 0 
 
pf.y = 7.0 
sf.y = 5.0 
audf.y = 2.0 
artf.y = 0.5 
 
artf.offsetNode = 0 
audf.offsetNode = artf.offsetNode+artf.numberOfNodes 
sf.offsetNode = audf.offsetNode+audf.numberOfNodes 
pfL1.offsetNode = sf.offsetNode + sf.numberOfNodes 
pfL2.offsetNode = pfL1.offsetNode + pfL1.numberOfNodes 
 
peak_sharpness = 4 
auditory_sharpness = 50 
stdevOfCategory = (audf.numberOfNodes - 1) / peak_sharpness / 10 
auditory_spreading = (audf.numberOfNodes - 1) / auditory_sharpness 
numberOfTimesOfActivitySpreading = 100 
inputExaggeration = 0.5  
 
f1_strength = 1 
weightNormalization = 0 
l2_step = 50000 
use_alternations = 1 
 
mean_of_category_1 = 0.45 
mean_of_category_2 = 0.65 
 
procedure createNetwork 
 network = Create empty Network... BilingualSpeakerVOT spreadingRate  
 ... linear actMin actMax actLeak learning_rate weightMin weightMax  
 ... weightLeak xMin xMax yMin yMax 
 
 Set instar... instar 
 Set outstar... outstar 
 
 for i to artf.numberOfNodes 
  Add node... xMin+(xMax-xMin)/artf.numberOfNodes*(i-0.5) artf.y 0 yes 
 endfor 
 
 for i to audf.numberOfNodes 
  a = artConnStrength / (0.5 - 0.5 * audf.numberOfNodes ^ 2) 
  b = (1 + audf.numberOfNodes) / 2 
  Add connection... artf.offsetNode+1 audf.offsetNode+i weightOfCentrArtConn+a*(i-
  …b)^2 0 
 endfor 
 
 for i to audf.numberOfNodes   
  Add node... xMin+(xMax-xMin)/audf.numberOfNodes*(i-0.5) audf.y 0 yes 
 endfor 
 
 for i to sf.numberOfNodes   
  Add node... xMin+(xMax-xMin)/sf.numberOfNodes*(i-0.5) sf.y 0 no 
 endfor 
 
 for i to pfL1.numberOfNodes 
  Add node... xMin+i/4 pf.y 0 yes 
 endfor 
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 for i to pfL2.numberOfNodes 
  Add node... xMin+4+i/4 pf.y 0 yes 
 Endfor 
 
# 
# Excitatory connections 
# 
 
 for i to audf.numberOfNodes 
  for j to sf.numberOfNodes 
   Add connection... audf.offsetNode+i sf.offsetNode+j    
   …randomUniform(initialWeightMin,initialWeightMax) 1.0 
  endfor 
 endfor 
 
 for i to sf.numberOfNodes 
  for j to pfL1.numberOfNodes 
   Add connection... sf.offsetNode+i pfL1.offsetNode+j    
   …randomUniform(initialWeightMin,initialWeightMax) 1.0 
  endfor 
 endfor 
 
# 
# Inhibitory connections 
# 
  
 for i to artf.numberOfNodes 
  for j to audf.numberOfNodes 
   Add connection... artf.offsetNode+i audf.offsetNode+j 0 0.0 
  endfor 
 endfor 
 
 for .i to audf.numberOfNodes - 1 
  for .j from .i + 1 to audf.numberOfNodes 
   Add connection... audf.offsetNode+.i audf.offsetNode+.j inhibitionAtAudF 0.0 
  endfor 
 endfor 
 for i to sf.numberOfNodes - 1 
  for j from i+1 to sf.numberOfNodes 
   Add connection... sf.offsetNode+i sf.offsetNode+j inhibitionAtSF 0.0 
  endfor 
 endfor 
  
 for i to pfL1.numberOfNodes - 1 
  for j from i+1 to pfL1.numberOfNodes 
   Add connection... pfL1.offsetNode+i pfL1.offsetNode+j inhibitionAtPF 0.0 
  endfor 
 endfor 
 
 for i to pfL2.numberOfNodes - 1 
  for j from i+1 to pfL2.numberOfNodes 
   Add connection... pfL2.offsetNode+i pfL2.offsetNode+j inhibitionAtPF 0.0 
  endfor 
 endfor 
 
 inputDistribution = Create Matrix... inputDistribution 0.5 audf.numberOfNodes+0.5 
 …audf.numberOfNodes 1.0 1 1 1 1 1 1 0.0 
 distanceMatrix = Create Matrix... distance 0.5 audf.numberOfNodes+0.5 
 …audf.numberOfNodes+1 1.0 0.5 1 1 1 1 1 0.0 
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endproc 
 
