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1
I N T R O D U C T I O N : N AT U R E ’ S
D I S T R I B U T I O N A L - L E A R N I N G E X P E R I M E N T

Abstract

Infants begin the acquisition of language-specific phoneme percep-
tion before their first birthday. In laboratory settings, infants are able
to acquire categories on the basis of distributions of speech sounds.
The speech sounds in infant-directed speech are distributed in such
a way that computationally modeled distributional-learning mecha-
nisms can acquire phoneme categories categories from these distri-
butions. It is tempting to conclude that also in real life infants ac-
quire their language-specific phoneme perception through distribu-
tional learning from the speech sound distributions in their input.
However, an integrated study of the input that infants hear, infants’
perception of those same speech sounds, and computational model-
ing to provide an explanatory link has never been conducted. This
dissertation provides such an integrated study.

1



2 introduction

1.1 Introduction

Infants acquire their native language’s phoneme inventory at a re-
markable speed, often without their parents being aware of this, as
witnessed by the many parents of infants that participated in the
studies reported in this book. Before their first birthday, infants be-
gin to lose their early sensitivity to speech sound contrasts if these
do not signal a phonemic contrast in their language (Werker and
Tees, 1984; Polka and Werker, 1994), whereas they become increas-
ingly more sensitive to the contrasts that are phonemic in their native
language (Kuhl et al., 2005; Narayan et al., 2010). The traditional def-
inition of a phoneme is that it is a speech sound that potentially dis-
tinguishes between word meanings (Trubetzkoy, 1967). In the light of
this definition of a phoneme, a mechanism for learning phonemes in
which the lexicon, specifically the knowledge of minimal pairs, plays
an essential role is theoretically appealing. Indeed, infants have some
word knowledge before their first birthday (Tincoff and Jusczyk, 1999;
Bergelson and Swingley, 2012) and can use minimal pairs to learn that
a speech sound contrast is phonemic (Yeung and Werker, 2009).

However, infants start perceiving vowels in a language-specific man-
ner already 6 months after birth (Polka and Werker, 1994; Kuhl et al.,
1992), an age at which their vocabulary is at best rudimentary. Min-
imal pairs are virtually absent in the infants’ input and early lexi-
con (Dietrich et al., 2007). Nevertheless, infants are sensitive to slight
mispronunciations of words that have no minimally different coun-
terpart in the infants’ lexicons (Swingley and Aslin, 2002). Might in-
fants use other information than vocabulary knowledge to develop
language-specific speech sound perception? The affirmative answer
to this question was found in distributional learning (Maye et al., 2002).

As the acoustic realization of each phoneme varies across as well
as within speakers, the collection of realizations of phonemes that a
listener or language-learning infant encounters are distributed in an
auditory space. When speakers carefully produce two phonemes in a
speech elicitation task, the auditory realizations of the two phonemes
form a bimodal frequency distribution in the auditory space, with
the two local maxima (approximately) corresponding to the mean
value(s) of each phoneme (Allen and Miller, 1999). When infants are
exposed to such a bimodal distribution of speech sounds in a labo-
ratory experiment, they subsequently discriminate between sounds
from the opposing ends of the auditory continuum; when infants
are exposed to a monomodal distribution of speech sounds, with
one local maximum, they treat the sounds from the opposing ends
of the auditory continuum as equivalent (Maye et al., 2002, 2008;
Yoshida et al., 2010). The learning mechanism that is responsible for
a change in infants’ (or adults’) perception as a consequence of expo-
sure to a monomodally or bimodally shaped distribution is called the
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distributional-learning mechanism. As the mechanism functions inde-
pendent of vocabulary knowledge, very young infants can in princi-
ple use distributional learning to acquire language-specific phoneme
perception. Moreover, a computationally implemented distributional-
learning mechanism can acquire categories from the distributions of
speech sounds in infant-directed speech (IDS, De Boer and Kuhl, 2003;
Vallabha et al., 2007). As both the input and the infants seem fit for dis-
tributional learning, the general distributional-learning hypothesis,
the idea that distributional learning is one of the primary mechanisms
underlying infants’ early acquisition of language-specific phoneme
perception, has been embraced in theories of infants’ early speech
perception (Pierrehumbert, 2003; Werker and Curtin, 2005; Kuhl et al.,
2008).

1.2 Nature’s distributional-learning experiment

The general distributional-learning hypothesis is currently supported
by two types of empirical data: Infants can perform distributional
learning from an artificial language1 in a laboratory experiment (Maye
et al., 2002, 2008; Yoshida et al., 2010) and a computationally im-
plemented distributional-learning mechanism can acquire categories
from the distributions of speech sounds in infants’ input (De Boer
and Kuhl, 2003; Vallabha et al., 2007). However, when the input is in
principle learnable by means of a mechanism that infants can in princi-
ple employ, there is no guarantee that infants will in practice use that
learning mechanism when acquiring phoneme perception.

If infants acquire language-specific phoneme perception through
distributional learning, it must be possible to directly explain infants’
perception of each contrast on the basis of the distributions of that
specific contrast in their environment. Despite all the research on IDS
(for a review, Soderstrom, 2007) and infants’ speech perception (for a
review, Gervain and Mehler, 2010), to the best of my knowledge, such
a direct comparison between input distribution and perception has
never been drawn (cf. Liu et al., 2003; Cristiá, 2011, as also discussed
in section 1.8).

In analogy with John Ohala’s classification of “[s]ound change as
nature’s speech perception experiment" (Ohala, 1993), it is possible
to regard infants’ development of phoneme perception as nature’s
distributional-learning experiment. The learning stimuli are the in-
fants’ input, the exposure period is determined by the infants’ age,
and what infants learn from that input is tested in speech perception
experiments. Therefore, a research program that combines studying

1 To avoid confusion, note that the term ‘artificial language’ refers to a language that
is constructed by the researcher to test a certain hypothesis about language learn-
ing or language processing in a very restricted and controlled language (Gomez
and Gerken, 2000). It is not language generated by an artificial speaker, such as a
computer.
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speech sound distributions in infants’ input and infants’ perception
of the same speech sounds investigates distributional learning in prac-
tice.

The strength of the artificial-language learning experiments to test
infants’ learning mechanisms in principle is that the input is com-
pletely controlled. Therefore, it can be ruled out that infants use,
for example, their existing vocabulary during learning. In nature’s
distributional-learning experiment, the input that infants receive is
not restricted to the aspect that the researcher chooses to study and
there is no guarantee that infants will only use the learning mecha-
nism of interest. These restrictions on nature’s distributional-learning
experiment make computational modeling a crucial aspect of this re-
search program. In a computational simulation, the researcher con-
trols which information and which learning strategies the learner, the
model in this case, can use. If a computational model of distributional
learning trained on infants’ input behaves similarly to infants in the
speech perception experiments, this strongly suggests that infants are
learning their native-language speech sound categories through this
mechanism.

In order to test the distributional-learning hypothesis in practice,
in nature’s distributional-learing experiment, a research program is
needed that consists of three parts:

Part I) investigate the acoustic properties and the auditory distribu-
tions of the phonemes in the infants’ environment;

Part II) investigate infants’ perception of the same phonemes;

Part III) explain infants’ speech-sound perception from infants’ in-
put distributions through distributional learning simulated in a
computational model.

The present dissertation pursues this three-part research program.
Several ingredients are prerequisites for a successful execution of this
research program. These ingredients are mentioned here and elabo-
rated on in the subsequent sections.

The shape of input distributions can be most reliably investigated
in many tokens of each category are available. It is not feasible to elicit
enough tokens from one mother and compare the resulting distribu-
tions to the perception of her own infant. Both the input distributions
and the infants’ perception are thus investigated at the group level
and a study of individual differences was not conducted.

In the investigation of the input distributions, it is important to
consider that phonemes typically vary along multiple auditory di-
mensions (Lisker, 1986). Therefore, the distributions in infants’ audi-
tory input must be charted along multiple dimensions in Part I of the
research program.

The prediction from the general distributional-learning hypothesis
is that infants discriminate between two speech sounds that fall under
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different local maxima in their input and do not discriminate between
two speech sounds that fall under one local maximum. As infants are
expected to discriminate between typical examples of their native lan-
guage’s phonemes, it is necessary to go beyond typical examples in
a test of the distributional-learning hypothesis. When a multidimen-
sional distribution is considered, it is possible to predict from the au-
ditory distribution how infants should perceive changes along each
individual dimension in their perception is fully determined by the in-
put distribution. Therefore, the multidimensionality of phoneme cat-
egories allows for a fine-grained test of the (dis)similarities between
infants’ input and perception in Part II of the research program.

The research program itself is multifaceted. Therefore, it was de-
cided to carry it out with a single phoneme contrast in one language.
A phoneme contrast that differs mainly in two auditory cues was
needed. If a contrast differs in only one auditory cue, infants’ sensi-
tivity to individual cues can not be tested. If a contrast differs in more
than two auditory cues, the experiments to test the contribution of
each dimension to the infants’ perception become more complicated
in design and too lengthy for the young participants. A vowel con-
trast was desirable as language-specific perception of vowel contrasts
is acquired before language-specific perception of consonants (Polka
and Werker, 1994). As is explained below, the Dutch vowel contrast
between /A/ and /a:/ meets these criteria and was chosen as the test
case in this dissertation.

By adhering to a phoneme acquisition mechanism that emphasizes
the role of auditory distributions, we need a phonological theory in
which phonological representations, such as the abstract representa-
tions of phonemes, are closely intertwined with phonetic informa-
tion. Moreover, to execute Part III of the research program, a theory
is needed that provides a computational model to simulate distribu-
tional learning. A model that meets both criteria is Boersma’s model
for Bidirectional Phonetics and Phonology (BiPhon, Boersma, 2007),
extended to a neural-network (NN) implementation for distributional
learning by Boersma et al. (2012). This model is briefly introduced
below and compared to other frameworks of infants’ phoneme acqui-
sition.

The BiPhon model is introduced in the next section, after which
the /A/–/a:/ contrast is discussed. In the subsequent three sections, I
delve somewhat deeper into each of the three parts of the research
program and discuss how these are addressed in the dissertation
chapters. In the last section before the summary, I discuss how the
present research program is related to previous studies that combined
research into input, infants’ perception, and modeling for a better un-
derstanding of infants’ language acquisition.
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1.3 The BiPhon model and comparison to other theo-
ries and frameworks

Boersma’s BiPhon model (Boersma, 2007) is committed to an inte-
grated perspective on phonetics and phonology. While originally im-
plemented in an Optimality-Theory framework (Prince and Smolen-
sky, 1993), the model has recently been implemented in a NN frame-
work (Boersma et al., 2012). In the discussion of the model, I will use
the NN terminology.

Figure 1 displays four levels in this multi-level model, with two
phonetic levels (the articulatory and the auditory level) and two phono-
logical levels (the surface and the underlying level). Most important
for the present discussion are the phonetic auditory level and the
phonological surface level. The acoustic realizations of phonemes with,
among other properties, formant values and durations are perceived
by the auditory system as auditory forms. For simplicity’s sake, I
equate the acoustic and auditory forms in this dissertation. Symbols
between [ ] denote such acoustic realizations and are an abbrevia-
tion for all their acoustic or auditory values.2 The abstract represen-
tations of phonemes are phonological and could be conceptualized
as surface-level or underlying-level representations (Benders, 2011).
Because the underlying level is in the lexicon and perception is not
necessarily related to words, especially in infants, I adhere to the con-
vention to denote phonemes with / /, and thereby tacitly assume that
phonemes reside at the surface level.

These four levels are connected through bidirectional connections.
The cue connections connect the phonetic auditory level and the phono-
logical surface level and form the phonetics-phonology interface. The
input to phoneme perception is the auditory form. In phoneme pro-
duction, the auditory form and the articulatory form together are
the output. The strength of the cue connections determines (roughly
speaking) the probability that a given auditory form is perceived as
a certain phoneme and that a given phoneme is realized with a cer-
tain auditory form. The strength of the cue connections also deter-
mines whether two different speech sounds map onto two different
phonemes or onto one phoneme, in other words, whether the listener
does or does not discriminate between the speech sounds. In the
BiPhon model, all information about the phonetics-phonology inter-
face is stored in the strength of the cue connections. These connection
strengths and even the phoneme representations themselves emerge
through distributional learning. Within the BiPhon model, the acqui-

2 Note that it is customary in the BiPhon model to denote the Auditory Form with
[[ ]] and the Articulatory Form with [ ]. That notation was reversed here in order to
reserve the shorter and more generally accepted notation [ ] for the Auditory Form,
while still maintaining the notational contrast between the two phonetic levels of
representation.
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sition of language-specific phoneme perception is predicted to reflect
properties of the infants’ input.

[[Articulatory Level]]

Sensorimotor knowledge

[Auditory Level]

Cue knowledge

/Surface Level/

Faithfulness knowledge

ŠUnderlying LevelŠ

}Phonetics

}Phonetics-
Phonology
Interface

}Phonology

{Input
to

Perception

Figure 1: Four levels of representation and the types of stored knowledge
connecting these levels in the BiPhon model.

According to the BiPhon model, the acquisition of language-specific
speech sound perception and the acquisition of phonemes are one
and the same process. This view is not shared between theories that
adopt the general distributional-learning hypothesis. Werker and Tees
(1984) are very careful not to equate language-specific perception of
speech sounds with the acquisition of abstract phonemes. Werker
maintains this strict separation in the developmental framework for
Processing Rich Information from Multidimensional Representations
(PRIMIR, Werker and Curtin, 2005). According to PRIMIR, represen-
tations emerge at different planes during early language acquisition
and these planes interact in speech perception. Language-specific speech
sound perception emerges at the so-called general perceptual plane
as a result of exemplar clustering. Phonemes are abstract represen-
tations that emerge at the phonemic plane as a result of vocabulary
knowledge. Because the planes in the PRIMIR framework interact,
the exemplar clusters inform the emergence of phonemes, and the
phonemes focus the exemplar clusters on the details that are cru-
cial in word recognition. However, the phonological representations
appear to be less inherently connected to the phonetic information
than in the BiPhon model and the phonetics-phonology interface is
less strictly defined. According to the PRIMIR framework, language-
specific speech sound perception emerges from exemplar clusterings
and should therefore reflect the distributions in the infant’s input, but
it is not yet evidence of phoneme acquisition.
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The BiPhon model and the PRIMIR framework represent the ex-
tremes amongst current theories of infants’ early speech perception.
The first difference between the accounts lies in what infants are as-
sumed to store: The connections between auditory values and ab-
stract representations (BiPhon) or concrete exemplars (PRIMIR). On
the abstract end of this opposition we can also place the expanded
Native Language Magnet theory (NLMe, Kuhl et al., 2008). Accord-
ing to the NLMe theory, distributional learning is the driving force
behind the warping of the perceptual space and ultimately the emer-
gence of representations that serve as perceptual magnets. On the ex-
emplar end of the opposition, the view on phonological acquisition
as expressed by Pierrehumbert (2003) can be grouped together with
PRIMIR. The second difference between BiPhon and PRIMIR con-
cerns the output of distributional learning: Is it phonological (BiPhon)
or phonetic (PRIMIR)? The NLMe theory is in this respect more re-
lated to the PRIMIR model in calling the perceptual magnets that
result from distributional learning phonetic rather than phonolog-
ical. Pierrehumbert’s view on distributional learning is more simi-
lar to BiPhon, as it is said that the exemplar clusters form the in-
fants’ phonological system. The third difference between BiPhon and
PRIMIR is that only BiPhon comes with a formal account of distri-
butional learning and the transition from continuous input to dis-
crete categories. Also Pierrehumbert (2003) provides a computational
model of phoneme acquisition in Pierrehumbert (2001), but inspec-
tion of this model reveals that it requires category labels and is there-
fore not an implementation of a pure distributional-learning mecha-
nism. The warping of the perceptual space, as proposed in the NLMe
theory (Kuhl et al., 2008) can be modeled in NN simulations (e.g.,
Guenther and Gjaja, 1996), but the NLMe theory is not committed
to a specific implementation. Distributional learning is not further
defined than the general distributional-learning hypothesis in the
PRIMIR framework.

In this dissertation, I follow the BiPhon model in assuming a close
link between infants’ language-specific speech sound perception and
the acquisition of phonemes. I therefore use the terms speech sound
perception and phoneme perception interchangeably.

For theories and frameworks to be useful in Part III of the re-
search program in this dissertation, a formal account of the learning
mechanisms is required. The high level of specificity in Pierrehum-
bert (2001) would allow for using this model to form an explana-
tory link between infants’ input and perception. Because it is not a
model of distributional learning and this dissertation is concerned
with the distributional-learning hypothesis, that model was not con-
sidered here. Therefore, the distributional-learning mechanism of the
BiPhon model is used in Part III of the research program. In addition,
a more general model of distributional learning will be applied that
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has a longer history in the literature, but is not tightly connected to a
specific framework or theory (De Boer and Kuhl, 2003; Vallabha et al.,
2007; McMurray et al., 2009a). The application of this more general
model underscores that the results of this dissertation are not only of
interest to those that work within the BiPhon model.

This dissertation investigates the match between the auditory dis-
tributions in infants’ input and infants’ perception of these same au-
ditory cues, which is predicted in all current models discussed above.
Therefore, the results in this dissertation are of interest for the field
of infant phoneme acquisition, irrespective of one’s exact theoretical
conviction.

1.4 Dutch /A/ and /a:/

Northern Standard Dutch, which is the variant of Dutch spoken in
the Netherlands and under investigation in this dissertation, has 5

‘lax’ vowels, /I, Y, E, U, A/ and 7 ‘tense’ vowels, /i, y, u, e, ø, o, a/
(Booij, 1995).345 Each lax vowel forms a pair with one or two tense
vowel(s) on the basis of their proximity in the phonetic vowel space
defined by the first formant (F1) and second formant (F2). These pairs
are given in Table 1.