label NETWORK 
call createNetwork 
step = 0 
pfNode = 1 
audNode = 1 
l1 = 1 
l2 = 0 
repeat 
 call demo.erase 
 call demo.centredTitle BilingualSpeakerVOT 
 demo.textY += 13 
 demo Select inner viewport... 20 80 20 80 
 select network 
 demo Draw... yes 
 demo Text... xMin right artf.y half [[ArtF]] 
 demo Text... xMin right audf.y half [[AudF]] 
 demo Text... xMin right sf.y half /SF/ 
 demo Text... xMin right pf.y half Lexicons 
 select inputDistribution 
 demo Magenta 
 demo Line width... 3 
 for i to number_of_categories_l2  
  demo Draw rows... 0 0 i-0.5 i+0.5 0 step/3 
 endfor 
 demo 'demo.foregroundColour$' 
 demo Line width... 2 
 
 
 demo Select inner viewport... 0 100 0 100 
 demo Axes... 0 100 0 100 
 demo Text... 50 centre 10 half After step 'step'. 
 call demo.button 88 98 50 1000↑ 
 call demo.button 88 98 40 100↑ 
 call demo.button 88 98 30 5000↑ 
 call demo.button 88 98 20 1↑ 
 call demo.button 88 98 10 new 
 call demo.button 2 12 10 set... 
 
 while demoWaitForInput ( ) 
  if demoInput ("a")       
   select network 
   Zero activities... 0 0 
   
   if l1 = 1 
     
    for i to pfL1.numberOfNodes 
     Set clamping... pfL1.offsetNode+i no 
    endfor 
 
    for i to pfL2.numberOfNodes 
     Set clamping... pfL2.offsetNode+i no 
    endfor 
 
    audNode = max (1, min (round (audNode), audf.numberOfNodes)) + 1 
     
    if audNode > audf.numberOfNodes 
     audNode = 1 
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    endif 
 
    for .i to audf.numberOfNodes 
     Set clamping... audf.offsetNode+.i yes 
     Set activity... audf.offsetNode+.i   exp (-0.5 * (.i - audNode) ^ 2 
     …/ auditory_spreading ^ 2) * inputExaggeration 
    endfor 
 
    Spread activities... numberOfTimesOfActivitySpreading 
    goto NETWORK_NEXT 
    
   elsif l2 = 1 
 
    for i to pfL2.numberOfNodes 
     Set clamping... pfL2.offsetNode+i no 
    endfor 
 
    for i to pfL1.numberOfNodes 
     Set clamping... pfL1.offsetNode+i no 
    endfor 
 
    audNode = max (1, min (round (audNode), audf.numberOfNodes)) + 1 
     
    if audNode > audf.numberOfNodes 
     audNode = 1 
    endif 
 
    for .i to audf.numberOfNodes 
     Set clamping... audf.offsetNode+.i yes 
     Set activity... audf.offsetNode+.i   exp (-0.5 * (.i - audNode) ^ 2 
     …/ auditory_spreading ^ 2) * inputExaggeration 
    endfor 
 
    Spread activities... numberOfTimesOfActivitySpreading 
    goto NETWORK_NEXT 
   endif 
 
  elsif demoInput ("12") 
   select network 
   Zero activities... 0 0 
   pfNode = index ("12", demoKey$ ()) 
 
   if l1 = 1 
    if pfNode <= number_of_categories_l1 
     for .i to audf.numberOfNodes 
      Set clamping... audf.offsetNode+.i no 
     endfor 
 
     for .i to pfL1.numberOfNodes  
      Set activity... pfL1.offsetNode+.i 0 
      Set clamping... pfL1.offsetNode+.i yes 
     endfor 
 
     for i to pfL2.numberOfNodes 
      Set clamping... pfL2.offsetNode+i yes 
      Set activity... pfL2.offsetNode+i 0 
     endfor 
 
     for .i to pfL1.numberOfNodes/number_of_categories_l1 
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      .k = (pfNode-     
      …1)*(pfL1.numberOfNodes/number_of_categories_l1) 
      …+ .i 
      Set activity... pfL1.offsetNode+.k 1 
     endfor 
 