In all pairs, the two vowels differ in vowel quality. The vowels in
the pairs /I/–/i/, /Y/–/y/, and /U/–/u/ typically differ only in this
one cue: The lax vowels are always short and the tense vowels /i/,
/y/, and /u/ are phonetically short and only lengthened in a sylla-
ble with /r/ in coda (Moulton, 1962; Booij, 1995). The vowels in the
pairs /Y/–/ø/, /E/–/e/, and /U/–/o/ differ in three cues in Northern

3 In an older description, Moulton (1962) considers a sixth lax vowel /O/ as part of the
Dutch vowel inventory. Booij (1995) remarks that the mid-high vowel sound [U] can
be a positional variants of the phoneme /O/ before nasal consonants and in some
specific words and refers to Schouten (1981) for a discussion of the geographical
and individual variation with respect to this phenomenon. Acoustic studies of the
Dutch vowels only elicited one lax back vowel and in those contexts pronunciation
as [O] was expected (Pols et al., 1973; Adank et al., 2004; Van Leussen et al., 2011).
However, the first formant (F1, the acoustic correlate of vowel height) of that one lax
back vowel is more similar to the F1 of the mid-high front vowel /I/ than to the F1

of the mid-low front vowel /E/ in Adank et al. (2004), Van Leussen et al. (2011), and
the measurements of Mart van Baalen and other students Spraak 2009, 2010, and
2011. Moreover, Pols et al. (1973) group the lax back vowel together with the tense
mid-high vowel /o/. Both these observations suggests that that the back lax vowel is
a mid-high vowel in all contexts and not a mid-low vowel. Therefore, its position in
the vowel space is best reflected with the IPA-symbol /U/ rather than the traditional
/O/.

4 Moulton (1962) named the lax and tense vowels respectively Class-A vowels and
Class-B vowels because native speakers’ intuitive grouping of the vowels into these
classes appears to be based on phonotactic rather then phonetic considerations (see
below). The contrast between the lax and tense vowels cannot be simply called a
‘short’–‘long’ contrast, since not all tense vowels are phonetically long.

5 Dutch also has 3 diphthongs, /Ei, œy, Au/; unstressed /@/; and several foreign vow-
els.
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place: front front front back mid

rounding: unround round unround round unround

height: high/mid high/mid mid high/mid low

lax
/I/ /Y/ /E/ /U/ /A/

[I] [Y] [E] [U] [A]

tense
/i/ /y/ /ø/ /e/ /o/ /u/ /a/

[i] [y] [øy] [ei] [ou] [u] [a:]

Table 1: The five pairs of lax vowels (top row) and tense vowels (bottom
row) in Dutch. Each vowel is given with its broad phonemic tran-
scription between / /, and with the more precise phonetic transcrip-
tion of the realization of the vowel in Northern Standard Dutch.

Standard Dutch: The tense vowels /e/, /ø/, and /o/ are phonologi-
cally long, but also slightly diphthongized by many speakers (Adank
et al., 2004). In Northern Standard Dutch, only the vowel pair /A/–/a/
unambiguously meets the criterion of differing in precisely two cues,
vowel quality and duration. The shorter, ‘darker’ vowel /A/ occurs for
example in the Dutch nouns slak, tas, and appel. The longer, ’opener’
vowel /a/ can be found the nouns schaap, kaas, and tafel. Since /a/ is
realized as a long monophthong in most variants of Dutch (Moulton,
1962; Adank et al., 2004), I denote this vowel as /a:/, with the length
sign.

A second property of /A/ and /a:/ that is advantageous for this
research program is that these are the two most frequent full vowels
in Dutch child-directed speech (Versteegh and Boves, tion).6 Infants’
language-specific speech sound perception may develop earlier for
phonetic regions that contain many tokens in the infants’ input (An-
derson et al., 2003). Therefore, Dutch infants can be expected to start
learning about the contrast between /A/ and /a:/ early on.

As indicated above, I strictly adhere to the convention to denote
abstract phonemes with / / and the acoustic realizations or audi-
tory forms, the speech sounds, with [ ]. For example: The Dutch
phoneme /A/ is most often realized as the vowel sound [A], whereas
the phoneme /a:/ is mostly realized as the vowel sound [a:]. Both
/A/ and /a:/ can be realized otherwise in specific contexts. In Am-
sterdam Dutch, speakers have a tendency to palatilize the back lax
vowels, such as /A/, before a coronal consonant and some coronal
consonant clusters (Faddegon, 1951). The effect of palatalization is
that these vowels have a higher F2 and possibly a lower F1 in the
palatalization contexts than in other contexts. Before a coronal con-
sonant, /A/ is realized as something like [a]. The long tense vowels,
such as /a:/, tend to be shortened before a stressed syllable (Rietveld
et al., 2003). In syllables before a stressed syllable, /a:/ is realized as

6 Only unstressed /@/ is more frequent.
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[a]. The vowel sound [a], which has the vowel quality typically associ-
ated with /a:/ and the duration typically associated with /A/ can thus
be a realization of both these phonemes. This conclusion is supported
by informal observations that young Dutch native listeners7 disagree
as to whether [a] must be categorized as /A/ or as /a:/. The vowel
sound [A:] is found in English loanwords in Dutch (e.g., the Dutch
pronunciations [mA:st@r] ‘master’, and [kA:rv@] ‘to carve’), and can in
that respect be regarded as a foreign vowel (Booij, 1995). Lengthening
of lax vowels, such as /A/, does not typically occur in Dutch and [A:]
is therefore an unlikely realization of /A/. In Amsterdam Dutch, /a:/
can be somewhat rounded (Brouwer, 1989). Brouwer transcribes the
different degrees of these rounded realizations of /a:/ as [A:], [A:O],
and [O:]8. Therefore, it appears that a vowel sound that resembles [A:]
can be a realization of /a:/. Informal observations reveal that young
Dutch native listeners9 nevertheless consistently categorize [A:] as /A/,
and sometimes remark that it is a non-native vowel. To summarize,
the difference between /A/ and /a:/ in vowel quality and duration is
not as clear-cut as it appears to be from the phonological description.
This will become important in Chapters 3 and 4.

In this dissertation, I focus on the phonetic characteristics of /A/
and /a:/ and on the contribution of vowel quality and duration to in-
fants’ acquisition and perception of the /A/–/a:/ contrast. The reader
needs to keep in mind, though, that the phonotactic distributions of
the lax and tense vowels only partly overlap (Moulton, 1962):

• Tense vowels can occur in word-final position, whereas lax vow-
els cannot (*/stA/ vs. /sta:/), although word-final /A/ is found
in exclamations (/bA/ ‘yuck’);

• Each tense vowel can occur before either /j/ or /w/ within a
word. Lax vowels typically cannot occur before either of these
glides (*/drAj@/ vs. /dra:j@/), although they do occur in this con-
text in nativized loanwords (/brAj@/ ‘braille’);

• Lax vowels do occur before a lexical coda /N/, whereas tense
vowels do not (/bAN/ vs. */ba:N/)10;

• Lax vowels can occur with all coda clusters in Dutch, whereas
the coda clusters following tense vowels are more restricted
(/rAmp/ vs. */ra:mp/, /mArkt/ vs. */ma:rkt/).

7 Students in the course Spraak in 2010 and 2011.
8 Brouwer (1989) does not use the length sign to distinguish between short and long

vowel sounds. I have added length signs for consistency with the remainder with
the text, as she refers to long vowel sounds.

9 Students in the course Spraak in 2010 and 2011.
10 This excludes situations where /N/ surfaces in coda position due to assimilation

processes, such as in /a:Nkom@/. It also excludes names such as /smeNk/ and /byNk/,
which are the result of /d/-deletion from /smedINk/ and /bydINk/ (thanks to Paul
Boersma for these exceptions).
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Therefore, Dutch infants could use other distributional character-
istics than the auditory distributions to guide their acquisition of
the /A/–/a:/ contrast. I will return to this issue in the discussions
in Chapters 3 and 4. The contrast between /A/ and /a:/ serves as the
test case with which I will execute the research program to test the
distributional-learning hypothesis in practice. How each of the three
parts of the research program is carried out in this dissertation is
outlined in the following three sections.

1.5 Part I) investigate the acoustic properties and the

auditory distributions of the phonemes in the in-
fants’ environment

Several studies have found that mothers enhance the auditory con-
trast between the mean values of their corner vowels11 in IDS as com-
pared to adult-directed speech (ADS), such that their vowel space is
enlarged in IDS (Bernstein Ratner, 1984; Kuhl et al., 1997; Burnham
et al., 2002; Uther et al., 2007; Andruski et al., 1999; Liu et al., 2003).
This vowel-space enhancement may promote infants’ phoneme acqui-
sition, as mothers’ degree of enhancement of the vowel space in IDS
is related to their infants’ development of language-specific speech
perception (Liu et al., 2003). A possible mechanism behind this rela-
tion is that the enhancement of mean auditory contrasts may lead to
more succesful distributional learning (Escudero et al., 2011, for ex-
perimental results suggesting this in adults). With respect to the ques-
tion how mothers’ realization of /A/ and /a:/ in IDS influences their
infants’ perception of this contrast, one could ask whether mothers
enhance the vowel quality difference between the vowels, the dura-
tion difference, or both, and in doing so direct their infants’ attention
to one or both of the relevant cues to the contrast.

However, enhancement of the vowel space in IDS is not found
for all languages (Dodane and Al-Tamimi, 2007; Englund and Behne,
2006; Van de Weijer, 2001), and not even consistently within Ameri-
can English, the language for which it was first reported (Green et al.,
2010). Furthermore, mothers do not necessarily enhance the auditory
distance between specific vowel pairs in IDS, even when the overall
vowel space, as measured from the corner vowels, is enhanced in that
register (Cristiá and Seidl, ress). IDS is a highly emotional speaking
style and it has been suggested that mothers pronounce vowels differ-
ently in IDS as a result of smiling (Englund and Behne, 2005) or the
imitation of child speech (Dodane and Al-Tamimi, 2007). In Chapter
2, I investigate whether Dutch mothers enlarge their vowel space in
IDS as compared to ADS and, in passing, test whether Dutch mothers
enhance the contrast between /A/ and /a:/ in IDS. Alternatively, they

11 The corner vowels are a high-front vowel, such as /i/, a high-back vowel, such as
/u/, and one or two low-mid vowels, such as /a/.
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might speak affectively to their infant and not ‘teach’ their baby the
phoneme contrasts of Dutch, such as the contrast between /A/ and
/a:/.

Enhancement of auditory contrasts is a measure of between-category
variation and typically measured by calculating the mean auditory
distance between phonemes, for which one summary measure over
multiple realizations is computed. Distributional learning takes place
over the whole range of auditory values of all the tokens in the in-
put and the shape of the frequency distribution is crucial. The shape
of the frequency distribution depends on variation between as well
as within categories. With sufficient within-category variation, cate-
gories that have different means may form a monomodal frequency
distribution. As mothers’ vowel productions are more variable in IDS
than in ADS (Cristiá and Seidl, ress), enhanced auditory contrasts in
IDS do not necessarily imply bimodal input distributions in IDS. In
order to know the input distributions from which Dutch infants have
to learn the /A/–/a:/ contrast, I investigate in Chapter 3 whether the
distribution of /A/ and /a:/ in Dutch IDS is monomodal or bimodal
along the individual dimensions of vowel quality and duration, as
well as in the two-dimensional auditory space. This knowledge of the
shape of the input distribution will allow for predictions of infants’
perception of /A/ and /a:/.

1.6 Part II) investigate infants’ perception of the same

phonemes

In Chapters 3 and 4, Dutch infants’ perception of the vowels /A/ and
/a:/ will be studied. The perception studies not only test whether
Dutch infants perceive the difference between typical examples of
/A/ and /a:/, but also to what extent each of these categories is asso-
ciated with a specific vowel quality, vowel duration, or both. In terms
of the BiPhon model, the results in Chapters 3 and 4 show whether in-
fants have surface-level categories that are connected to values along
a single auditory dimension (as suggested within the BiPhon model
by Boersma et al., 2003) or to values along multiple auditory dimen-
sions. Only tests of infants’ sensitivity to each of the relevant cues
show to what extent infants’ perception of the phoneme contrasts
conforms to the distributions in their input and allow for a full test
of the distributional-learning hypothesis.

The two cues investigated in this dissertation, vowel quality and du-
ration, seem to have a different perceptual salience for infants. Vowel
duration differences are more salient than vowel quality differences
to infants under one year of age (Bohn and Polka, 2001). With re-
spect to Dutch /A/ and /a:/, it can be assumed that the duration
difference is more salient for infants. Also, infants acquire language-
specific perception at a different rate for vowel quality than for du-
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ration. Language-specific perception of vowel quality contrasts, mea-
sured as infants’ loss in sensitivity to changes that are not contrastive
in their native language, begins in the first year after birth (Polka and
Werker, 1994). In contrast, infants remain sensitive to the salient vowel
duration differences until after their first birthday, even if these dura-
tion differences are not contrastive in their native language (Dietrich,
2006; Mugitani et al., 2009). Differences in sensitivity to vowel du-
ration between infants acquiring languages with and without vowel
duration contrasts has been observed in infants of 18 months of age
(Dietrich et al., 2007; Mugitani et al., 2009). If infants’ perception of
/A/ and /a:/ deviates from what is expected on the basis of the input
distributions, this may show that the early acquired vowel-quality cue
and the salient duration cue play different roles in infants’ distribu-
tional learning.

The extent to which infants’ phoneme representations are deter-
mined by auditory distributions and the learnability and salience
of auditory dimensions may change with development. Chapters 3

and 4 test whether infants’ perception of vowel quality and duration
as cues to the /A/–/a:/ contrast changes with age. Here it was ex-
pected that infants under 12 months of age would be more sensitive
to the salient vowel duration cue than the older infants. In addition,
Chapter 4 investigates whether individual differences in language de-
velopment within an age group are related to infants’ perception of
/A/ and /a:/.

Starting with Eimas et al. (1971), discrimination tasks have been
the typical method to test infants’ speech perception (Aslin, 2007,
for a review of research methods). In discrimination tasks, listeners
have to react to differences between speech sounds. According to the
strict definition of categorical perception (Liberman et al., 1957), listen-
ers discriminate between two speech sounds that map onto differ-
ent phoneme categories and do not discriminate between two speech
sounds that map onto the same phoneme category. By testing infants’
phoneme perception predominantly in discrimination tasks, the field
of infant speech perception implicitly adheres to the definition of cat-
egorical perception. In keeping with this tradition, Chapter 3 tests
Dutch infants’ perception of /A/ and /a:/ in a discrimination task.

However, adults’ discrimination between speech sounds is often
better than predicted by strict categorical perception (Liberman et al.,
1957), in particular for vowels (e.g., Fry et al., 1962). Also infants dis-
criminate between consonant sounds that map onto the same cate-
gory in their native language (McMurray and Aslin, 2005). With re-
spect to infants’ vowel perception, Polka and Bohn (1996) did not
find age-related changes in vowel discrimination before infants’ first
birthday. Moreover, it appears that infants’ discrimination of vowel
duration differences remains very good throughout the first and sec-
ond year after birth (Bohn and Polka, 2001; Dietrich, 2006; Mugitani
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et al., 2009). Although the results from discrimination experiments
have taught us almost all we know about infant speech perception,
discrimination tasks do not provide full insight into infants’ vowel
categories.

A second way to test speech perception is a categorization task.
In categorization tasks, listeners are asked to indicate which speech
sounds belong to which phoneme category. In categorization, listen-
ers cannot react to auditory differences between the speech sounds,
but must judge the functional equivalence of auditorily different speech
sounds. Comparisons between listeners’ discrimination and catego-
rization show that listeners’ ability to discriminate between two speech
sounds on the basis of an auditory characteristic does not necessarily
entail that they primarily rely on that auditory characteristic to cate-
gorize the speech sound. For example, Dutch adults are very sensitive
to the duration differences between /A/ and /a:/ in a pre-attentive dis-
crimination task (Lipski et al., 2012) and can categorize stimuli that
only vary in duration into the categories /A/ and /a:/. Yet, they weigh
vowel duration less heavily than vowel quality in a categorization task
when both cues are varied (Van Heuven et al., 1986; Escudero et al.,
2009a). A second reason to test infants’ perception in a categorization
paradigm is that if infants do not discriminate between two speech
sounds in a discrimination task, they may be able to treat the sounds
differently in a categorization paradigm (Albareda-Castellot et al.,
2011). A third reason to test infants’ phoneme perception in a catego-
rization task is for comparability, as studies on children’s and adults’
phoneme perception mostly make use of categorization paradigms
(e.g., Nittrouer, 1992). For these reasons, infant researchers have re-
cently begun to develop two-alternative speech sound categorization
paradigms for infants (McMurray and Aslin, 2004; Albareda-Castellot
et al., 2011). Chapter 4 tests infants’ perception of /A/ and /a:/ in a
variation these paradigms to test speech sound categorization.

1.7 Part III) explain infants’ speech-sound perception

from infants’ input distributions through distribu-
tional learning simulated in a computational model

The distributions of /A/ and /a:/ along the dimensions of vowel qual-
ity and duration are investigated in Chapter 3 and the contributions
of vowel quality and duration to infants’ perception of the contrast
between /A/ and /a:/ are tested in Chapters 3 and 4. These empirical
results combined allow for explaining infants’ perception as a result
of the distributions in their input. Such an explanation remains in-
formal as long as distributional learning is loosely characterized as a
mechanism that leads to different patterns in speech perception as a
result of listening to a monomodal or bimodal input distribution.
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A formal approach to relating infants’ input and perception is train-
ing a computational model on infants’ input distributions and com-
paring the model’s to the infants’ perception. The most popular com-
putational way to simulate distributional learning on the speech-sound
distributions in IDS is Mixture-of-Gaussians (MoG) modeling (De
Boer and Kuhl, 2003; Vallabha et al., 2007; Adriaans and Swingley,
2012). MoG modeling is typically applied to test whether phoneme
categories are learnable from the infants’ input through distributional
learning, that is, to test whether the model can learn from the input
the correct number of categories with the correct auditory properties.
The results from this modeling have not been used to explain spe-
cific infant speech perception data. McMurray et al. (2009a) took the
MoG-approach one step further and showed how different aspects
of the learning mechanism itself contribute to learnability from dis-
tributions as found in ADS. Toscano and McMurray (2010) related
the results from a MoG-learner to adult perception and showed that
perceptual patterns in cue weighting can be obtained with a MoG
model through distributional learning on ADS. In Chapter 5, I take
the application of MoG modeling to IDS beyond learnability in prin-
ciple. A MoG model is applied to the input distributions of /A/ and
/a:/, in order to directly explain the infants’ speech perception data.
The MoG modeling in Chapter 5 tests whether all aspects of infants’
perception as found in Chapters 3 and 4 can be explained through
distributional learning.

The MoG approach to distributional learning of phoneme percep-
tion is a computational-level description (Marr, 1982) of distributional
learning. Because it is not committed to a specific architecture or
learning mechanism, its results could be compatible with theories
that maintain abstract representations (BiPhon, Boersma, 1998; NLMe,
Kuhl et al., 2008) as well as with exemplar theories (PRIMIR, Werker
and Curtin, 2005; also Pierrehumbert, 2003). This generality is an ad-
vantage of the MoG approach and may explain its current popular-
ity. Representational–physical level model of distributional learning
are NN models Guenther and Gjaja (1996); McMurray and Spivey
(2000); Gauthier et al. (2007). Like the MoG-approach, these models
are treated as general models of distributional learning and not em-
bedded within a specific theory. Recently Boersma et al. (2012) have
proposed a NN implementation of the BiPhon model in which distri-
butional learning leads to the emergence of discrete representations.
In Chapter 5, this model is extended to allow for input along multiple
dimensions. This NN model is trained on the input distributions and
its perception is compared to that of the infants in Chapters 3 and 4.

One advantage of computational modeling is that it allows for a
comparison between specific models of distributional learning. While
they both fall under the header of distributional-learning models, the
MoG model and NN model differ from each other in many respects,
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which are discussed in detail in Chapter 5. A comparison between
the results of these two models will reveal which results are the con-
sequence of distributional learning, and which outcomes are specific
to a certain implementation. A second advantage of computational
modeling is that learning scenarios can be compared within an imple-
mentation. According to some researchers, infants initially learn their
native language phonology by inducing categories for the individual
phonetic cues (Boersma et al., 2003; Maye et al., 2008). According to
others, infants acquire complex categories from multidimensional in-
put (Pierrehumbert, 2003; Werker and Curtin, 2005). Chapter 5 com-
pares models trained on the one-dimensional distribution of vowel
quality, on the one-dimensional distribution of vowel duration, and
on the two-dimensional distribution. By making comparisons across
two models of distributional learning and across two scenarios of
distributional learning, Chapter 5 provides a detailed computational
investigation of the distributional-learning hypothesis. Most impor-
tantly, Chapter 5 provides the explanatory link between infants’ input
(Chapter 3) and perception (Chapters 3 and 4) in terms of distribu-
tional learning.

1.8 Comparison to previous work

This dissertation is not the first investigation that combines studies
of input, infants’ perception, and modeling (or two of these three
aspects), in order to gain a better understanding of infants’ early ac-
quisition of speech perception than any of these methods in isolation
provide. Some example studies and my dissertation work are com-
pared here, as they share an overall approach. This comparison also
highlights the unique aspects of the research program in this disser-
tation.

Several studies have investigated the influence of input character-
istics on infants’ native-language phoneme perception in terms of
phoneme frequency. Coronal sounds (such as /t/) are more frequent
in American-English than velar sounds (such as /k/), and it has been
suggested that American-English infants lose the ability to discrimi-
nate between non-native sounds earlier for coronals than for velars
(Anderson et al., 2003). Also, if phonemes occur with an unequal fre-
quency, infants start discriminating between these speech sounds in
an asymmetric manner, as they better notice the change from an in-
frequent to a frequent phoneme than vice versa (Pons et al., 2012; see
also Mugitani et al., 2009). These studies importantly show that in-
fants’ phoneme perception is not only influenced by the phonemic
status of a contrast, but also by specific distributional characteristics,
in this case frequency.

Other studies have investigated the relation between input charac-
teristics and infants’ perception at an individual level, by showing
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that there are correlations between a mother’s production and her in-
fant’s perception. Liu et al. (2003) found that a mother’s speech clarity
as measured by the increase of her vowel space in IDS as compared to
ADS is related to her infant’s language-specific consonant perception.
Although this study showed that auditory characteristics of a child’s
input are related to her perception skills, the connection was not very
strong as different characteristics were measured in the input (vow-
els) than in the perception (affricates). In a study that focussed on
the /s/–/S/ contrast,12 Cristiá (2011) has shown that a mother’s mean
realization of /s/ is related to her child’s /s/ category. Especially the
latter study illustrates that exact auditory properties of an individual
infant’s input is related to her perception, which is predicted by the
distributional-learning hypothesis.

It is important to consider that distributional learning takes place
over a complete auditory distribution. The frequency of occurrence
of phonemes and their mean auditory properties contribute to the
overall shape of infants’ input distribution, but do not determine it.
Therefore, In this dissertation, the auditory distributions were taken
as the primary focus of investigation. Moreover, this dissertation in-
cludes simulations in order to draw conclusions about the learning
mechanism that infants might use when they acquire their phoneme
categories. An important next step after this dissertation would be to
connect input and perception through distributional learning at the
level of the individual mother-child dyads.

With respect to infants’ speech segmentation skills, Curtin et al.
(2005) found that child-directed speech contains better cues to word
boundaries if the stress patterns are taken into account, and showed
in subsequent artificial-language experiments that infants use stress
patterns to parse a novel speech stream. Christiansen et al. (1998)
used a computational model to find word boundaries in child-directed
speech and showed that reliance on the redundancies between mul-
tiple cues is necessary for optimal segmentation. Sahni et al. (2010)
show that infants can indeed exploit redundancies to learn novel
speech segmentation cues from an artificial-language speech stream.
In this work, close investigation of infants’ input lead to the dis-
covery of learning strategies that infants should be able to use for
efficient language learning. Subsequent artificial-language learning
experiments showed that infants can indeed employ such learning
strategies. In the development of the distributional-learning hypothe-
sis, the order of research into infants’ input and learning abilities was
reversed: It was first shown that infants were sensitive to the shape of
the input distribution (Maye et al., 2002) and then that speech sound
contrasts are learnable from IDS through distributional learning (Val-
labha et al., 2007). However, as was the case in the work on distribu-
tional learning, the research into infants’ speech segmentation skills

12 /s/ as in ‘sand’ and /S/ as in ‘shark’
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provides a compelling illustration of learning mechanisms in princi-
ple, but not in practice.

With respect to the role of multiple cues in natural-language per-
ception, it has been found that a combination of multiple cues is nec-
essary for a self-organising neural map to learn the contrast between
function words and lexical words as produced in IDS (Shi et al., 1998).
Newborn infants can discriminate between between words from these
broad grammatical categories on the basis of this multidimensional
difference (Shi et al., 1999). However, if newborn infants can use a
multidimensional difference to discriminate between two categories,
it is not guaranteed that they integrate these cues during later lan-
guage acquisition and associate their categories with multiple cues.
The work in this dissertation tests infants that are in the process of ac-
quiring their native language, in order to investigate their developing
representations as a result of exposure to their native language.

The research program in this dissertation builds on the previous
work discussed above as it takes the infants’ input as a serious object
of study that can be the starting point of research into infants’ learn-
ing mechanisms. The work in this dissertation goes beyond previous
work in that the modeling provides a direct connection between in-
fants’ actual input and speech perception, in order to understand the
learning mechanisms infants use in practice.

1.9 Summary

In my dissertation, I pursue the research program that I called “na-
ture’s distributional-learning experiment” in order to investigate the
distributional-learning hypothesis of infants’ phoneme acquisition in
practice: An integrated investigation of infants’ input, infants’ percep-
tion, and distributional-learning models to provide the explanatory
link.
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Abstract

Exaggeration of the vowel space in infant-directed speech (IDS) is
well documented for English, but not consistently replicated in other
languages. A second attested pattern of change in IDS, which has
received little attention in the literature, is an overall rise of the for-
mant frequencies. The present study investigates longitudinally how
Dutch mothers change their corner vowels /i/, /u/, /a:/, and /A/,
the fricative /s/, and their pitch when speaking to their infants at
11 and 15 months of age. Dutch mothers were found to raise the
second formant (F2) of their vowels in IDS in comparison to adult-
directed speech (ADS), especially of the back vowels. As a result, the
vowel space became smaller in IDS than in ADS. Together with the
raised spectral frequency of /s/ in IDS and the observation that F2 is
raised more strongly for infants at 11 than at 15 months, these results
show that smiling and enhanced positive affect are the main factors
influencing Dutch mothers’ realization of speech sounds in IDS. This
study provides evidence that mothers’ expression of emotion in IDS
can influence the realization of speech sounds at the cost of speech
clarity.
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2.1 Introduction

Caregivers from most cultures use a different speech register for ba-
bies than for other adults (see for reviews Ferguson, 1977; Cruttenden,
1994; Soderstrom, 2007). This special way of speaking to an infant ex-
presses positive emotions and maintains the infant’s attention, but
it also conveys the structure of the language (Ferguson, 1977; Fer-
nald et al., 1989; Uther et al., 2007). Caregivers’ positive affect is
mostly carried by the pitch characteristics of infant-directed speech
(IDS, Uther et al., 2007; Trainor et al., 2000). One linguistic aspect
that caregivers from many languages seem to clarify in IDS as com-
pared to adult-directed speech (ADS) is the auditory contrast between
the corner vowels1 (Bernstein Ratner, 1984; Kuhl et al., 1997; Burn-
ham et al., 2002; Uther et al., 2007; Andruski et al., 1999; Liu et al.,
2003). Uther et al. (2007) have claimed that the different realizations
of speech sounds in IDS occurs independently of caregivers’ affect.
In the present paper I challenge the proposed dichotomy between
didactic changes to the speech sounds and affective changes to the
pitch, and test the hypothesis that the expression of affect is the main
determinant of caregivers’ realization of speech sounds in IDS.

2.1.1 Didactic vowel space enhancement in IDS

Enhanced auditory contrast between the corner vowels provides in-
fants with clear examples of their native language’s phoneme cate-
gories and is related to overall intelligibility and possibly to more
precise articulations (Bradlow et al., 1996). It has been hypothesized
that mothers enhance speech sound contrasts out of didactic consid-
eration of their language-learning infant, because they similarly en-
hance their corner vowels in speech to adults learning a second lan-
guage (Uther et al., 2007), but not in speech to pets (Burnham et al.,
2002; but see Kim et al., 2006). Since mothers’ enhancement of the
vowel space in IDS is related to their infants’ faster development of
language-specific phoneme perception, these clear pronunciations in
IDS may indeed promote infant language acquisition (Liu et al., 2003).

The occurrence of such vowel enhancement in English, Swedish,
Russian, Japanese, and Mandarin IDS has led to the claim that it is
a universal characteristic of IDS (Kuhl et al., 1997; Uther et al., 2007).
However, the expansion of the vowel space in IDS is not found consis-
tently across studies of American English (Green et al., 2010) and not
found in all languages (Dodane and Al-Tamimi, 2007; Englund and
Behne, 2006; Van de Weijer, 2001). In Norwegian, the vowel space is

1 The corner vowels are the vowels produced with the most extreme articulations
physically possible. For most languages they are /i/ as in English sheep, /u/ as in
English shoe, and one or two low vowel such as /A/ as in English shark, or /æ/ as in
English sand.
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crucially smaller in IDS than in ADS (Englund and Behne, 2006). Other
evidence against the universality of clear speech in IDS is the depen-
dence of the infant-directed vowel space on infant characteristics: In-
fants that cannot hear their mother as a result of actual or simulated
deafness receive less clear input than normally hearing infants (Lam
and Kitamura, 2010, 2012). Consequently, the expansion of the vowel
space in IDS cannot be considered a universal characteristic of IDS.

2.1.2 Affective vowel formant increase in IDS

A second attested pattern of change in infant-directed vowels is an
overall increase of formant frequencies (Dodane and Al-Tamimi, 2007;
Englund and Behne, 2005; Green et al., 2010). Formant frequencies
depend on the shape and size of the vocal tract. An increase in for-
mant frequencies results from a shortening of the vocal tract, which
occurs when the lips are retracted for a smile (Tartter, 1980; Tart-
ter and Braun, 1994; Waaramaa et al., 2008; Zacher and Niemitz,
2003; cf. Fagel, 2010, showing that the acoustic effect of smiling is
vowel-dependent, and Aubergé and Cathiard, 2003, suggesting that
formants are lower in speech with amused smiles). A very joyful
smile is the predominant facial expression in interactions with infants
(Stern, 1974; Chong et al., 2003). High formant frequencies of infant-
directed vowels could well be a side effect of smiling (Englund and
Behne, 2005), and as such a result of caregivers’ enhanced positive
affect when they speak to their infant.

There is a widespread consensus that the main acoustic vehicle
of caregivers’ positive affect in IDS is their pitch (Uther et al., 2007;
Trainor et al., 2000). Cross-linguistically, caregivers use a higher aver-
age F0 (fundamental frequency, the main acoustic correlate of pitch)
and a larger F0 range when speaking to their baby (Fernald et al.,
1989). These infant-directed pitch modifications resemble those in
emotional ADS (Trainor et al., 2000). Similar affective pitch changes
are found in speech to pets (Burnham et al., 2002), but not in speech to
foreigners Biersack et al. (2005); Uther et al. (2007). The affective pitch
modifications are especially large in American-English IDS (Grieser
and Kuhl, 1988; Fernald et al., 1989; Papoušek et al., 1991), while
speakers of other languages mainly employ other means to express
their positive affect in IDS. For example, Japanese mothers have a rel-
atively restricted F0 range in IDS, which may be related to cultural
restrictions on the vocal expression of emotions (Fernald et al., 1989).
But Japanese mothers do establish emotional communication in IDS
with attentional nonsense words and onomatopoeia (Toda et al., 1990;
Fernald and Morikawa, 1993; Bornstein et al., 1992). Kitamura et al.
(2002) argue that Thai mothers have a smaller pitch increase in IDS
than English-speaking mothers, but express more positive affect in
the content of their IDS. Possibly, raised formant frequencies as a re-
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Figure 2: Three possible interrelations between the height of F2 and the
size of the vowel space in IDS as compared to ADS. The vowel
spaces are defined by F1 and F2 in Bark, with hypothetical vowel
triangles encompassing /i/, /a/, and /u/ in ADS (black, solid line)
and IDS (gray, dotted line). See the text for details.

sult of positive affect and smiling are yet another carrier of positive
affect in the IDS of some languages. This possibility is important to
explore, because the exact acoustic vehicles of positive affect in the
voice quality are still unknown (Scherer, 2003).

2.1.3 Testing didactic and affective changes in Dutch IDS

The ‘didactic’ enhancement of the vowel space in IDS and ‘affective’
rise of the vowel formant frequencies in IDS are interdependent, as
an increase of the formant frequencies in IDS can influence the size of
the vowel space in various ways. When the first and second formant
(F1 and F2) are raised equally along the auditory scale across the
three corner vowels in IDS, the vowel space shifts without a change
in the auditory contrast between the vowels. This is illustrated for a
change in F2 in Figure 2a (cf. Dodane and Al-Tamimi, 2007; Green
et al., 2010). A smaller vowel space in IDS can occur if F2 of /u/ is
raised more in IDS than F2 of /i/ and /a/ (Figure 2, cf. Englund and
Behne, 2006, 2005). A larger vowel space in IDS can be the conse-
quence of a smaller F2-raise of /u/ than of /i/ and /a/ (Figure 2c, cf.
the figures in Burnham et al., 2002; Kuhl et al., 1997). No study to date
has investigated the size of the vowel space as well as the rise of the
formant frequencies in IDS, so that the dependence of the size of the
vowel space on the raising of the formant frequencies has remained
largely unnoticed.2 the absence of such a relation is crucial to Uther
et al.’s (2007) claim that the size of the vowel space in IDS is the result
of caregivers’ linguistic-didactic efforts and not of their affect.

2 Englund and Behne investigate the rise of the formant frequencies in Englund and
Behne (2005) and the size of the vowel space in Englund and Behne (2006), but do
not directly relate the two.
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For several reasons, Dutch is an interesting language to investigate
in this respect. In the first place, if enhancement of the vowel space
is a (near)-universal property of IDS, it should occur in the vast ma-
jority of the languages. However, Van de Weijer (2001) did not find
consistent enhancement of the vowel space in IDS in a corpus consist-
ing of one Dutch infant’s input from three speakers: the mother, the
father and the babysitter. Interestingly, the (native German but Dutch-
speaking) mother’s vowel space was smaller in IDS than in ADS and
inspection of the vowel spaces reported in Van de Weijer (2001) sug-
gests that the mother and the babysitter increased F2 of their vowels
in IDS. Therefore, the present study investigates the size of the vowel
space as well as the heights of the formant frequencies in Dutch IDS.

To investigate whether the pronunciation of vowels in Dutch IDS
is primarily ‘didactic’ or ‘affective’, it is useful to consider that didac-
tic and affective changes in IDS follow different age-related trends.
Mothers enhance speech sound contrasts somewhat more in the pe-
riod after the child’s first birthday than before, although it is not clear
how long they maintain this extra enhancement (Bernstein Ratner,
1984; Malsheen, 1980; Cristiá, 2010; see also Liu et al., 2003, 2009).
The infant-directed pitch changes, on the other hand, become less
pronounced over the course of the first year and thereafter (Stern
et al., 1983; Amano et al., 2006; Warren-Leubecker and Bohannon,
1984; Stern et al., 1983; Amano et al., 2006; Garnica, 1977; Remick,
1976; but see Jacobson et al., 1983). Also the content of IDS becomes
less affective when the infant grows older, as caregivers start speaking
more about events in the outside world (Snow, 1977; Sherrod et al.,
1978; Penman et al., 1983; Bornstein et al., 1992).