     Spread activities... numberOfTimesOfActivitySpreading 
    endif 
    goto NETWORK_NEXT 
 
   elsif l2 = 1 
    if pfNode <= number_of_categories_l2 
     for .i to audf.numberOfNodes 
      Set clamping... audf.offsetNode+.i no 
     endfor 
 
     for .i to pfL2.numberOfNodes  
      Set activity... pfL2.offsetNode+.i 0 
      Set clamping... pfL2.offsetNode+.i yes 
     endfor 
 
     for i to pfL1.numberOfNodes 
      Set clamping... pfL1.offsetNode+i yes 
      Set activity... pfL1.offsetNode+i 0 
     endfor 
 
     for .i to pfL2.numberOfNodes/number_of_categories_l2 
      .k = (pfNode-     
      …1)*(pfL2.numberOfNodes/number_of_categories_l2) 
      …+ .i 
      Set activity... pfL2.offsetNode+.k 1 
     endfor 
 
     Spread activities... numberOfTimesOfActivitySpreading 
    endif 
   endif 
   goto NETWORK_NEXT 
 
  elsif demoClickedIn (2, 12, 10-4, 10+4) or demoInput ("z")   ; set... 
   beginPause ("Settings") 
    boolean ("l1", 0) 
    boolean ("l2", 0) 
   clicked = endPause ("Cancel", "Set", 2) 
    
   if clicked = 2 
    if l1 = 1 
     mean_of_category_1 = 0.45 
     mean_of_category_2 = 0.65 
     writeInfoLine: "l1 aan" 
    elsif l2 = 1 
     mean_of_category_1 = 0.50 
     mean_of_category_2 = 0.70 
     writeInfoLine: "l2 aan" 
    endif 
 
   endif 
 
   goto NETWORK_NEXT 
  endif 
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  numberOfSteps = 
  ... if demoClickedIn (88, 98, 20-4, 20+4) or demoInput ("↑") then 1 else 
  ... if demoClickedIn (88, 98, 30-4, 30+4) or demoInput ("v") then 5000 else 
  ... if demoClickedIn (88, 98, 40-4, 40+4) or demoInput ("h") then 100 else 
  ... if demoClickedIn (88, 98, 50-4, 50+4) or demoInput ("d") then 1000 else 
  ... if demoInput ("4") then 10000 else 0 fi fi fi fi fi 
 
  if numberOfSteps <> 0 
   select network 
   for ministep to abs (numberOfSteps) 
 
    if step = l2_step 
     select network 
 
### Add Excitatory connections between the new lexicon layer and sf ### 
 
     for .i to sf.numberOfNodes 
      for .j to pfL2.numberOfNodes 
       Add connection... sf.offsetNode+.i  
       …pfL2.offsetNode+.j    
       …randomUniform 
       …(initialWeightMin,initialWeightMax) 1.0 
      endfor 
     endfor 
 
      
     for .i to sf.numberOfNodes 
      for .j to pfL2.numberOfNodes 
       Add connection... sf.offsetNode+.i  
       …pfL2.offsetNode+.j  
       …randomUniform 
       …(initialWeightMin,initialWeightMax) 1.0 
      endfor 
     endfor 
   
    step += 1 
    Zero activities... 0 0 
     
   #### L1 surroundings ####  
    
    if l1 = 1 
     category = randomInteger (1, number_of_categories_l1) 
     meanOfCategory = 1 + mean_of_category_'category' *  
     …(audf.numberOfNodes - 1) 
     audNode = randomGauss (meanOfCategory,   
     …stdevOfCategory) 
    
     for i to audf.numberOfNodes 
      Set clamping... audf.offsetNode+i yes 
      Set activity... audf.offsetNode+i   exp (-0.5 * (i -  
      …audNode) ^ 2 / auditory_spreading ^ 2) *  
      …inputExaggeration 
     endfor 
 
     for i from 1 to pfL2.numberOfNodes 
      Set clamping... pfL2.offsetNode+i yes 
     endfor 
 
     for i from 1 to pfL1.numberOfNodes 
      Set clamping... pfL1.offsetNode+i yes 
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      Set activity... pfL1.offsetNode+i 0 
     endfor 
 
     for i to pfL1.numberOfNodes/number_of_categories_l1 
      Set activity... pfL1.offsetNode+(category- 
      …1)*(pfL1.numberOfNodes/number_of_categories_l1) 
      …+i 1 
     endfor  
         
     for i to pfL1.numberOfNodes/number_of_categories_l1 
         
      Set activity... pfL1.offsetNode+(category- 
      …1)*(pfL1.numberOfNodes/number_of_categories_l1) 
      …+i 1 
     endfor  
    