These developmental changes suggest that mothers trade affective
speech for linguistic-didactic speech when their child enters the sec-
ond year of life (Kitamura et al., 2002). If Dutch mothers didactically
enhance their vowel space in IDS without raising the formant frequen-
cies, they are expected to enhance their vowel space more to infants
that are over one year of age than to infants who are just under one
year of age. If Dutch mothers’ infant-directed vowel space is primar-
ily characterized by an affective increase of the formant frequencies,
they are expected to change their vowels more to infants under one
year of age than to older infants. The present study investigates lon-
gitudinal changes in Dutch IDS at two time points, when infants are
11 months of age and when they are 15 months of age.

An alternative to the smiling hypothesis of raised formant frequen-
cies in IDS (Englund and Behne, 2005) is that the raised formant fre-
quencies result from caregivers’ attempts to imitate their infant (Do-
dane and Al-Tamimi, 2007). Infants have a smaller vocal tract than
adults and therefore they produce their vowels with overall higher
formant frequencies (Peterson and Barney, 1952). An investigation of
the realization of /s/ in IDS can help to determine whether smiling or
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the imitation of children’s speech leads to raised formant frequencies
in IDS. In emotional speech, adult speakers realize /s/ with spec-
tral energy on higher frequencies than in emotionally neutral speech
(Kienast and Sendlmeier, 2000). Children realize /s/ with most spec-
tral energy on lower frequencies than adults (Nissen and Fox, 2005).
If mothers raise their formant frequencies in IDS, the smiling hypoth-
esis and the imitation hypothesis for raised formant frequencies in
IDS provide competing predictions with respect to mothers’ realiza-
tion of /s/. A single-parameter measure of the concentration of the
energy distribution in a fricative is the center of gravity (COG, also
spectral mean or first spectral moment, Forrest et al., 1988). Although
there are many other acoustic parameters to fricatives (Jongman et al.,
2000), it COG that differs between adult and child speech (Nissen and
Fox, 2005) and is related to smiling (Kienast and Sendlmeier, 2000).
Therefore, the present study investigates the COG of /s/ in Dutch
IDS, in addition to the vowels.

2.1.4 Summary of study objectives

To summarize, in addition to being the first investigation of Dutch
IDS with multiple mother-child dyads (cf. Van de Weijer, 2001, 1997),
the present study is the first to investigate vocalic, consonantal, and
prosodic modifications in IDS in the same group of mothers at two
time points. The primary question is whether Dutch mothers change
the size of their vowel space in IDS or shift their vowel space to
higher formant frequencies in that register. If both patterns of change
are found, the relation between the changed formant frequencies and
the size of the vowel space will be determined. If the vowel space is
shifted to higher formant frequencies, changes in infant-directed /s/
can help to interpret whether these formant changes are the result of
smiling or of the imitation of children’s speech. The second question
is whether the speech sound and pitch characteristics of Dutch IDS
change between the infants’ age of 11 and 15 months. If age-related
changes are found, the vowel changes may be primarily didactic or
primarily affective. If raised formant frequencies are found, . By an-
swering these questions, this study tests the claim that enhancement
of the vowel space is a universal characteristic of IDS that results
from mothers’ attempts to clarify the structure of the language for
their infant (Kuhl et al., 1997; Uther et al., 2007) and contrasts it with
the hypothesis that, in some languages, the infant-directed vowels are
characterized by raised formant frequencies, which result from affect.
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2.2 Method

2.2.1 Participants

Eighteen mother-child dyads (6 boys, 12 girls) participated in this lon-
gitudinal study. Recordings were made when the child was 11 months
of age (ranging from 311 to 352 days) and 15 months of age (ranging
from 448 to 472 days). All children were born at a gestational age
of at least 36 weeks and were from monolingual Dutch families. The
mothers were native speakers of Dutch. Another 11 dyads had to be
excluded from the analysis because the father instead of the mother
came to the visits (n=2), an appointment for the second recording
could not be scheduled (n=6), an older sibling interfered (n=1), or
because of equipment failure (n=1) or experimenter error (n=1). Par-
ticipants were recruited from a database that is maintained at the
University of Amsterdam. All mothers gave written consent prior to
participating in the study and afterwards received a small monetary
compensation for their travel expenses and participation (e10).

2.2.2 Procedure and Equipment

Recordings took place in a sound-proofed studio. Recordings were
made with an omni-directional head-mounted Samson QV micro-
phone fitted to the mother and connected to the amplifier by a long
cord to allow freedom of movement.3 The stream was sampled at
44100 Hz and recorded together with a video recording of the scene
using the program Enosoft DV Processor.

Prior to the recordings, mothers were told that the natural play in-
teractions between mothers and children were the focus of the inves-
tigation. The mother and child were seated on the floor, on a blanket
in a corner of the room. When the recording started, the experimenter
first had a short conversation with the mother about the child’s de-
velopment in the past months. This introductory conversation was
intended to make the participants feel at ease and the speech from
this phase was not analyzed. Next the mother was given three bags
with toys and instructed to unpack the bags with the child, name the
toys for the child, and play with the toys. Mother and child were then
left alone for approximately 10 minutes. After this period, the experi-
menter engaged the mother in a conversation about the play session
to elicit the target words in an adult-directed register.4

3 To ensure that sessions were not lost due to contact between the mothers’ face and
the head-mounted microphone, parallel recordings were made with a free-standing
Sennheiser HF condenser microphone MKH-105. These recordings proved not to be
necessary.

4 The introductory adult-to-adult conversation was skipped if the child was impatient
and for the first participants in the study. In that case, the experimenter and parent
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Each bag contained items to elicit the vowels /i/, /u/, /a:/, and
/A/, and the fricative /s/ (Table 2). All items were selected so that
they were either monosyllabic, or had the main stress on the first
syllable.

Vowel Items

/i/

/fits/ /spix@l/ /xit@r/ /vlixtœyx/

fiets spiegel gieter vliegtuig

bike mirror watering can plane

/u/

/bukj@/ /ku/ /pus/ /Hut/

boekje koe poes hoed

book cow cat hat

/a:/

/sxa:p/ /a:p/ /ta:f@l/ /ka:s/

schaap aap tafel kaas

sheep monkey table cheese

/A/

/tAs/ /bAk/ /slAk/ /Ap@l/ /bAt/ /kAst/

tas bak slak appel bad kast

bag container snail apple bath cupboard

/s/

/sin@zAp@l/

sinaasappel

orange

Table 2: The words for the stimuli used to elicit the four target vowels /i/,
/u/, /a:/, and /A/, and /s/. For each word, the IPA transcription
(row 1, between / /), Dutch spelling (row 2), and English translation
(row 3, in italics) are given. Apart from the item that was only used
to elicit /s/, the underlined items were also used to elicit /s/.

2.2.3 Coding

The sound recordings were isolated from the video and stored as
WAV-files. Subsequent coding was done in Praat (Boersma and Weenink,
2011).

The coders were two undergraduate students, both native speak-
ers of Dutch, with basic education in phonetics and specific training

talked about the child’s development when the play session and the adult-to-adult
conversation about the play session were completed.
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in speech segmentation. They transcribed the phrases orthographi-
cally and marked the boundaries of the target words and the target
vowels in the signal. The criteria for vowel segmentation were based
on Machač and Skarnitzl (2009). In addition, the coders indicated to
whom the mother was speaking (her child, the experimenter, or un-
certain), noted external sounds that overlapped with the target vow-
els (such as the child or noise from the toys), and indicated atypical
voice qualities. The fricative /s/ was segmented from the signal by
a third coder. If part of the fricative overlapped with another sound,
the coder segmented the non-overlapping part of the fricative.

2.2.4 Acoustic measurements

All acoustic analyses were conducted in Praat (Boersma and Weenink,
2011). Detailed information about the acoustic measurements is given
in section 2.5

2.2.4.1 Vowels

The median F1 and F2 were measured in the central 40% of the vowels
/i/, /u/, /a:/, and /A/. Prior to the analyses, the formant values in
hertz were converted to the psychoacoustic Bark scale (Zwicker, 1986)
following the formula in Equation 2:

Bark(x) = 7 log

Hz(x)
650

+

√
1 +

Hz(x)
650

2
 (1)

2.2.4.2 The fricative /s/

The complete spectrum of each /s/-sound was high-pass filtered at
700 Hz in order to remove residual voiced parts from the signal prior
to the analysis, and then COG was measured in the complete fricative.

2.2.4.3 Pitch

The median F0 of each phrase was measured in hertz (further: F0-
median). The minimum and maximum F0 of each phrase were mea-
sured as well and the distance between these extremes in semitones
(12 semitones = 1 octave) was divided by the utterance duration, yield-
ing a measure of F0 excursions in semitones per second (further: F0-
excursions, Fernald and Simon, 1984).

2.2.5 Exclusion and Analyses

Phrases and speech sounds were not included in the analyses for
a number of reasons: if they overlapped with another sound; if the
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mother was singing, whispering, glottalizing, or had been using yet
another voice quality that might have affected the acoustic measure-
ments; if the coder considered the voice quality otherwise atypical;
or if the coder was uncertain whether the infant or adult had been
addressed. Phrases were also excluded if the coder indicated doubt
about the transcription or if the analysis of F0 (see details in section
2.5) did not return a value. Table 3 gives the number of vowels, /s/s,
and phrases in the full corpus and in the analyses.

The median was considered the appropriate measure of central
tendency to summarize each mother’s data because it is robust to
outliers, which may occur due to incidental errors in the acoustical
analyses. Medians were taken per mother for each measure (the for-
mant values of the four vowels, the COG of /s/ and the pitch of the
phrases), separating the speech addressed to her infant at 11 months
(IDS-11), to her infant at 15 months (IDS-15) and the adult experi-
menter (ADS, collapsed over both time points). Per mother, the av-
erages over IDS-11 and IDS-15 yielded the values for IDS. No value
for IDS was computed if the value for either IDS-11 or IDS-15 was
missing.

The area of each mother’s vowel quadrilateral encompassing the
high vowels /i/ and /u/ and the low vowels /a:/ and /A/ was com-
puted from the median formant values in Bark. The area was com-
puted separately for ADS, IDS, IDS-11, and IDS-15.

In all analyses, ADS was compared to IDS in a first analysis, af-
ter which IDS-11 and IDS-15 were compared. As more subjects were
excluded from the ADS condition than from either of the IDS con-
ditions, the separation of the analyses on the register (IDS vs. ADS)
from the analyses on the infants’ age (IDS-11 vs. IDS-15) rendered the
latter comparison more powerful.

A mother was excluded from the comparison between the registers,
IDS vs. ADS, if she provided no useable tokens for either IDS-11, IDS-
15, or ADS. A mother was excluded from the comparison between the
infants’ ages, IDS-11 vs. IDS-15, if she provided no useable tokens for
either IDS-11 or IDS-15. Table 3 gives the number of mothers included
in each of the two comparisons (Register and Infants’ Age) of each of
the three measured units (vowels, /s/, phrases).5

5 All mothers produced all vowels as well as /s/ in IDS-11, IDS-15, and ADS. The rela-
tively large number of excluded participants in the comparison of the vowels across
IDS and ADS is due to exclusion after the recordings, and to the fact that at least
one useable token of all four vowels in both registers was required for a participant
to be included in this comparison. A total of 10 participants is not uncommon in the
research on vowel spaces in IDS, which has seen sample sizes of 10 to 14 subjects
(Kuhl et al., 1997; Andruski et al., 1999; Burnham et al., 2002; Uther et al., 2007), as
well as smaller (Bernstein Ratner, 1984; Englund and Behne, 2005, 2006) and con-
siderably larger (Green et al., 2010; Cristiá, 2010) sample sizes. Three of the mothers
who were excluded from the analysis of vowel quality on the basis of a lack of tokens
in ADS were also the three mothers excluded from the comparison between IDS-11
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Tokens Mothers included (max=18)

total included IDS–ADS IDS-11–IDS-15

vowels 3263 1704 10 15

/s/s 1421 999 17 18

phrases 2816 1157 18 18

Table 3: A summary of the content of the corpus.The first two columns give
the total number of tokens (vowels, /s/s, and phrases for analysis
of pitch) in the corpus and the analysis. The second two columns
give the number of mothers included in the comparison between
IDS and ADS, and the comparison between IDS-11 and IDS-15.

For the statistical analyses of the formant frequencies of the vowels,
repeated measures analyses of variance were performed. For the anal-
yses of the area of the vowel space, the COG of /s/, and the pitch char-
acteristics, paired-samples t-tests were performed. An alpha-level of
0.05 was adopted to evaluate the effects from these main analyses. Ef-
fects with p < .1 were interpreted as marginally significant in support
of other effects. To further test significant effects from the ANOVAs,
paired-samples t-tests were performed. For these comparisons a cor-
rected alpha-level of 0.005 was adopted, but given the small sample
size, effects with p < .05 were interpreted as marginally significant.

2.3 Results

2.3.1 Vowel space: Area

The auditory vowel space defined by F1 and F2 in Bark with the
vowels /i/, /u/, /a:/, and/A/ from IDS-11, IDS-15, and ADS is given
in Figure 3.

A paired-samples t-test compared the area of the mothers’ vowel
space in IDS and ADS. The area of the Dutch mothers’ vowel space
was significantly and substantially smaller in IDS than in ADS (t9 =

3.22, p = .010; IDS: m = 12.4, sd = 2.35; ADS: m = 15.6, sd = 2.56).
Nine of the 10 mothers had a smaller vowel space in IDS. A second
paired-samples t-test compared the area of the mothers’ vowel space
in IDS-11 and IDS-15. The areas of the vowel spaces in IDS-11 and IDS-
15 did not differ significantly (t14 = 0.04, p = .968; IDS-11: m = 12.5,
sd = 2.89; IDS-15: m = 12.6, sd = 3.15).

and IDS-15. The results may thus be slightly biased towards the mothers that were
more talkative during the complete procedure.
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Figure 3: The vowel space, defined by F1 and F2 in Bark, with the vowel
quadruples encompassing /i/, /a:/, /A/, and /u/ in IDS to 11-
month-olds (light gray, dotted line), IDS to 15-month-olds (dark
grey, dotted line), and ADS (black, solid line). The filled figures
represent the group means for the four vowels, with error bars
showing 95% confidence intervals of the group means in F1 and F2.
For ADS, the 10 participants from the comparison between ADS
and IDS are included; for IDS, all 18 participants are included. See
the text for further information on the measurements and compu-
tations.

2.3.2 Vowel space: Formant frequencies

The F1 and F2 values of the corner vowels were the dependent vari-
ables in two separate repeated measures ANOVAs with Subject as
random factor, and Vowel Backness (front /i, a:/ vs. back /u, A/),
Vowel Height (high /i, u/ vs. low /a, A/) and Register (IDS vs. ADS)
as within-subject factors. In these analyses, the main effects of Vowel
Backness and Vowel Height and their interaction were expected and
not of interest, because it is well known that the four vowels have dif-
ferent formant values. The second set of analyses with Infants’ Age
instead of Register as within-subjects factor is reported below.
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Measure Effect F df p

ID
S

vs
.A

D
S

Register 0.78 1, 9 .401

Vowel Height 701.66 1, 9 <.001

Vowel Backness 35.23 1, 9 <.001

F1 R∗VH 3.42 1, 9 .098

R∗VB 0.46 1, 9 .513

VH∗VB 96.21 1, 9 <.001

R∗VH∗VB 6.32 1, 9 .033

Register 49.02 1, 9 <.001

Vowel Height 6.23 1, 9 .034

Vowel Backness 712.69 1, 9 <.001

F2 R∗VH 5.89 1, 9 .038

R∗VB 8.05 1, 9 .019

VH∗VB 219.10 1, 9 <.001

R∗VH∗VB 0.03 1, 9 .857

ID
S-

1
1

vs
.I

D
S-

1
5

Infant’s Age 0.03 1, 14 .862

Vowel Height 1351.20 1, 14 <.001

Vowel Backness 21.55 1, 14 <.001

F1 IA∗VH 0.15 1, 14 .705

IA∗VB 2.00 1, 14 .180

VH∗VB 24.47 1, 14 <.001

IA∗VH∗VB 0.85 1, 14 .371

Infant’s Age 10.27 1, 14 .006

Vowel Height 6.74 1, 14 .021

Vowel Backness 813.68 1, 14 <.001

F2 IA∗VH 4.13 1, 14 .062

IA∗VB 0.16 1, 14 .692

VH∗VB 377.74 1, 14 <.001

IA∗VH∗VB 0.58 1, 14 .458

Table 4: The results from four ANOVAs making the comparison between
IDS and ADS and between IDS-11 and IDS-15 with respect to the
F1 and F2 of the vowels /i/, /u/, /a:/, and /A/.
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The results from the ANOVA on F1 are given in Table 4. There
was a significant three-way interaction between Register, Vowel Back-
ness, and Vowel Height (F1,9 = 6.32, p = .033). Paired-samples t-tests
comparing for each vowel F1 in IDS and ADS showed a marginally
significant increase of F1 for /i/ in IDS (t9 = 3.03, p = .014), and this
direction of the effect was found in 9 of the 10 mothers in the analysis.
F1 was not significantly different between IDS and ADS for the three
other vowels (all t < 1.5, all p > .2).

The ANOVA on F2 (see Table 4) revealed that the F2 difference be-
tween IDS and ADS was dependent on the backness of the vowel (sig-
nificant Register∗Vowel Backness interaction: F1,9 = 8.05, p = .019), as
well as on the height of the vowel (significant Register∗Vowel Height
interaction: F1,9 = 5.89, p = .038).