     Spread activities... numberOfTimesOfActivitySpreading 
     Update weights 
     
   #### L2 surroundings ####  
     
    elsif l2 = 1 
     category = randomInteger (1, number_of_categories_l1) 
     meanOfCategory = 1 + mean_of_category_'category' *  
     …(audf.numberOfNodes - 1) 
     audNode = randomGauss (meanOfCategory,   
     …stdevOfCategory) 
    
     for i to audf.numberOfNodes 
      Set clamping... audf.offsetNode+i yes 
      Set activity... audf.offsetNode+i   exp (-0.5 * (i -  
      …audNode) ^ 2 / auditory_spreading ^ 2) *  
      …inputExaggeration 
     endfor 
 
     for i from 1 to pfL1.numberOfNodes 
      Set clamping... pfL1.offsetNode+i yes 
     endfor 
 
     for i from 1 to pfL2.numberOfNodes 
      Set clamping... pfL2.offsetNode+i yes 
      Set activity... pfL2.offsetNode+i 0 
     endfor 
 
     for i to pfL2.numberOfNodes/number_of_categories_l1 
         
      Set activity... pfL2.offsetNode+(category- 
      …1)*(pfL2.numberOfNodes/number_of_categories_l2) 
      …+i 1 
     endfor  
 
     for i to pfL2.numberOfNodes/number_of_categories_l2 
      Set activity... pfL2.offsetNode+(category- 
      …1)*(pfL2.numberOfNodes/number_of_categories_l2) 
      …+i 1 
     endfor 
    
     Spread activities... numberOfTimesOfActivitySpreading 
     Update weights 
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    endif 
 
    select inputDistribution 
    Formula... self + exp (-0.5 * (col - audNode) ^ 2 / auditory_spreading ^ 
    …2) * inputExaggeration 
    select network 
     
   endfor 
   goto NETWORK_NEXT 
  endif 
  goto NETWORK_END demoInput ("h←• →") 
 endwhile 
 label NETWORK_NEXT 
until 0 
label NETWORK_END 
select network 
plus inputDistribution 
plus distanceMatrix 
Remove 
 
include demo.praatinclude 
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Appendix C – Script for the subset scenario 

 

# Praat script for the subset scenario, based on an earlier script by Boersma (2013) 
 
form growingLexicon 
 word Foreground_colour Yellow 
 word Background_colour Maroon 
 word Button_colour Olive 
 word Font Times 
 natural Font_size 35 
 real number_of_vowels_l1 5 
 real number_of_vowels_l2 3 
endform 
 
demo.foregroundColour$ = foreground_colour$ 
demo.backgroundColour$ = background_colour$ 
demo.buttonColour$ = button_colour$ 
demo.font$ = font$ 
demo.fontSize = font_size 
 
# 
# Properties of the network 
# 
 
spreadingRate = 0.01 
actMin = 0.0 
actMax = 1.0 
actLeak = 1.0 
learning_rate = 0.001  
weightMin = -1.0 
weightMax = 1.0 
weightLeak = 0.0 
xMin = 0.0 
xMax = 10.0 
yMin = 0.0 
yMax = 10.0 
instar = 0.5 
outstar = 0.5 
initialWeightMin = 0.0 
initialWeightMax = 0.1 
inhibitionAtSF = -0.5 
inhibitionAtPF = -0.5  
inhibitionAtAudF = -0.35 
artConnStrength = 1.5 
weightOfCentrArtConn = -0.25 
 
pfL1.numberOfNodes = 4 * number_of_vowels_l1 
pfL2.numberOfNodes = 4 * number_of_vowels_l2 
sf.numberOfNodes = 20 
audf.numberOfNodes = 40 
artf.numberOfNodes = 0 
 
pf.y = 7.0 
sf.y = 5.0 
audf.y = 2.0 
artf.y = 0.5 
 
artf.offsetNode = 0 
audf.offsetNode = artf.offsetNode+artf.numberOfNodes 
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sf.offsetNode = audf.offsetNode+audf.numberOfNodes 
pfL1.offsetNode = sf.offsetNode + sf.numberOfNodes 
pfL2.offsetNode = pfL1.offsetNode + pfL1.numberOfNodes 
 
peak_sharpness = 2 
auditory_sharpness = 50 
stdevOfAmbient = (audf.numberOfNodes - 1) / peak_sharpness / 10 
auditory_spreading = (audf.numberOfNodes - 1) / auditory_sharpness 
numberOfTimesOfActivitySpreading = 100  
inputExaggeration = 0.25 ; veranderd 
 
f1_strength = 1 
weightNormalization = 0 
l2_step = 50000  
use_alternations = 1 
 
vowel5_audf1_mean = 0.10*audf.numberOfNodes 
vowel5_audf2_mean = 0.90*audf.numberOfNodes 
vowel3_audf1_mean = 0.40*audf.numberOfNodes 
vowel3_audf2_mean = 0.75*audf.numberOfNodes 
vowel1_audf1_mean = 0.10*audf.numberOfNodes 
vowel1_audf2_mean = 0.60*audf.numberOfNodes 
vowel2_audf1_mean = 0.25*audf.numberOfNodes 
vowel2_audf2_mean = 0.8375*audf.numberOfNodes 
vowel4_audf1_mean = 0.25*audf.numberOfNodes 
vowel4_audf2_mean = 0.6625*audf.numberOfNodes 
 
 
procedure createNetwork 
 network = Create empty Network... BilingualSpeaker spreadingRate  
 ... linear actMin actMax actLeak learning_rate weightMin weightMax  
 ... weightLeak xMin xMax yMin yMax 
 
 Set instar... instar 
 Set outstar... outstar 
 
 for i to artf.numberOfNodes 
  Add node... xMin+(xMax-xMin)/artf.numberOfNodes*(i-0.5) artf.y 0 yes 
 endfor 
 
 for i to audf.numberOfNodes 
  a = artConnStrength / (0.5 - 0.5 * audf.numberOfNodes ^ 2) 
  b = (1 + audf.numberOfNodes) / 2 
  Add connection... artf.offsetNode+1 audf.offsetNode+i weightOfCentrArtConn+a*(i-
  …b)^2 0 
 endfor 
 
 for i to audf.numberOfNodes   
  Add node... xMin+(xMax-xMin)/audf.numberOfNodes*(i-0.5) audf.y 0 yes 
 endfor 
 
 for i to sf.numberOfNodes   
  Add node... xMin+(xMax-xMin)/sf.numberOfNodes*(i-0.5) sf.y 0 no 
 endfor 
 
 for i to pfL1.numberOfNodes 
  Add node... xMin+i/4 pf.y 0 yes 
 endfor 
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 for i to pfL2.numberOfNodes 
  Add node... xMin+6+i/4 pf.y 0 yes 
 endfor 
 
# 
# Excitatory connections 
# 
 
 for i to audf.numberOfNodes 
  for j to sf.numberOfNodes 
   Add connection... audf.offsetNode+i sf.offsetNode+j    
   …randomUniform(initialWeightMin,initialWeightMax) 1.0 
  endfor 
 endfor 
 
 for i to sf.numberOfNodes 
  for j to pfL1.numberOfNodes 
   Add connection... sf.offsetNode+i pfL1.offsetNode+j    
   …randomUniform(initialWeightMin,initialWeightMax) 1.0 
  endfor 
 endfor 
 
# 
# Inhibitory connections 
# 
  
 for i to artf.numberOfNodes 
  for j to audf.numberOfNodes 
   Add connection... artf.offsetNode+i audf.offsetNode+j    
   …randomUniform(initialWeightMin,initialWeightMax) 0.0 
  endfor 
 endfor 
 
 for .i to audf.numberOfNodes - 1 
  for .j from .i + 1 to audf.numberOfNodes 
   Add connection... audf.offsetNode+.i audf.offsetNode+.j inhibitionAtAudF 0.0 
  endfor 
 endfor 
 
 
 for i to sf.numberOfNodes - 1 
  for j from i+1 to sf.numberOfNodes 
   Add connection... sf.offsetNode+i sf.offsetNode+j inhibitionAtSF 0.0 
  endfor 
 endfor 
  
 for i to pfL1.numberOfNodes - 1 
  for j from i+1 to pfL1.numberOfNodes 
   Add connection... pfL1.offsetNode+i pfL1.offsetNode+j inhibitionAtPF 0.0 
  endfor 
 endfor 
 
 for i to pfL2.numberOfNodes - 1 
  for j from i+1 to pfL2.numberOfNodes 
   Add connection... pfL2.offsetNode+i pfL2.offsetNode+j inhibitionAtPF 0.0 
  endfor 
 endfor 
 
 inputDistribution = Create Matrix... inputDistribution 0.5 audf.numberOfNodes+0.5  
 …audf.numberOfNodes 1.0 1 1 1 1 1 1 0.0 
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 distanceMatrix = Create Matrix... distance 0.5 audf.numberOfNodes+0.5 
 …audf.numberOfNodes+1 1.0 0.5 1 1 1 1 1 0.0 
 