The interactions between Register and on the one hand Vowel Back-
ness and on the other hand Vowel Height showed that the F2 differ-
ence between IDS and ADS was not uniform across the vowel space.
Because F2 differs between front and back vowels as well as between
the high and low vowels investigated here, further investigations of
these interactions required a measure of the F2 difference between
IDS and IDS for each of the four vowels. F2-difference was computed
for the four vowels separately as F2 in IDS minus the F2 in ADS. A
F2-difference above 0 indicates a higher F2 of that vowel in IDS that in
ADS and a F2-difference below 0 indicates a lower F2. F2-difference
was above 0 for /i/ in 9 of 10 mothers, for /u/ in 9 of 10 mothers, for
/a:/ in all 10 mothers, and for /A/ in all 10 mothers. The average F2-
difference was computed per mother for the high vowels (/i/ and /u/:
m = 0.439, sd = 0.4635), the low vowels (/a:/ and /A/: m = 0.839, sd =

0.2963), the front vowels (/i/ and /a:/: m = 0.452, sd = 0.3623), and
the back vowels (/u/ and /A/: m = 0.826, sd = 0.3499). To further as-
sess the Register∗Vowel Backness interaction from the ANOVA, the
F2-difference of the front and back vowels was compared in a paired-
samples t-test. The F2-difference was found to be marginally larger
in the back than in the front vowels (t9 = 2.84, p = .019). Nine of
the 10 mothers raised F2 more in the back vowels than in the front
vowels. The auditory contrast in F2 between the front and back vow-
els is thus reduced in IDS. To further investigate the Register∗Vowel
Height interaction, the F2-difference was compared between the high
and low vowels in a paired-samples t-test. This test showed that the
F2-difference was marginally larger in the low than in the high vow-
els (t9 = 2.43, p = .038). Eight of the 10 mothers had a larger F2-
difference in the low vowels than in the high vowels.

A second ANOVA on F1 with the within-subject factor Infant’s
Age (IDS-11 vs. IDS-15) showed no significant effects of interest (see
Table 4). A second ANOVA on F2 with the within-subject factor of
Infant’s Age (IDS-11 vs. IDS-15) is reported in Table 4 and showed
that F2 differed between speech addressed to the infants at 11 and 15
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Figure 4: The mean COG of /s/ in IDS to infants at 11 months (light grey),
IDS to infants at 15 months (dark gray), and ADS (black). The
circles represent the group means, with error bars showing the
95% confidence intervals of the group means. Only participants
included in the comparison between ADS and IDS are included in
the figure. See the text for information on the measurements and
further computations.

months (main effect of Infants’ Age: F1,14 = 10.27, p = .006). From Fig-
ure 3, it can be observed that F2 was on average higher when mothers
addressed their child at 11 months than when they spoke to the child
at 15 months. F2 was higher in IDS-11 than in IDS-15 for /i/ in 12

mothers, for /u/ in 11 mothers, for /a:/ in 9 mothers, and for /A/ in
8 mothers.

2.3.3 The fricative /s/

Figure 4 displays the average COG of /s/ in ADS, IDS-11, and IDS-
15. Prior to the statistical analysis, the data of the COG of /s/ were
square-root transformed to solve considerable skewness in the dis-
tributions. A paired-samples t-test comparing the square-root trans-
formed COG of /s/ in IDS and ADS showed that the COG was
marginally higher in IDS than in ADS (t16 = 1.78, p = .094). Twelve
of the 17 mothers included in this analysis had a higher COG of /s/
in IDS than in ADS. There was no evidence that the COG differed
between IDS-11 and IDS-15 (t17 = 1.02, p = .324).
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F0-median (Hz) F0-excursions (ST/sec)

IDS-11 222 (14.8) 7.5 (1.51)

IDS-15 234 (20.5) 8.1 (1.84)

ADS 205 (24.0) 4.4 (1.43)

Table 5: The average F0-median and F0-excursions in IDS to infants at 11
months, IDS to infants at 15 months, and ADS, computed over the
median values for the 18 mothers. F0-median is reported in hertz,
the F0-excursions are reported in semitones per second. Averages
are computed over the medians per speaker (see the text for details),
and standard deviations are given in parentheses.

2.3.4 Pitch characteristics

Table 5 gives the average pitch measures, F0-median (in hertz) and
F0-excursions (in semitones per second), in ADS, IDS-11, and IDS-
15. Paired-samples t-test comparing F0-median and F0-excursions in
IDS and ADS showed that mothers spoke at a higher F0-median and
with larger F0-excursions to their infant than to an adult (F0-median:
t17 = 4.24, p < .001; F0-excursions: t17 = 9.85, p < .001). Fifteen of the
18 mothers had a higher F0-median in IDS than in ADS, and 17 had
larger F0-excursions in IDS than in ADS. Paired-samples t-tests were
performed to compare F0-median and F0-excursions between IDS-11

and IDS-15. The mothers’ F0-median was significantly higher to their
infant at 15 months than to their infant at 11 months and their F0-
excursions were not significantly larger to their infant at 15 months
(F0-median: t17 = 2.49, p = .023; F0-excursions: t17 = 1.29, p = .214).
Fourteen of the 18 mothers spoke at a higher F0-median to their infant
at 15 months and 14 mothers spoke with larger F0-excursions to their
infant at the older age.

2.4 Conclusion and Discussion

This study tested whether enhancement of the auditory contrast be-
tween the corner vowels in IDS is indeed a cross-linguistically uni-
versal pattern (Kuhl et al., 1997) that occurs independent of mothers’
positive affect, as a result of their attempts to clarify the linguistic
structure (Uther et al., 2007). The current results show that Dutch
mothers decrease the size of their vowel space (as measured on an
auditory scale) when they speak to their infant, and raise F2. The sec-
ond question was whether the pronunciation of speech sounds and
the prosodic characteristics of IDS change between the infants’ age of
11 and 15 months. In Dutch IDS, mothers raise F2 more to infants at
11 months of age, while their change in pitch level is more extreme in
the speech to infants at 15 months of age.
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The rise of F2 in Dutch IDS can be related to mothers’ smaller vowel
space in that register. Dutch mothers in this study seemed to raise
F2 more in back vowels than in front vowels, which effectively re-
duced the auditory contrast between the front and the back vowels
in IDS and led to the observed smaller vowel space.6 These patterns
of change in the Dutch infant-directed vowel space are strikingly sim-
ilar to those observed in Norwegian IDS (Englund and Behne, 2005,
2006). These results do not support the claim that enhancement of
the vowel space is a universal property of IDS, and show that the sec-
ond attested pattern of vowel changes in IDS, a rise of the formant
frequencies (cf. Dodane and Al-Tamimi, 2007 and Green et al., 2010),
can take place at the expense of the auditory contrast between vowels.

In the introduction, two explanations for raised formant frequen-
cies in IDS were proposed. The first was that mothers smile more
to their infant than to an adult (Englund and Behne, 2005), the sec-
ond was that mothers imitate their child (Dodane and Al-Tamimi,
2007). If mothers were imitating their children in IDS, they would
produce /s/ with a lower spectral peak in IDS than in ADS (Nissen
and Fox, 2005). However, the current data suggested a higher spec-
tral frequency of /s/ in Dutch IDS. A higher spectral frequency in
fricatives is a property of emotional speech, such as happy speech
(Kienast and Sendlmeier, 2000). Furthermore, a higher F2 is associ-
ated with lip spreading, such as occurs during smiling (Tartter, 1980;
Tartter and Braun, 1994; Zacher and Niemitz, 2003; but see Aubergé
and Cathiard, 2003). Since the front vowels /i/ and /a:/ are produced
with some lip spreading and the back vowels are normally produced
with unspread lips, smiling in IDS would mostly raise F2 in the back
vowels. In addition, the formant frequencies of low vowels may be
more susceptible to changes in affect than the formants of the high
vowels (Waaramaa et al., 2008). The current results are in line with
these vowel-specific effects of smiling, although those results were
only marginally significant and require further confirmation.

It has been argued that mothers enhance different aspects of the
speech signal as their child matures and in doing so provide input
that at each stage in development highlights exactly those aspects that

6 A second cue to the /A/–/a:/ vowel contrast in Dutch is the duration, with /A/ being
shorter than /a:/ (Adank et al., 2004). It could be argued that mothers especially en-
hance duration contrasts between vowels in IDS, as duration is considered a salient
cue (Bohn, 1995) and infants are sensitive to this cue in early speech perception
(Bohn and Polka, 2001). To test this claim, the median logarithm of the duration of
/A/ and /a:/ in IDS and ADS were the dependent variables in a repeated measures
ANOVA with Register (IDS vs. ADS) and Vowel (/A/ vs. /a:/) as within-subject fac-
tors. 13 mothers provided useable tokens of both low vowels in IDS and ADS and
were thus included in the analysis. This resulted in a marginally significant effect
of Register (F1,12 = 4.3, p = .06), but not in a significant Register∗Vowel interaction
(F1,12 = 1.3, p = .27). Both /A/ and /a:/ were on average longer in IDS (/A/: m = 65.8
ms, sd = 6.98 ms; /a:/: m = 87.1 ms, sd = 9.79 ms) than in ADS (/A/: m = 54.8 ms,
sd = 5.24 ms; /a:/: m = 80.1 ms, sd = 9.51 ms), but there was no evidence that the
duration contrast between the two low vowels was enhanced in Dutch IDS.
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their infant is learning about (see Malsheen, 1980, for this hypothesis
on the relation between input and children’s own productions). As
infants at 6 months of age show the first signs of language-specific
vowel perception (Polka and Werker, 1994; Kuhl et al., 1992), Dutch
mothers may stop enhancing the vowel space by the time their infant
becomes 11 months old. However, Dutch mothers are similar to Nor-
wegian others in that they both raise F2 and shrink the vowel space in
IDS, and Norwegian mothers do so throughout their infant’s first six
months (Englund and Behne, 2005, 2006). Importantly, Dutch moth-
ers’ F2 was found to be lower, more ADS-like, in the vowels spoken
to their infant at 15 months than in the vowels addressed to their in-
fant at 11 months of age. This is in agreement with the general trend
that affect in mothers’ speech becomes less pronounced as their infant
grows older (Snow, 1977; Sherrod et al., 1978; Bornstein et al., 1992;
Penman et al., 1983; Stern et al., 1983; Amano et al., 2006; Garnica,
1977; Remick, 1976; but see Jacobson et al., 1983). When we consider
this age-related change in the raised F2 in Dutch IDS, this acoustic
characteristic can be best regarded as a carrier of positive affect.

The raised F2 of the vowels and raised spectral frequency of /s/
in Dutch IDS can be regarded as biologically grounded acoustic car-
riers of positive affect. Animals tend to make low-frequency sounds,
which are associated with large bodies, when being hostile, but in
contrast they produce high-frequency sounds, which are more likely
to stem from a small body, when they try to be friendly or appease an
opponent (Morton, 1977). Ohala (1980, 1984) proposes that humans
similarly make use of the relation between sound frequency and body
size to signal their intentions. He argues that the smile has become the
facial expression of goodwill exactly because its acoustic consequence
is a rise of the formant frequencies. Whether the raised F2 and higher
spectral mean of /s/ are purely acoustic side effects of smiling, or
(partly) the result of other articulatory means that mothers employ to
reach these friendly-sounding acoustic effects, is a subject for future
research. However, it is clear that mothers’ positive affect has an effect
on their realization of speech sounds in IDS.

On the other hand, if mothers express less affect to older children,
why was their pitch higher to their infant at 15 months than to their
infant at 11 months? In the present study, most of the children had
started to walk when they came to the lab for their second visit at
15 months. The mothers had to put more effort into maintaining their
infants’ attention throughout the whole session. At the same time, the
15-month-old children took more initiative in playing, which resulted
in more interactive situations. The interactional context is known to
influence mothers’ expression of emotion in IDS (Fernald, 1989; Pa-
poušek et al., 1991; Stern et al., 1982; Katz et al., 1996). During the
infants’ first year, the rated affect and the acoustic pitch characteris-
tics of infant-directed intonation contours are closely related to the
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infants’ developmental stage (Stern et al., 1983; Kitamura et al., 2002;
Kitamura and Burnham, 2003). A relatively high pitch and large pitch
range in IDS are for example associated with a bid for attention and
playing a game (Fernald, 1989) and the larger pitch range in the
speech to 9-month-olds in Australian-English IDS has been related to
the more directive speech to infants of that age (Kitamura and Burn-
ham, 2003). In the present study, the 15-month old infants’ new abil-
ities and behaviors created a different communicative setting, which
enhanced their mothers’ use of pitch (cf. Sherrod et al., 1978; Penman
et al., 1983). Therefore, it appears that in Dutch IDS the raised F2 pri-
marily expresses affect, whereas pitch is more strongly related to the
communicative context.

Interestingly, in some of the prior studies that primarily reported
on the overall enhancement of the vowel space, raised formant fre-
quencies can be observed as well. Specifically, the vowel space en-
hancement in Australian-English IDS (Burnham et al., 2002) and Swe-
dish IDS (Kuhl et al., 1992) seems due to the formants of /i/ and
/a/ being raised more than those of /u/. This same pattern of vowel-
specific formant changes is observed in German smiled speech (Fagel,
2010).7 Even if mothers enhance the vowel space in IDS, this may be
related to the affective characteristics of IDS. An overall lowering of
formant frequencies in English IDS can be observed in the results
from Lam and Kitamura (2010) and Uther et al. (2007). Formant low-
ering is a result of lip protrusion (Fant, 1960). Lip protrusion is the
main characteristic of a comforting facial expression that is specific to
interactions with infants (Stern, 1974; Chong et al., 2003). Investigat-
ing why mothers sometimes happily raise their formant frequencies
in IDS and soothingly lower them in other studies, and why positive
affect would lead to a raised F2 of back vowels and smaller vowel
space in Dutch and Norwegian IDS, and to a raised F2 of front vow-
els and larger vowel space in Australian-English and Swedish IDS8,
will provide detailed insight in the impact that interactive context and
affective state have cross-linguistically on the realization of speech
sounds in IDS9.

7 Thanks to Alex Cristiá for bringing this to my attention.
8 Anecdotical evidence from three native speakers of English in the Netherlands sug-

gests they perceive the vowel changes in Dutch IDS as overly childish. From this,
one could argue that American-English IDS is primarily happy, whereas Dutch IDS
is primarily sweet.

9 With respect to the recording context, Englund and Behne (2005) specifically propose
that face-to-face contact between mother and child will lead to mothers’ excessive
smiling, resulting in a shift of the vowel space to higher formant frequencies. Indeed,
Englund and Behne (2005) and Green et al. (2010) recorded IDS in a face-to-face
situation and observed a raising of the vowel formants in IDS, which is especially
remarkable in the latter study on American English. As the current study employed
free-play sessions with toys, as was done in (Kuhl et al., 1997; Burnham et al., 2002;
Uther et al., 2007) the raised F2 in Dutch IDS cannot be regarded an artifact of the
recording setting.
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Ideally, such cross-linguistic comparisons of IDS would take into
account more speech sounds than only vowels. An increase of the
spectral energy of /s/ is also observed in American-English IDS to in-
fants of 13 months old and results in enhancement of the contrast
between /s/ and /S/10 (Cristiá, 2010). In combination with the re-
peatedly observed enhanced vowel space in American-English IDS,
Cristiá’s (2010) finding of a higher spectral energy of /s/ indicated
that enhancement of speech sound contrasts is a feature of American-
English IDS in addition to enhancement of the vowel space (but see
Julien and Munson, 2012). In the context of the raised formant fre-
quencies of Dutch IDS, however, the higher spectral frequency of /s/
in Dutch IDS is more readily interpreted as a consequence of affective
speech. This comparison underscores that changes in the realization
of speech sounds in IDS are best understood if the realization of mul-
tiple speech sounds is considered.

One aspect of the present results that requires further investigation
is to what extent Dutch caregivers’ raising of F2 in IDS depends on
the sex of the child or the caregiver. Kitamura et al. (2002) show that
the infants’ sex impacts the pitch modulations in IDS, with speech
to girls having more modulated pitch characteristics than speech to
boys. Warren-Leubecker and Bohannon (1984) find that fathers make
stronger pitch modifications than mothers to 2-year old children, but
speak similarly to 5-year olds and adults. Because the present study
included more female than male infants and only female caregivers,
these questions cannot be addressed.

A second issue raised by the present results is the effect of a higher
F2 in IDS on infants’ preference for IDS11 and their language devel-
opment. Since very young infants only prefer IDS over ADS when
they can listen to the F0 as well as the formant characteristics (Pan-
neton Cooper and Aslin, 1994), there is some evidence that formant
frequencies play a role in infants’ preferences for certain speech types.
The raised F2 in Dutch IDS resulted in a smaller vowel space. Dutch
mothers thus do not promote their child’s language development by
enhancing the vowel space (cf. Liu et al., 2003). However, if infants
recognize a raised F2 as an expression of positive affect, this char-
acteristic of Dutch IDS may attract infants’ attention to the speech
sounds and promote learning. Furthermore, vowels with higher for-
mants resemble children’s own vowel productions and may provide
infants with a suitable production model (for a similar suggestion re-
garding segmental simplifications, see Ferguson, 1977, and Lee et al.,
2008). Mothers may promote their child’s language development in
various ways, and enhancing positive affect trough a rise of F2 can be
effective via different routes.

10 E.g. /s/ as in sand and /S/ as in shark.
11 Thanks to Alex Cristiá for clearly stating this question.
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To conclude, the results from the present study once more confirm
that IDS is a special register in many languages, but that the specific
characteristics of this register differ from language to language (e.g.
Fernald et al., 1989) and change with the infants’ age (Kitamura et al.,
2002). In Dutch IDS, mothers’ positive affect is reflected in a raised
F2 of the vowels. This study has brought us one step closer to under-
standing how mothers cross-linguistically express affect to their baby
in speech.
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2.5 Appendix : Details of the analysis

2.5.1 Vowels

Formants were automatically measured using the Burg-algorithm (Chil-
ders, 1987; Press et al., 1992) as implemented in Praat, with a window
length of 25 ms. For automatic formant measurements, the number
of formants and the formant ceiling must be specified. Escudero et al.
(2009b) have proposed a procedure for estimating optimal ceilings
for each vowel of each speaker in a corpus. Because the number of
vowel tokens varied across the speakers in the present corpus, the
average optimal formant ceilings for the female vowels in Escudero
et al.’s (2009b) analysis of Portuguese vowels were adopted in the
present analyses. The ceiling for /i/ was set at 6001 Hz, the ceiling
for /u/ at 5090 Hz, and the ceiling for /a:/ and /A/ at 5577 Hz, which
was Escudero et al.’s optimal ceiling for /a/, the only low vowel in
Portuguese.

2.5.2 The fricative /s/

The Center of Gravity was measured using a power of 2, to weigh the
energy by the power spectrum.

2.5.3 Pitch

The F0 curve of each phrase was estimated in hertz using the cross-
correlation method. The pitch range for the analysis was set at 120–
400 Hz. If the analysis of the median F0 failed for a phrase, all three
pitch measures were conducted again with a pitch floor of 75 Hz. If
the analysis still failed, the criterion for voicedness was lowered from
0.45 to 0.35 (Escudero et al., 2009b, were followed in this procedure).



3
L E A R N I N G P H O N E M E S F R O M M U LT I P L E
A U D I T O RY C U E S : D U T C H I N FA N T S ’ L A N G U A G E
I N P U T A N D P E R C E P T I O N

An adapted version of this chapter is:
Benders, T. (under review).

Abstract

To achieve native-like speech-sound perception, infants need to inte-
grate the multiple acoustic dimensions that signal phoneme contrasts.
The present study investigates Dutch 9-month-olds’, 15-month-olds’
and adults’ perception of /A/ and /a:/, which differ in vowel quality
and duration. This is done by testing their perception of vowel sounds
with typical and atypical combinations of vowel quality and duration.
Both categorization behavior in the two-choice categorization task, as
measured by reaction times, and attention allocation, as measured by
pupil dilations, were investigated. Dutch adults consistently catego-
rized atypical [A:] as the vowel /A/, but their categorization of atyp-
ical [a] depended on the context that was created during training.
Dutch 15-month-old infants’ attention allocation changed in reaction
to atypical [A:] and [a] in comparison to their reaction to typical [A]
and [a:]. The influence of context on infants’ attention allocation mir-
rored the effect of context on adults’ categorization behavior. Infants’
change in attention allocation to the atypical vowel sounds shows
that their vowel representations are specified for the combinations
of vowel duration and quality. Additionally, infant’s receptive vocab-
ulary was related to their attention allocation to the atypical vowel
sounds. This study shows that 15-month-old infants can integrate the
dimensions of vowel duration and vowel quality in their vowel rep-
resentations, and that the detailed knowledge of rare and ambiguous
cue combinations develops hand in hand with vocabulary size.
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3.1 Introduction

A phoneme was originally defined as a speech sound that poten-
tially distinguishes between word meanings (Trubetzkoy, 1967). Fol-
lowing that original definition of a phoneme, it was difficult to en-
vision how language-specific phoneme perception was acquired by
infants as young as 6 months of age (Polka and Werker, 1994; Kuhl
et al., 1992), who hardly know any word meanings (but see Tincoff
and Jusczyk, 1999; Bergelson and Swingley, 2012). A second inher-
ent aspect of a listener’s phonological knowledge is how the discrete
phoneme representations are associated with the continuous audi-
tory cues (Boersma, 1998; Pierrehumbert, 2003). Since infants possess
the distributional learning mechanism to induce categories bottom-
up, from the clustering of speech sounds in auditory space (Maye
et al., 2002, 2008), most current theories on early language acquisi-
tion assume that infants initially acquire their phoneme perception
from the continuous speech sound clusters in their input (Pierrehum-
bert, 2003; Werker and Curtin, 2005; Kuhl et al., 2008). If indeed this
distributional-learning mechanism underlies infants’ phoneme cate-
gories, it must be possible to directly explain infants’ phoneme per-
ception from the speech-sound clusters in their input.

The contrast between phonemes is typically signaled by multiple
auditory cues (Lisker, 1986). Therefore, in order to get a good impres-
sion of the distribution of speech sounds from which infants learn,
the phonemes must be investigated in an auditory space defined by
multiple auditory dimensions. The relative attention listeners pay to
the multiple cues that signal a contrast, namely the cue weighting, dif-
fers between languages –English listeners pay relatively more atten-
tion to vowel duration than French listeners (Gottfried and Beddor,
1988), and dialects –Southern English listeners pay relatively more
attention to vowel duration than Scottish listeners (Escudero and
Boersma, 2004). Children only slowly acquire their native language’s
cue weighting (Nittrouer, 1992; Nittrouer and Lowenstein, 2009, refer-
ences below for the Dutch /a:/–/A/ contrast) and perform phoneme
classification less robustly than adults (Hazan and Barrett, 2000). In
order to understand infants’ acquisition of phoneme categories it is
necessary to understand whether, when, and how they establish the
associations between the discrete phoneme representations and all
relevant auditory cues. Because infants’ phoneme discrimination is
mostly tested between typical examples of the phonemes under con-
sideration, which differ along all relevant auditory dimensions, little
is known about this issue.

The current study investigates Dutch infants’ acquisition of the
phonemically contrastive vowels /A/ and /a:/, which differ in vowel
quality and duration. Study 1 investigates how the vowel quality and
duration of /A/ and /a:/ are distributed in a corpus of Dutch IDS.
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Study 2 tests Dutch infants’ sensitivity to the vowel quality difference
and the duration difference between /A/ and /a:/ in a speech discrim-
ination task. On the basis of this combination of studies, we can begin
to understand in detail how infants acquire their early phoneme cat-
egories from the clusters of speech sounds in their native language
input.

3.1.1 Distributional learning of phoneme categories

In laboratory experiments of distributional learning, infants that have
been briefly exposed to a bimodal distribution of stimuli along an
auditory continuum, a distribution with two local maxima, subse-
quently discriminate between two sounds from the opposite ends in
the distribution. On the other hand, infants that have been exposed
to a monomodal distribution, a distribution with a single local maxi-
mum, subsequently treat all sounds along the continuum as equiv-
alent (Maye et al., 2002, 2008; Yoshida et al., 2010). Distributional
learning can thus be defined as learning a category for each local
maximum in an auditory distribution.

While there is agreement between theories on the importance of dis-
tributional learning, researchers are still in dispute about the nature
of the categories that emerge from this learning mechanism. Some
propose that infants first create separate categories for the individual
auditory dimensions and later combine these single-dimension cate-
gories into phoneme representations that are associated with multiple
auditory cues (Boersma et al., 2003; Maye et al., 2008). Within this pro-
posal, it is tacitly assumed that infants are exposed to speech sound
distributions that contain one local maximum per category along each
individual auditory dimension. Other researchers argue that infants
store clusters of exemplars (Pierrehumbert, 2003; Werker and Curtin,
2005), which means that infants immediately form categories that are
defined by multiple auditory cues. This hypothesis puts fewer restric-
tions on the infants’ input, as it eliminates the need for a local maxi-
mum per category along each individual auditory dimension, as long
as there is one local maximum per category in the multidimensional
auditory distribution that is defined by all auditory cues.

Although several earlier studies of distributional learning from infant-
directed speech have studied learning on the basis of input from one
speaker at a time (De Boer and Kuhl, 2003; Vallabha et al., 2007),
a mother is not the only person that interacts with her infant. For
example, in more than half of the Dutch families, children between
zero and four years of age visit daycare at least one day a week.1

1 Source: Centraal Bureau voor de Statistiek (Statistics Netherlands) via
http://www.cbs.nl/nl-nl/menu/themas/arbeid-sociale-
zekerheid/publicaties/artikelen/archief/2010/2010-3216-wm.htm [last viewed:
12 July 2012].
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Since speakers have different vocal tracts, input from multiple speak-
ers may diffuse the input distributions from which infants learn. Es-
cudero and Bion (2007) found that it was problematic for artificial
language learners to categorize input from new speakers if they were
trained and tested on input data from multiple speakers, and that
the performance of the learners was enhanced if they could perform
some form of speaker normalization. Infants may be able to perform
some form of speaker normalization (Kuhl, 1979; Fowler et al., 1990),
but at the same time retain indexical information in speech process-
ing (Houston and Jusczyk, 2003; Singh et al., 2008). Therefore, an im-
portant second issue in the discussion on distributional learning is to
what extent distributional learning on the basis of multiple speakers
requires speaker normalization.

The first study investigates the distributions of /A/ and /a:/ as
they appear in Dutch IDS. From these distributions it can be inferred
if Dutch infant can learn /A/ and /a:/ from their natural input by
one-dimensional distributional learning, if multidimensional distri-
butional learning necessary, or if distributional learning would not
suffice for the acquisition of this contrast (cf. Swingley, 2009; Feld-
man et al., 009b). A comparison between input distributions with
normalized and non-normalized speakers can give insight into the
extent to which infants must be able to normalize between speakers
for successful distributional learning. Finally, on the basis of these
distributions, predictions can be formulated about Dutch infants’ per-
ception and weighting of vowel quality and duration as cues to the
/A/–/a:/ contrast, which are tested in the second study.

3.1.2 Infants’ perception of vowel quality and duration

Early phoneme representations may be shaped by the distribution
of speech sounds in the infant’s environment, but possibly also by
perceptual biases. In that respect, it appears that infants’ language-
specific perception of vowel quality and vowel duration develop at a
different pace.

By 6 months of age, infants already show language-specific sensi-
tivity to vowel quality, as they lose the ability to discriminate between
non-native vowel quality contrasts (Polka and Werker, 1994), and only
show a perceptual magnet effect around native-language vowel pro-
totypes (Kuhl et al., 1992). It is less clear when infants’ perception of
vowel duration starts to conform to the role duration plays in their na-
tive language. German, Dutch, and English infants up to 12 months
of age are all sensitive to vowel duration differences in speech per-
ception (Bohn and Polka, 2001; Dietrich, 2006; Mugitani et al., 2009),
and for German infants it has been found that they are more sen-
sitive to differences in duration than to differences in vowel quality
or formant transitions (Bohn and Polka, 2001). Since German adults
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rely on vowel duration to a lesser extent than German infants (Bohn
and Polka, 2001; Sendlmeier, 1981), and Dutch and English adults
rely primarily on vowel quality in vowel perception (Van Heuven
et al., 1986; Flege et al., 1997), vowel duration is likely dominant for
young listeners because it is a psychoacoustically salient cue (Bohn,
1995). English 18-month-olds are still capable of distinguishing be-
tween non-native long and short vowels in a vowel discrimination
task (Mugitani et al., 2009). When a difference between English and
Japanese infants’ perception of duration contrasts is observed at 18

months, it is the Japanese infants that show reduced discrimination
between the long and short vowels (Mugitani et al., 2009). This is
remarkable, as Japanese infants acquire a language with phonologi-
cal vowel length (Vance, 1987). In the case of the psychoacoustically
salient duration cue, a temporary loss in sensitivity may thus reveal
the acquisition of language-specific perception.

The second study investigates the contribution of vowel quality and
vowel duration to Dutch infants’ discrimination between /A/ and /a:/
by testing how Dutch infants discriminate between vowels that differ
in only vowel duration, only vowel quality, or in both cues. With par-
ticipants of 11 and 15 months of age, this study addresses the range in
between the age at which strong reliance on vowel duration is found
(Bohn and Polka, 2001; Dietrich, 2006; Mugitani et al., 2009) and the
age at which the first signs of language-specific perception of vowel
duration are found (Mugitani et al., 2009; cf. Dietrich et al., 2007). The
second study tests to what extent language input and perceptual bi-
ases determine infants’ speech perception just before and after the
first birthday.

3.1.3 Dutch /A/ and /a:/

Dutch differs from English in that it has consistent oppositions be-
tween short and long vowels, and differs from Japanese in that the
vowel duration differences are accompanied by consistent vowel qual-
ity differences (Moulton, 1962; Adank et al., 2004). The low vow-
els /A/ and /a:/ differ acoustically in vowel quality and vowel du-
ration, as /a:/ is produced with a higher average first and second
formant (F1 and F2) and a longer duration than /A/ (Adank et al.,
2004; Nooteboom and Doodeman, 1980; Rietveld et al., 2003). /A/
and /a:/ are close neighbors in the Dutch vowel space defined by F1

and F2 and are more easily confused with each other than with other
vowels (Smits et al., 2003). Furthermore, /A/ and /a:/ are the most
frequent full vowels in Dutch child-directed speech (Versteegh and
Boves, tion).

Adult Dutch listeners rely on both vowel quality and duration
when classifying stimuli as /A/ or /a:/ (Gerrits, 2001; Nooteboom
and Cohen, 1984), but weigh vowel quality heavier than vowel du-
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ration (Van Heuven et al., 1986; Escudero et al., 2009a; Brasileiro,
2009). Dutch school-aged children similarly use both vowel quality
and vowel duration in their perception of /A/ and /a:/ (Gerrits, 2001),
while weighing vowel quality heaviest (Brasileiro, 2009; Giezen et al.,
2010). Although children use the cues less efficiently than adults (Ger-
rits, 2001; Heeren, 2006; Brasileiro, 2009; Giezen et al., 2010), Dutch
children’s phoneme categories are thus associated with both these
auditory cues. Dutch infants of 7.5 to 12 months of age are sensitive
to vowel duration in speech sound perception (Dietrich, 2006). Dutch
18-month-olds can use vowel duration as a cue to distinguish word
meanings (Dietrich et al., 2007). It is as yet unknown to what extent
Dutch infants are sensitive to the vowel quality difference between
/A/ and /a:/.2

3.1.4 Summary of study objectives

The first study investigates to what extent the auditory distribution
of /A/ and /a : / in Dutch IDS enables infants to acquire the vowel
categories through distributional learning. The second study investi-
gates whether the/A/ and /a:/ categories of Dutch infants of 11 and
15 months of age are dominated by the early acquired vowel qual-
ity cue, the salient vowel duration cue, or associated with both cues.
These studies together test whether infants’ perception of a vowel
contrast can be directly explained from the auditory distribution of
speech sounds in their input. This is a central prediction from the
hypothesis that infants acquire their phoneme categories through dis-
tributional learning.

3.2 Study 1 : /A/ and /a:/ in Dutch infant-directed speech

This section investigates the clustering of /A/ and /a:/ as they appear
in the input that Dutch infants hear.

For this purpose, I investigate only IDS rather than adult-directed
speech (ADS) or a combination of both registers. The clarity of a
mother’s speech in IDS, as measured by the size of her vowel space
in IDS as compared to ADS, is related to her infant’s development
of language-specific speech sound perception (Liu et al., 2003) and a
mother’s clarity of /s/ in IDS is related to her infant’s discrimination
between /s/ and /S/3 (Cristiá, 2011). Furthermore, infants’ phoneme

2 Dietrich (2006) found that Dutch infants trained to turn their head for [tAk] turned
their heads less when they heard [tEk], a syllable with the correct vowel duration but
incorrect vowel quality. These results show that Dutch infants are sensitive to some
aspects of the vowel quality of /A/, but since the vowel quality difference between
/A/ and the mid-low vowel /E/ is larger than the difference between the low vowels
/A/ and /a:/, it is as yet unknown to what extent Dutch infants know the more
subtle vowel quality difference between the two low vowels.

3 /s/ as in ‘sand’ and /S/ as in ‘shark’
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perception benefits more from live interactions than from speech they
overhear (Kuhl et al., 2003), and the live interactions in infants’ daily
lives involve IDS. Since IDS appears to play a crucial role in infants’
phoneme acquisition, this section describes the auditory distributions
that the vowels /A/ and /a:/ form in IDS.

As distributional learning is performed without access to the to-
kens’ category labels, the input for distributional learning is the pooled
distribution over all tokens. If infants learn their native phonology
by inducing categories for the individual auditory cues, as proposed
by Boersma et al. (2003) and Maye et al. (2008), the pooled distribu-
tion of the /A/s and /a:/s in Dutch IDS should be bimodal along
the vowel quality dimension and along the duration dimension. If
infants form complex categories from multidimensional input (Pier-
rehumbert, 2003; Werker and Curtin, 2005), the /A/ sounds must form
a different cluster from the /a:/ sounds in an auditory space defined
by both vowel quality and duration. In that scenario, the sounds do
not need to be distributed bimodally along the individual auditory
dimensions. If there are no local maxima in the input distribution,
distributional may not be sufficient to learn /A/ and /a:/ from Dutch
IDS (Swingley, 2009; Feldman et al., 009b).

3.2.1 Method

3.2.1.1 Materials

The /A/ and /a:/ tokens reported in this study come from the corpus
of Dutch IDS collected in Chapter 2. The corpus contained 791 tokens
of the vowels /A/ and /a:/ (470 /A/ tokens and 321 /a:/ tokens) ut-
tered with a normal voice quality in an infant-directed register. The
tokens did not overlap with other voices or sounds. Tokens spoken to
the infants at 11 and 15 months of age were included.4 The number of
tokens per mother ranged from 16 to 102; the number of /A/ tokens
ranged from 5 to 65; and the number of /a:/ tokens ranged from 5 to
54. The unequal number of tokens in the categories was due to popu-
larity of two of the words with the vowel /A/, namely tas (‘bag’; 162

tokens, 20.48% of the corpus) and appel (‘appel’, 100 tokens, 12.64%
of the corpus). Note that in Dutch child-directed speech, these two
vowel have by and large the same frequency (Versteegh and Boves,
tion). Two undergraduate students that received additional training
prior to the segmentation task marked the boundaries of the vowels
in the target words for the measurement of duration. To assess relia-
bility, recordings of 7 mothers (3 mothers with her infant 11 months
of age, 3 mothers with her infant 15 months of age, and 1 mother
with her infant at both ages) were coded by both coders.