endproc 
 
label NETWORK 
call createNetwork 
step = 0 
pfNode = 1 
audNode = 1 
l1 = 1 
l2 = 0 
repeat 
 call demo.erase 
 call demo.centredTitle BilingualSpeaker 
 demo.textY += 13 
 demo Select inner viewport... 20 80 20 80 
 select network 
 demo Draw... yes 
 demo Text... xMin right artf.y half [[ArtF]] 
 demo Text... xMin right audf.y half [[AudF]] 
 demo Text... xMin right sf.y half /SF/ 
 demo Text... xMin right pf.y half Lexicons 
 select inputDistribution 
 demo Magenta 
 demo Line width... 3 
 for i to number_of_vowels_l2 
 demo Draw rows... 0 0 i-0.5 i+0.5 0 step/3 
 endfor 
 demo 'demo.foregroundColour$' 
 demo Line width... 2 
 
 
 demo Select inner viewport... 0 100 0 100 
 demo Axes... 0 100 0 100 
 demo Text... 50 centre 10 half After step 'step'. 
 call demo.button 88 98 50 1000↑ 
 call demo.button 88 98 40 100↑ 
 call demo.button 88 98 30 5000↑ 
 call demo.button 88 98 20 1↑ 
 call demo.button 88 98 10 new 
 call demo.button 2 12 10 set... 
 
 while demoWaitForInput ( ) 
  if demoInput ("a")       
   select network 
   Zero activities... 0 0 
   
   if l1 = 1 
     
    for i to pfL1.numberOfNodes 
     Set clamping... pfL1.offsetNode+i no 
    endfor 
 
    for i to pfL2.numberOfNodes 
     Set clamping... pfL2.offsetNode+i no  
    endfor 
 
    audNode = max (1, min (round (audNode), audf.numberOfNodes)) + 1 
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    if audNode > audf.numberOfNodes 
     audNode = 1 
    endif 
     
    whichVowel = randomInteger (1, number_of_vowels_l1) 
    vowel.f1 = vowel'whichVowel'_audf1_mean 
    vowel.f2 = vowel'whichVowel'_audf2_mean 
 
    audNode1 = randomGauss (vowel.f1, stdevOfAmbient/2) 
    audNode2 = randomGauss (vowel.f2, stdevOfAmbient/2) 
  
    for i to audf.numberOfNodes 
     Set clamping... audf.offsetNode+i yes 
     Set activity... audf.offsetNode+i 
     ... f1_strength * exp (-0.5 * (i - audNode1) ^ 2 /   
     …auditory_spreading ^ 2) * inputExaggeration + 
     ...exp (-0.5 * (i - audNode2) ^ 2 / auditory_spreading ^ 2) * 
     …inputExaggeration 
    endfor 
 
    Spread activities... numberOfTimesOfActivitySpreading*5 
    goto NETWORK_NEXT 
    
   elsif l2 = 1 
 
    for i to pfL2.numberOfNodes 
     Set clamping... pfL2.offsetNode+i no 
    endfor 
 
    for i to pfL1.numberOfNodes 
     Set clamping... pfL1.offsetNode+i no  
    endfor 
 
    audNode = max (1, min (round (audNode), audf.numberOfNodes)) + 1 
    
    if audNode > audf.numberOfNodes 
     audNode = 1 
    endif 
     
    whichVowel = randomInteger (1, number_of_vowels_l1) 
    vowel.f1 = vowel'whichVowel'_audf1_mean 
    vowel.f2 = vowel'whichVowel'_audf2_mean 
 
    audNode1 = randomGauss (vowel.f1, stdevOfAmbient/2) 
    audNode2 = randomGauss (vowel.f2, stdevOfAmbient/2) 
  
    for i to audf.numberOfNodes 
     Set clamping... audf.offsetNode+i yes 
     Set activity... audf.offsetNode+i 
     ... f1_strength * exp (-0.5 * (i - audNode1) ^ 2 /   
     …auditory_spreading ^ 2) * inputExaggeration + 
     ... exp (-0.5 * (i - audNode2) ^ 2 / auditory_spreading ^ 2) * 
     …inputExaggeration 
    endfor 
 
    Spread activities... numberOfTimesOfActivitySpreading*5 
    goto NETWORK_NEXT 
   endif 
 
  elsif demoInput ("12345") 
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   select network 
   Zero activities... 0 0 
   pfNode = index ("12345", demoKey$ ()) 
 
   if l1 = 1 
    if pfNode <= number_of_vowels_l1 
     for .i to audf.numberOfNodes 
      Set clamping... audf.offsetNode+.i no 
     endfor 
 
     for .i to pfL1.numberOfNodes    
      Set activity... pfL1.offsetNode+.i 0 
      Set clamping... pfL1.offsetNode+.i yes 
     endfor 
      
     for i to pfL2.numberOfNodes 
      Set clamping... pfL2.offsetNode+i yes 
      Set activity... pfL2.offsetNode+i 0 
     endfor 
 
     for .i to pfL1.numberOfNodes/number_of_vowels_l1 
      .k = (pfNode-1) 
      …*(pfL1.numberOfNodes/number_of_vowels_l1) + .i 
      Set activity... pfL1.offsetNode+.k 1 
     endfor 
 
     Spread activities... numberOfTimesOfActivitySpreading 
    endif 
    goto NETWORK_NEXT 
 
   elsif l2 = 1 
    if pfNode <= number_of_vowels_l2 
      
     for .i to audf.numberOfNodes 
      Set clamping... audf.offsetNode+.i no 
     endfor 
 
     for .i to pfL2.numberOfNodes    
      Set activity... pfL2.offsetNode+.i 0 
      Set clamping... pfL2.offsetNode+.i yes 
     endfor 
 
     for i to pfL1.numberOfNodes 
      Set clamping... pfL1.offsetNode+i yes 
      Set activity... pfL1.offsetNode+i 0 
     endfor 
 
      
     for .i to pfL2.numberOfNodes/number_of_vowels_l2 
      .k = (pfNode-1) 
      …*(pfL2.numberOfNodes/number_of_vowels_l2) + .i 
      Set activity... pfL2.offsetNode+.k 1 
     endfor 
 
     Spread activities... numberOfTimesOfActivitySpreading 
    endif 
   endif 
   goto NETWORK_NEXT 
 
  elsif demoClickedIn (2, 12, 10-4, 10+4) or demoInput ("z")   ; set... 
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   beginPause ("Settings") 
    boolean ("l1", 0) 
    boolean ("l2", 0) 
   clicked = endPause ("Cancel", "Set", 2) 
    
   if clicked = 2 
    if l1 = 1 
     vowel5_audf1_mean = 0.10*audf.numberOfNodes 
     vowel5_audf2_mean = 0.90*audf.numberOfNodes 
     vowel3_audf1_mean = 0.40*audf.numberOfNodes 
     vowel3_audf2_mean = 0.75*audf.numberOfNodes 
     vowel1_audf1_mean = 0.10*audf.numberOfNodes 
     vowel1_audf2_mean = 0.60*audf.numberOfNodes 
     vowel2_audf1_mean = 0.25*audf.numberOfNodes 
     vowel2_audf2_mean = 0.8375*audf.numberOfNodes 
     vowel4_audf1_mean = 0.25*audf.numberOfNodes 
     vowel4_audf2_mean = 0.6625*audf.numberOfNodes 
     writeInfoLine: "l1 aan" 
    elsif l2 = 1 
     vowel1_audf1_mean = 0.10*audf.numberOfNodes 
     vowel1_audf2_mean = 0.90*audf.numberOfNodes 
     vowel2_audf1_mean = 0.40*audf.numberOfNodes 
     vowel2_audf2_mean = 0.75*audf.numberOfNodes 
     vowel3_audf1_mean = 0.10*audf.numberOfNodes 
     vowel3_audf2_mean = 0.60*audf.numberOfNodes 
 
     writeInfoLine: "l2 aan" 
    endif 
 
   endif 
 
 
   goto NETWORK_NEXT 
  endif 
 
  numberOfSteps = 
  ... if demoClickedIn (88, 98, 20-4, 20+4) or demoInput ("↑") then 1 else 
  ... if demoClickedIn (88, 98, 30-4, 30+4) or demoInput ("v") then 5000 else 
  ... if demoClickedIn (88, 98, 40-4, 40+4) or demoInput ("h") then 100 else 
  ... if demoClickedIn (88, 98, 50-4, 50+4) or demoInput ("d") then 1000 else 
  ... if demoInput ("4") then 10000 else 0 fi fi fi fi fi 
 
  if numberOfSteps <> 0 
   select network 
   for ministep to abs (numberOfSteps) 
 
    if step = l2_step 
     select network 
 
### Add Excitatory connections between the new lexicon layer and sf ### 
 
     for .i to sf.numberOfNodes 
      for .j to pfL2.numberOfNodes 
       Add connection... sf.offsetNode+.i  
       …pfL2.offsetNode+.j  
       …randomUniform 
       …(initialWeightMin,initialWeightMax) 1.0 
      endfor 
     endfor 
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     for .i to sf.numberOfNodes 
      for .j to pfL2.numberOfNodes 
       Add connection... sf.offsetNode+.i  
       …pfL2.offsetNode+.j  
       …randomUniform 
       …(initialWeightMin,initialWeightMax) 1.0 
      endfor 
     endfor 
 
    endif 
 
    step += 1 
    Zero activities... 0 0 
     
   #### L1 surroundings ####  
    
    if l1 = 1 
     whichVowel = randomInteger (1, number_of_vowels_l1) 
     