4 The results on the basis of the speech to only the infants at 11 months of age, or
only the infants at 15 months of age were qualitatively identical to the results as
presented here.
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Reliability could be assessed for 432 segments (54.61% of the total
corpus) that were coded as /A/ or /a:/ by one of the coders. Of these
segments, 24 (5.56%) were only segmented by one of the coders. For
the remaining 408 segments, the two coders agreed on the labeling
of 407 (0.74%) segments. The mean duration difference between the
vowels coded by both coders was 14 ms for /A/ and 21 ms for /a:/.
For the vowel quality, F2

5 of the vowel tokens was measured automat-
ically in Praat (Boersma and Weenink, 2011).

3.2.1.2 Data preparation

In order to place the measures on psychoacoustic scales, F2 in Hertz
was converted to the psychoacoustic Bark scale (Zwicker, 1986) fol-
lowing Equation 2 and the vowels’ duration in milliseconds was con-
verted to a log-scale (base e).

Bark(x) = 7 log

Hz(x)
650

+

√
1 +

Hz(x)
650

2
 (2)

Two datasets were prepared. The first was the ‘raw’ dataset with
the input tokens from all speakers on the psychoacoustic scales of F2

in Bark and Duration in log duration. The mean of the average F2

of /A/ and the average F2 of /a:/ in the corpus was computed and
subtracted from the F2 of all vowel tokens in the corpus. Similarly,
the mean of the average log duration of /A/ and the average log dura-
tion of /a:/ in the corpus was computed and subtracted from the log
duration of all vowel tokens in the corpus. The resulting values will
be referred to as F2Raw and DurRaw and were below 0 in most /A/
tokens and above 0 in most /a:/ tokens.

The second dataset was a ‘normalized’ dataset with the values nor-
malized between speakers for vocal tract length and overall speaking
rate. To create the normalized dataset, a normalization procedure was
followed that was highly similar to the procedure proposed in Cole
et al. (2010) and McMurray et al. (2011), although based on average
values instead of regression coefficients. For each mother, the median
F2 of her /A/ tokens and the median F2 of her /a:/ tokens was com-
puted and the average of those medians was subtracted from the F2 of
all her vowel tokens. As a result, the vowels with a lower-than-average
F2 had a value below 0, and the vowels with a higher-than-average
F2 had a value above 0. Similarly, the median log duration of her /A/
tokens and her /a:/ tokens was computed and the average of these

5 For ease of presentation, only F2 was regarded as the spectral cue to the Dutch
/A/–/a:/ contrast. This choice for F2 as the spectral dimension was based on the
observation that in Dutch the mean /A/ and /a:/ are further apart in F2 than in either
F1 or F3 (Adank et al., 2004). Furthermore, Moulton (1962), for example, considered
/A/ and /a:/ as mainly different in vowel backness, the acoustic correlate of which
is F2, in addition to the duration difference.
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medians was subtracted from the log duration of all her tokens. The
resulting values will be referred to as F2Norm6 and DurNorm. In the
normalized dataset, F2Norm and DurNorm were below 0 in most /A/
tokens and above 0 in most /a:/ tokens.

Outlying data points may result from measurement errors and the
clustering algorithm that is performed in the results section is sensi-
tive to outliers. The data in the raw and in the normalized dataset
were cleaned for outliers separately. First univariate and then multi-
variate outliers were removed within each of the two categories, with
the tokens pooled across all speakers. Univariate outliers within each
category were defined as tokens with a value below Q1− 1.5 ∗ IQR
or above Q3+ 1.5 ∗ IQR, where Q1 is the first quartile, Q3 is the third
quartile, and the IQR is the inter-quartile range Q3−Q1 (Tukey, 1977).
After removal of the univariate outliers, multivariate outliers were
identified as tokens with a Mahalanobis distance from the mean (Ma-
halanobis, 1936) greater than 10.828 (p < .001, Tabachnick and Fidell,
2007).

In the raw dataset, a total of 67 tokens were identified as either
univariate or multivariate outliers, with 411 /A/ tokens and 313 /a:/
tokens in the final corpus with raw input values. In the normalized
dataset, 64 tokens were outliers, leaving 414 /A/ tokens and 313 /a:/
tokens in the final corpus with normalized input values. 7

3.2.1.3 Analysis

The analyses presented here are performed for the raw and the nor-
malized corpus separately.

The number of local maxima is investigated in the pooled distribu-
tion of the /A/s and /a:/s in the corpus. Schwartzman et al. (2011)
have proposed an algorithm for finding the number of local max-
ima in a one-dimensional distribution. In this algorithm, first a ker-
nel smoothing is applied and then the number of peaks and their
locations is mathematically determined from the smoothed function.

6 Extrinsic z-score transformations, a common and useful method to perform speaker
normalization (Johnson, 2005; Adank et al., 2004), were not appropriate for the cur-
rent data, as the number of /A/ tokens and /a:/ tokens varied within and across
mothers. Results with intrinsic normalization, namely F3–F2 were highly compara-
ble to those reported here

7 In the raw dataset, the number of excluded tokens was on average 3.7 (range: 0–9)
per mother. The percentage of excluded tokens was on average 8.8 (range: 0–20) per
mother. In the normalized dataset, the number of excluded tokens was on average
3.6 (range: 0–9) per mother. The percentage of excluded tokens was on average 7.7
(range: 0–17.2) per mother. In both the raw and the normalized dataset, the descrip-
tive statistics and qualitative results on the basis of the uncleaned data were highly
similar to those in the cleaned dataset. The standard deviations, skewness, and kurto-
sis of each vowel were somewhat reduced in the cleaned samples. Also the standard
deviations and kurtosis of the pooled distributions were reduced in the cleaned sam-
ples, as was the skewness of the pooled distribution of F2. The skewness of duration
of the pooled distribution was increased in the cleaned samples.
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Their exact algorithm was not used here, because the number of local
maxima in a one-dimensional as well as in a two-dimensional distri-
bution was required. The applied procedure was heavily based on
Schwartzman et al.’s method.

First, smoothing with a Gaussian kernel was applied to the pooled
distribution of the /A/s and /a:/s to compute a density function. For
the standard deviation of the kernel, a value was chosen that reflects
infants’ discrimination threshold in perception. In adult listeners, the
just-noticeable difference (JND) for formant frequencies is 0.28 Bark
(Kewley-Port and Zheng, 1998) and the adult JND for vowel dura-
tion is estimated to lie around 20% of the vowel duration (Bochner
et al., 1987). School-aged children have JNDs that are almost twice as
large as the JNDs of adults (Elliott et al., 1989; Jensen and Neff, 1993).
Therefore, the bandwidth of the kernel smoothing was set at 0.58

Bark for F2 and at 0.4 times the base-e logarithm of the duration in
ms. The two-dimensional kernel used to smooth the two-dimensional
distribution had these same standard deviations and no covariance.

To investigate the number of local maxima along an individual au-
ditory dimension, a density function was computed for the distribu-
tion along that dimension. Density estimates were obtained from the
smoothed data for 1000 evenly spaced locations along the dimension,
starting at 3 bandwidths below the lowest extreme in the data and
ending at 3 bandwidths above the highest extreme in the data. If a
density estimate for a location was higher than that of its neighbors,
it was considered a local maximum or peak in the data. To investi-
gate the shape of the two-dimensional distribution, two-dimensional
kernel smoothing was applied to the two-dimensional distribution
defined by F2 and duration. Density estimates were obtained for a
two-dimensional grid of 10

6 locations (1000 F2 values times 1000 du-
ration values) and a local maximum was defined as a location that
had a higher density than its eight neighbors (2 horizontal neighbors
+ 2 vertical neighbors + 4 diagonal neighbors).

3.2.2 Results

The vowels /A/ and /a:/ differed in vowel quality in the present
sample, with /A/ having a lower average F2 than /a:/ (Table 16,
Figures 5 and 6). Standard deviations in F2 were not equal across
the two vowels, as the F2 distribution of /A/ was broader than the
F2 distribution of /a:/ (Raw data: Levene’s test for equality of vari-
ances F[1, 722] = 19.56, p < .001. Normalized data: Levene’s test
for equality of variances F[1, 725] = 8.18, p < .004, Figure 5a). The
pooled distribution of the F2 values of the two vowels was found to
have one local maximum and was thus monomodal (Raw data: lo-
cal maximum at 0.07. Normalized data: peak at 0.12, Figure 5b). In
the present sample, /A/ and /a:/ differed in duration as well, as /A/
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/A/ /a:/ Pooled

F2 Dur F2 Dur F2 Dur

Raw

mean -0.48 -0.34 0.47 0.36 -0.07 -0.04

sd 0.74 0.33 0.60 0.49 0.83 0.54

skewness -0.02 0.02 0.19 -0.02 -0.17 0.52

kurtosis -0.67 -0.64 0.30 0.75 -0.32 0.13

Norm

mean -0.39 -0.33 0.55 0.39 0.02 -0.02

sd 0.68 0.30 0.61 0.45 0.80 0.51

skewness -0.07 0.03 0.11 0.17 -0.07 0.58

kurtosis -0.55 -0.62 0.85 0.45 -0.18 0.07

Table 6: The descriptive statistics of the vowels /A/ and /a:/ in Dutch IDS
(first two columns) and the descriptives of the pooled distribu-
tion of all /A/ and /a:/ tokens in the corpus (third column). The
results are presented separately for the ‘raw’ corpus (top) and the
‘normalized’ corpus (bottom).

was shorter than /a:/. The duration of /A/ was less variable than the
duration of /a:/ (Raw data: Levene’s test for equality of variances
F[1, 722] = 26.67, p < .001. Normalized data: Levene’s test for equal-
ity of variances F[1, 725] = 32.99, p < .001). The narrower duration
distribution of /A/ fell within the values of the broader duration dis-
tribution of /a:/ (Figure 5a). The pooled distribution of the duration
values of /A/ and /a:/ had only one local maximum (Raw data: local
maximum at −0.14. Normalized data: peak at −0.13, Figure 5b).

The two-dimensional distribution of the raw corpus had 24 local
maxima. Of these local maxima, 19 had a density below 0.25 and fell
outside the region of the typical /A/ and /a:/. These local maxima
represented small irregularities in the distributions and will not be
discussed further. The F2Raw and DurRaw of the 5 remaining local
maxima are given in Table 7. These 5 local maxima could be manually
divided into 3 local maxima with /A/-like values and 2 local maxima
with /a:/-like values. In other words, tokens with a low F2 and short
duration clustered together and formed what could be called the local
maximum for /A/. Tokens with a high F2 and long duration clustered
together and formed the local maximum for /a:/.

The two-dimensional distribution had 20 local maxima. Of these lo-
cal maxima, 14 had a density below 0.25 and fell outside the region of
the typical /A/ and /a:/. Again, these local maxima represented small
irregularities. The F2 and duration of the 6 remaining local maxima
are given in Table 7. These 6 local maxima could be divided into a



54 learning phonemes from multiple auditory cues

−2 0 2

F2Norm

a) vowels separated

−1 0 1

b) vowels pooled and smoothed density

DurNorm

H
is

to
g

ra
m

s
: 

R
e

la
ti
ve

 f
re

q
u

e
n

c
y
 i
n

 t
h

e
 s

a
m

p
le

C
u

rv
e

: 
S

m
o

o
th

e
d

 d
e

n
s
it
y

=/a:/

=/A/

Figure 5: The relative frequency of the F2Norm values (left panels) and
the DurNorm values (right panels) in the corpus. a) The relative
frequencies for /A/ (gray, rising lines) and /a:/ (black, falling lines)
separately. b) The solid gray histograms give the relative frequen-
cies in the pooled sample, with /A/ and /a:/ weighted to correct
for the frequency difference. The lines give the smoothed density
function, computed over the pooled but unweighted sample.

pair with /A/-like values, a pair with /a:/-like values, and a pair with
intermediate values. Tokens with a low F2 and short duration clus-
tered together and formed what could be called the local maximum
for /A/. Tokens with a high F2 and long duration clustered together
and formed the local maximum for /a:/. The tokens at the bound-
ary between the two categories formed a third local maximum. The
smoothed density function of the two-dimensional distribution of the
normalized dataset is given in Figure 6c.

In order to evaluate whether categories for /A/ and /a:/ could be
induced from these clusters, a Mixture-of-Gaussians (MoG) model
was fitted to the data. The assumption behind MoG modeling is that
the observed data are generated by a set of Gaussian functions, for
which the parameters (means and covariance matrix) are estimated
from the data. The MoG method models unsupervised distributional
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Figure 6: The distribution of the /A/ tokens and /a:/ tokens from the
corpus in an auditory space defined by F2Norm and DurNorm.
a) Separated for /A/ (gray filled triangles) and /a:/ (black empty
squares). b) The pooled distribution (in gray). c) The smoothed
density over the pooled distribution. The black stars indicate the
local maxima with a density higher than 0.25 and the gray stars the
local maxima with a density below 0.25. The size of the symbols is
proportional to the density of the local maximum. d) The tokens
from the corpus as classified by the Mixture-of-Gaussians (in very
light gray filled triangles and light gray empty squares). The cen-
ters of the ellipses display the means of the categories estimated
by the model; the axes of the ellipses display the variances).

learning, because an MoG model is not provided with the category
labels of the tokens. The number of categories in the data and the
parameters of these categories were estimated with the Expectation–
Maximization algorithm (Dempster et al., 1977) as implemented in
the MCLUST for R software package (Fraley and Raftery, 2006) in the
statistical software R (R Development Core Team, 2004).8 According

8 Recently, algorithms based on gradient descent have been proposed that estimate the
number of Gaussians and their parameters on the basis of incrementally incoming
data (Vallabha et al., 2007; McMurray et al., 2009a). Such an algorithm and a neural-
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Raw Norm

F2 Dur Density F2 Dur Density

/A/-like
-0.549 -0.490 0.367 -0.569 -0.441 0.440

-0.423 -0.073 0.374 -0.003 -0.446 0.356

-0.139 -0.157 0.378

intermediate
-0.053 -0.070 0.431

0.316 -0.152 0.407

/a:/-like
0.412 0.404 0.358 0.507 0.397 0.339

0.506 -0.057 0.404 0.794 0.108 0.300

Table 7: The local maxima in the smoothed two-dimensional distribution
with a density over 0.25. F2 and Duration are given for the location
that is identified as the local maximum. Based on these values, the
local maxima are classified as being /A/-like, being /a:/-like, or hav-
ing intermediate values. Results are given for the raw corpus (left)
and the normalized corpus (right).

to the Bayesian Information Criterion (BIC, Schwarz, 1978), the best
fit to the raw data as well as to the normalized data was a mixture
of two Gaussian functions with different weighting probabilities, dif-
ferent ratios between the variances along the two dimensions, and
an orientation parallel to the axes.9 For both the raw and normalized
corpus, the MoG found an /A/ category, with the average F2 and
Duration below zero, and an /a:/ category, with the average F2 and
Duration above zero (Figure 6d).

network implementation of distributional learning are applied in Chapter 5. The
procedure in MCLUST for R is somewhat simpler, as it fits a set of 1 to 9 Gaussian
functions to the full data set using Expectation–Maximization and then determines
from the Bayesian Information Criterion (Schwarz, 1978) which mixture of functions
is most likely to have generated the data. For the present purposes, the procedure
provided in MCLUST for R was deemed sufficient.

9 With the uncleaned data, mixtures of three Gaussians provided the best fit to both
the raw and the normalized data. In both datasets, the third Gaussian captured
the peripheral /A/ tokens that were widely distributed and mostly excluded in the
cleaning procedure. A different measure for model selection is the Akaike Informa-
tion Criterion (AIC, Akaike, 1973). It was implemented separately to allow for an
assessment of the effect of the selection criterion on the results. Following the AIC,
the best fit to the raw cleaned data was a mixture of three Gaussian functions; the
best fit to the raw uncleaned data was a mixture of nine Gaussians; the best fit to the
normalized cleaned data was a different mixture of nine Gaussians; and the best fit
to the normalized uncleaned data was a mixture of four Gaussians. The inconsistent
results with the AIC lie beyond the scope of this chapter. Given that the models se-
lected with the BIC were more consistent between the raw and normalized datasets,
as well as between the cleaned and uncleaned datasets, only the models selected on
the basis of the BIC are presented and discussed in the main text.
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To test how well the categories that the MoGs found could be gen-
eralized to a new speaker, the MoGs were evaluated with a leave-one-
out procedure. In this procedure, the MoG was fitted to a training set
with the tokens of 17 mothers, while the tokens of the 18th mother
were kept apart as a test set. After the model was fitted to the train-
ing set, the model’s classification of the tokens was compared to the
actual categories of the tokens to get a proportion of correct classifica-
tions. This proportion of correct classifications was obtained for both
the training set and the test set. The tokens of each of the 18 moth-
ers were left out in one evaluation, which resulted in 18 leave-one-out
evaluations. The leave-one out evaluations were conducted separately
for the raw and the normalized corpus.

For both the raw and the normalized corpus, all 18 leave-one-out
evaluations resulted in a mixture of two Gaussians as the best fit to
the data. This shows that the success of the model in finding two cate-
gories was not dependent on the data of one speaker. The proportion
of correct classifications in the training set was lower in the evalua-
tions with the raw data than with the normalized data (raw: m=0.73,
sd=0.072; normalized: m=0.85, sd=0.016). Similarly, the proportion of
correct classifications in the test set was lower in the evaluations with
the raw data than with the normalized data (raw: m=0.75, sd=0.103;
normalized: m=0.85, sd=0.086). These comparisons reveal that a MoG
fitted to raw auditory values is less successful in categorizing tokens
than a MoG fitted to data that have undergone speaker normalization.
However, for both the training set and the test set, the proportion of
correct classifications was highly similar between the training set and
the test set. This means that the MoGs fitted to raw and normalized
data are equally successful in generalizing their categorization behav-
ior to a new speaker.