     vowel.f1 = vowel'whichVowel'_audf1_mean 
     vowel.f2 = vowel'whichVowel'_audf2_mean 
 
     audNode1 = randomGauss (vowel.f1, stdevOfAmbient/2) 
     audNode2 = randomGauss (vowel.f2, stdevOfAmbient/2) 
 
     for i from 1 to audf.numberOfNodes 
      Set clamping... audf.offsetNode+i yes 
      Set activity... audf.offsetNode+i 
      ... f1_strength * exp (-0.5 * (i - audNode1) ^ 2 /  
      …auditory_spreading ^ 2) * inputExaggeration + 
      ... exp (-0.5 * (i - audNode2) ^ 2 / auditory_spreading ^ 
      …2) * inputExaggeration 
     endfor 
 
     for i from 1 to pfL2.numberOfNodes 
      Set clamping... pfL2.offsetNode+i yes 
      Set activity... pfL2.offsetNode+i 0 
     endfor 
 
     for i from 1 to pfL1.numberOfNodes 
      Set clamping... pfL1.offsetNode+i yes 
      Set activity... pfL1.offsetNode+i 0 
     endfor 
 
     if whichVowel <= number_of_vowels_l1  
      for i to pfL1.numberOfNodes/number_of_vowels_l1
       Set activity... pfL1.offsetNode+(whichVowel-1) 
       …*(pfL1.numberOfNodes/ 
       …number_of_vowels_l1)+i 1 
      endfor  
     endif  
      
     if whichVowel <= number_of_vowels_l1  
      for i to pfL1.numberOfNodes/number_of_vowels_l1
       Set activity... pfL1.offsetNode+(whichVowel-1) 
       …*(pfL1.numberOfNodes/ 
       …number_of_vowels_l1)+i 1 
      endfor  
     endif 
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     Spread activities... numberOfTimesOfActivitySpreading 
     Update weights 
     
   #### L2 surroundings ####  
     
    elsif l2 = 1 
     whichVowel = randomInteger (1, number_of_vowels_l2) 
     
     vowel.f1 = vowel'whichVowel'_audf1_mean 
     vowel.f2 = vowel'whichVowel'_audf2_mean 
 
     audNode1 = randomGauss (vowel.f1, stdevOfAmbient/2) 
     audNode2 = randomGauss (vowel.f2, stdevOfAmbient/2) 
 
     for i from 1 to audf.numberOfNodes 
      Set clamping... audf.offsetNode+i yes 
      Set activity... audf.offsetNode+i 
      ... f1_strength * exp (-0.5 * (i - audNode1) ^ 2 /  
      …auditory_spreading ^ 2) * inputExaggeration + 
      ... exp (-0.5 * (i - audNode2) ^ 2 / auditory_spreading ^ 
      …2) * inputExaggeration 
     endfor 
 
     for i from 1 to pfL1.numberOfNodes 
      Set clamping... pfL1.offsetNode+i yes 
      Set activity... pfL1.offsetNode+i 0 
     endfor 
 
     for i from 1 to pfL2.numberOfNodes 
      Set clamping... pfL2.offsetNode+i yes 
      Set activity... pfL2.offsetNode+i 0 
     endfor 
 
     if whichVowel <= number_of_vowels_l2  
      for i to pfL2.numberOfNodes/number_of_vowels_l2
       Set activity... pfL2.offsetNode+(whichVowel-1) 
       …*(pfL2.numberOfNodes/ 
       …number_of_vowels_l2)+i 1 
      endfor  
     endif  
      
     if whichVowel <= number_of_vowels_l2  
      for i to pfL2.numberOfNodes/number_of_vowels_l2
       Set activity... pfL2.offsetNode+(whichVowel-1) 
       …*(pfL2.numberOfNodes/ 
       …number_of_vowels_l2)+i 1 
      endfor  
     endif 
 
     Spread activities... numberOfTimesOfActivitySpreading 
     Update weights 
      
    endif 
 
    select inputDistribution 
    Formula... self + f1_strength * (exp (-0.5 * (col - audNode1) ^ 2 / 
    …auditory_spreading ^ 2)) * inputExaggeration 
    ... + (exp (-0.5 * (col - audNode2) ^ 2 / auditory_spreading ^ 2)) * 
    …inputExaggeration 
    select network 
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   endfor 
   goto NETWORK_NEXT 
  endif 
  goto NETWORK_END demoInput ("h←• →") 
 endwhile 
 label NETWORK_NEXT 
until 0 
label NETWORK_END 
select network 
plus inputDistribution 
plus distanceMatrix 
Remove 
 
include demo.praatinclude 