If infants acquire the contrast between /A/ and /a:/ from this input,
which cue should they weigh heavier in their perception of this con-
trast? Since F2 and duration are measured along different scales, we
cannot simply compare the mean F2 distance to the mean duration
distance. This problem can be solved by taking the variance into ac-
count. The measure d(a), a measure of sensitivity in signal detection
theory, determines the degree of difference between two categories. It
tells us how many standard deviations the means are separated from
each other, as in Equation 3 (Newman et al., 2001).

d(a) =
(µ1 − µ2)

√
2√

σ2
1 + σ2

2

(3)

In this equation, µ1 and µ2 are the means of two categories along
an auditory dimension and σ2

1 and σ2
2 the categories’ respective vari-

ances. The dimension with the largest d(a) should be weighed heaviest
in perception. In the raw input corpus of /A/ and /a:/, d(a) for F2Raw
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was 1.16 and d(a) for DurRaw was 1.10. In the normalized input cor-
pus of /A/ and /a:/, d(a) for F2Norm was 1.16 and d(a) for DurNorm
was 1.18. Therefore, infants that learn the contrast between /A/ and
/a:/ from Dutch IDS should weigh vowel quality and duration ap-
proximately equally.

3.2.3 Discussion

Boersma et al. (2003) and Maye et al. (2008) have proposed that in-
fants acquire their initial phonological representations through distri-
butional learning along individual auditory dimensions. The current
study found that in Dutch IDS, the pooled distribution of /A/ and /a:/
is monomodal along the vowel quality dimension and monomodal
along the duration dimension. Therefore, it is questionable whether
Dutch infants would be able to acquire the contrast between /A/ and
/a:/ by distributional learning along the individual dimensions.

The two-dimensional distribution, defined by vowel quality and
duration, was not monomodal, but had more than two local maxima.
The fact that the number of local maxima was larger than the number
of underlying categories is probably due to the relative sparseness of
the data. With more data points, incidental clusters of tokens would
have less impact on the smoothing function. Whether the distribution
of /A/ and /a:/ has two or more local maxima in a denser corpus is a
topic for further research. Importantly, the two-dimensional distribu-
tion revealed a clustering of /A/-like tokens and /a:/-like tokens that
remained hidden along the individual dimensions. A clustering algo-
rithm that can count as a model of distributional learning found two
categories in this multidimensional distribution and these categories
corresponded to /A/ and /a:/. In other words, the present data sug-
gest that the vowel contrast between /A/ and /a:/ can only be learned
by multidimensional distributional learning. These data support the
view of phoneme acquisition as put forward by Pierrehumbert (2003)
and Werker and Curtin (2005), who state that infants’ early phoneme
categories are defined by multiple auditory cues.

In the present study, the infant-directed speech from multiple fe-
males was combined. Input from multiple speakers correctly reflects
children’s daily language intake, because other speakers than the
mother address an infant. The unsupervised clustering algorithm ac-
quired /A/- and /a:/-like categories not only for the normalized in-
put, but also on the basis of data that had not undergone speaker
normalization. On the other hand, the clustering models were more
accurate in categorizing tokens as /A/ and /a:/ if they were fitted
to normalized data than if they were fitted to unnormalized data.
The apparent conclusion is that infants might be better able to cat-
egorize speech tokens into the acquired categories if they are able
to perform speaker normalization, a conclusion that is in line with
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Escudero and Bion (2007). However, the clustering algorithms fitted
to unnormalized data were as successful as the algorithms fitted to
unnormalized data in extending their categorization performance to
tokens from a speaker that was not included in the training data.
While speaker normalization might certainly improve the accuracy
of speech categorization, the input data and analyses presented here
show that infants could acquire speaker-independent phoneme cate-
gories without speaker normalization. Given the nature of the corpus
used in this study, this conclusion is at present restricted to categories
for tokens spoken in an infant-directed register by female adults. In-
terestingly, input from multiple speakers improves the robustness of
the acquired phoneme categories in second-language learners (Lively
et al., 1993) and focuses infants’ attention to the most relevant prop-
erties of the signal during word learning (Rost and McMurray, 2009,
2010). In these studies into the effect of multiple speakers on learn-
ing, the input contained tokens from both male and female speak-
ers. Whether infants normalize over the large differences between
male and female speakers in language processing or form separate
phoneme categories for speakers from the two genders is a venue for
future research.

If Dutch infants indeed acquire the categories /A/ and /a:/ by mul-
tidimensional distributional learning, they will associate their /A/ cat-
egory with a different vowel quality and duration than their /a:/ cat-
egory. Moreover, on the basis of the distance between /A/ and /a:/ in
vowel quality and duration, we can expect that infants weigh vowel
duration and vowel quality about equally. In the speech perception
study presented in the next section, it is investigated whether support
for multiple-cue categories and a similar weighting of vowel duration
and vowel quality can indeed be found in Dutch infants’ perception
of /A/ and /a:/.

3.3 Study 2 : Dutch infants’ perception of /A/ and /a:/

In the speech perception task presented in this section, the contribu-
tion of vowel quality and duration to infants’ discrimination between
/A/ and /a:/ was tested. Infants were asked to discriminate between
typical examples of the vowel categories /A/ and /a:/, namely the full-
vowel contrast between [A] and [a:], which differ in both vowel qual-
ity and duration. In addition, infants’ discrimination of a quality-only
contrast and a duration-only contrast was assessed. For the single-cue
discrimination of a quality-only contrast, infants’ discrimination was
tested between the typical token [A] and the atypical token [a], or be-
tween the typical token [a:] and the atypical token [A:], whereas for
the single-cue discrimination of the duration-only contrast, infants’
discrimination was tested between the typical token [A] and the atypi-
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cal token [A:], or between the typical token [a:] and the atypical token
[a] (see Figure 7 for the stimuli).

If Dutch infants’ representations of /A/ and /a:/ are based on the
clusters of vowel tokens in their input, they should recognize that the
typical tokens [A] and [a:] belong to different categories and would
discriminate between the vowel sounds in this full-vowel contrast.
The atypical tokens [A:] and [a], which are presented in the single-
cue contrasts, have a combination of cues that is less frequent in the
infants’ input, and it is ambiguous whether such tokens belong to the
/A/ cluster or the /a:/ cluster. If Dutch infants’ /A/ and /a:/ categories
are determined by the clusters in their input, the infants will be in
doubt whether the single-cue contrasts present tokens that belong to
two different categories and should be discriminated, or to the same
category and should not be discriminated. From the clusters of /A/
and /a:/ in Dutch infants’ input, it is predicted that Dutch infants
are better at discriminating the full-vowel contrast than either the
duration-only or the quality-only contrasts. On the basis of the vowel
quality distance and the duration distance between /A/ and /a:/ in
IDS, as computed in the previous section, it was expected that infants
would be equally sensitive to the duration-only and the quality-only
contrasts.

Alternatively, infants’ perception may still be dominated by the
salient vowel duration cue or the early acquired vowel quality cue.
If vowel duration dominates infants’ perception, the infants should
discriminate the full-vowel contrast and the duration-only contrasts,
but not the quality-only contrasts. If Dutch infants regard only vowel
quality as linguistically relevant, they will discriminate the full-vowel
contrast and the quality-only contrasts, but not the duration-only con-
trasts. Lastly, it is possible that younger infants are more susceptible
to the salient vowel duration cue, whereas older infants listen in a
language-specific manner and rely more on the cue combinations. To
explore this possibility, infants of 11 and 15 months old were tested.

3.3.1 Method

3.3.1.1 Participants

The participants were 18 11-month-olds (44.9 to 55.1 weeks old, 12

girls) and 24 15-month-olds (63.0 to 68.6 weeks old, 14 girls), all full-
term infants from monolingual Dutch families. Another 29 partici-
pants were excluded from the analysis because they were bilingual
(1); born prematurely (2); too fussy to start the experiment (3); or did
not provide enough trials (23, see Analysis).
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Figure 7: The duration, F1 and F2 values of the four vowel sounds used
in the experiment. The vowel sounds in a white oval represent
typical realizations of the vowels /A/ and /a:/ in Dutch. The vowel
sounds in a grey oval contain combinations of vowel quality and
duration that are less frequent in Dutch.

3.3.1.2 Stimuli

The test syllables were based on the CVC-syllables /sAk/ and /sa:k/,
which are phonotactically legal pseudo-words in Dutch.10 Four CVC-
syllables were created that can be transcribed as [sAk], [sa:k], [sak],
and [sA:k]. The first two syllables contain the typical realizations of
Dutch /A/ and /a:/. The vowel sounds [a] and [A:] contain the atypical
combinations of vowel quality and duration.

The vowel sounds in the syllables were synthesized using a Klatt-
synthesizer (Klatt and Klatt, 1990), implemented in Praat (Boersma
and Weenink, 2011; Weenink, 2009). The F1, F2 and duration values
were selected by six monolingual native speakers of Dutch as proto-
typical for /A/ and /a:/ (cf. Benders and Boersma, 2009). The duration
and formant values of the four vowel sounds are given in Figure 7.
The synthetic vowel sounds were spliced into a [s-k] frame that was
produced by the author, a female native speaker of Dutch from the
Amsterdam area, to create the syllables.

3.3.1.3 Procedure

The stimulus-alternation preference procedure (Best and Jones, 1998)
consists of repetition trials, on which tokens from a single category

10 In the Amsterdam area, where the participants were recruited and tested, many
speakers do not realize the contrast between voiced and voiceless fricatives. The
words /zAk/ (“sack" or “pocket") and /za:k/ (“business" or “case") are both existing
Dutch words, which could be realized as [sAk] and [sa:k] by speakers from the Am-
sterdam area. Neither of these words appears at the N-CDI (Zink and Lejaegere,
2002; the Dutch adaptation of the MacArthur Communicative Development Inven-
tory, Fenson et al., 1993) and both words are unlikely to be addressed to children of
15 months old and younger.



62 learning phonemes from multiple auditory cues

Stimulus

Reference [sAk]

repetition [sAk - sAk - sAk - sAk - sAk - sAk - sAk - sAk]

full-vowel alt. [sa:k - sAk - sa:k - sAk - sa:k - sAk - sa:k - sAk ]

quality-only alt. [sak - sAk - sak - sAk - sak - sAk - sak - sAk ]

duration-only alt. [sA:k - sAk - sA:k - sAk - sA:k - sAk - sA:k - sAk]

Reference [sa:k]

repetition [sa:k - sa:k - sa:k - sa:k - sa:k - sa:k - sa:k - sa:k]

full-vowel alt. [sAk - sa:k - sAk - sa:k - sAk - sa:k - sAk - sa:k]

quality-only alt. [sA:k - sa:k - sA:k - sa:k - sA:k - sa:k - sA:k - sa:k]

duration-only alt. [sak - sa:k - sak - sa:k - sak - sa:k - sak - sa:k]

Table 8: The stimulus sequences as used in the present experiment, with
a repetition stimulus and three types of alternation (alt.) for two
reference conditions. Each participant takes part in one reference
condition.

are presented, and alternation trials, on which an alternation between
tokens from different categories is presented. If infants notice that the
alternation trials present an alternation between categories, they will
have longer looking times to alternation trials than to repetition tri-
als. Our implementation of the procedure follows Yeung and Werker
(2009), but differs from previous work as it includes more test trials,
multiple alternation types instead of one type of alternation, and al-
ternations that involve atypical speech sounds.

The first trial of the test was a 12-second moving picture of a colour-
ful toy accompanied by 8 instances of the pseudo-word /boni/. This
first trial was intended to grab the infants’ attention. The second trial
was a 10-second silent presentation of an unbounded checkerboard,
to familiarize infants with the visual stimulus presented on the subse-
quent test trials. The third through fourteenth trial were the 10-second
test trials, with the unbounded visual checkerboard as visual stim-
ulus and the repetition and alternation stimuli described below as
sound stimuli. All test trials were played for the complete 10 seconds,
irrespective of the infant’s looking behavior.11 The fifteenth trial was
identical to the first trial.12 In between trials, one of five looming pho-

11 The stimulus-alternation preference procedure was introduced as a non-operant pro-
cedure by Best and Jones (1998) and adopted as such by Yeung and Werker (2009),
which was followed.

12 During the experiment, the infants’ looking time to each trial was computed on-line.
Test-trials on which the infant had looked at the screen for less than two seconds
were repeated after the fifteenth trial and this phase was concluded by another pre-
sentation of the moving toy. These trials were excluded from further analysis because
there was no interleaving of alternation and repetition trials and because children
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tographs of a baby was presented together with a soft bell sound.13

When the infant was looking at the screen, the experimenter initiated
the next trial.

For the test trials, the syllables [sAk], [sa:k], [sA:k], and [sak], which
were described above, were combined into stimuli of 8 syllables and
lasting 10 seconds each. The inter-syllable interval was 731 ms, 616

ms, or 675 ms, for stimuli with only short syllables, only long syl-
lables, or both short and long syllables, respectively. Each test trial
consisted of the presentation of one stimulus of 8 syllables.

There were four stimulus types: repetition stimuli and three types
of alternation stimuli. In repetition stimuli, either the typical [sAk]
or the typical [sa:k] was presented eight times. In alternation stim-
uli, two syllables alternated and were presented four times each. The
three types of alternation stimuli were full-vowel alternations, an al-
ternation between the typical [sAk] and [sa:k]; quality-only alterna-
tions, an alternation between two syllables with vowels differing only
in quality; and duration-only alternations, an alternation between two
syllables whose vowels differed only in duration. The second syllable
in a stimulus was always either the typical [sAk] or the typical [sa:k].
This is the reference syllable of the stimulus. The four stimulus types
were created with the reference syllable [sAk] and with the reference
syllable [sa:k], which resulted in the eight stimuli given in Table 10. A
participant would either hear the top four stimuli from Table 10 (i.e.,
[sAk] on the repetition trials and as the reference syllable on all alter-
nation trials) or the bottom four stimuli from Table 10 (i.e., [sa:k] on
the repetition trials and as the reference syllable on all alternation tri-
als). The syllable presented on every trial, [sAk] or [sa:k], determined
the participant’s reference condition.

On the third through eighth trial of the test, the full-vowel alter-
nation, the quality-only alternation and the duration-only alternation
were each presented once, with their order counterbalanced between
participants and reversed on the ninth through fourteenth trial. The
alternation trials were interleaved with repetition trials, such that
each child heard six repetition trials and two of each of the alter-
nation trials. Whether children started with a repetition or an alterna-
tion was counterbalanced between participants.14 Assignment of the
participants to the reference condition was counterbalanced within
both age groups.

The experiment was conducted in a sound-proof booth at the Uni-
versity of Amsterdam. The auditory stimuli were presented at a level
of 65 dB(A). The visual stimuli were presented on the 17

′′ monitor

were judged to be generally very fussy when they reached this part of the experi-
ment.

13 These photographs were kindly shared by Caroline Junge.
14 Due to a programming error, all children with [sa:k] as reference syllable started

with an alternation trial, whereas all children with [sAk] as reference syllable started
with a repetition trial.
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of a Tobii-120 Eye Tracker system, placed at 60 cm from the child’s
eyes. Infants were seated in a car seat, with their parent on a chair be-
hind them. The experimenter remained in a control room and could
observe the participant through a window behind the child.

Prior to the test, the eye-tracker was calibrated at the corners and
middle of the screen using the 5-point calibration in the Tobii-Studio
software. If the software had not recorded a look at one or more cal-
ibration locations, re-calibration for these locations was performed.
During the whole experiment, the eye-tracking system recorded in-
fants’ looking behavior at a frequency of 60 Hz. The experiment took
about five minutes per participant.

Prior to the experiment, parents were informed about the general
objective of the experiment and instructed not to interact with their
child during the trials. All parents signed informed consent prior to
participating.

3.3.1.4 Preparation of looking-time data and analysis

The raw output from the eye-tracking system was filtered for eye-
blinks prior to analysis.15 Since the average duration of a spontaneous
eye blink early in infancy is approximately 400 ms (Bacher and Smoth-
erman, 2004), the filter counted a loss of track of 400 ms or less as
though the child had continued looking at the screen. From these fil-
tered data, it was calculated per trial how long the child had looked
at the screen.

In the stimulus-alternation preference procedure, infants discrimi-
nate between the syllables on an alternation trial if they look longer
to alternation than to repetition trials (Best and Jones, 1998). To mea-
sure the infants’ relative interest in each alternation stimulus over the
repetition stimulus, the looking time on each alternation trial was
divided by the average looking time on the two surrounding repe-
tition trials. This relative-interest score is 1 if the participant looks
equally long at the alternation and the surrounding repetition trials.
The relative-interest score was taken as the dependent measure for
several reasons. Since infants habituate to repeated stimulus presen-
tations (Colombo and Mitchell, 2009, for an overview), absolute look-
ing times, which are typically analyzed in the stimulus-alternation
paradigm (Best and Jones, 1998), are longer for earlier than for later
trials. Yeung and Werker (2009) corrected for this by comparing the
looking time on each alternation trial to the looking time on the neigh-
boring repetition trial. However, infants’ decreasing attention to the
test may result in looking times that are, on average, longer for the
first trial than for the second trial in such a pair-wise comparison, irre-
spective of the trial types. Moreover, the absolute differences between
the looking times on alternation and repetition times become smaller

15 Results calculated from the unfiltered data did not differ qualitatively from the re-
sults reported here.
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df F value p

Between subjects

Age 1, 38 0.03 0.875

Ref 1, 38 0.19 0.663

Age * Ref 1, 38 0.54 0.466

Within subjects

Alt 2, 37 3.58 0.038

Age * Alt 2, 37 0.43 0.652

Ref * Alt 2, 37 0.71 0.498

Age * Ref * Alt 2, 37 1.43 0.252

Table 9: The results of the ANOVA with Type of alternation (alt) as the
repeated measure, Age and Reference (ref) as the between-subjects
independent variable, and the relative-interest score on full-vowel
alternation, quality-only alternation and duration-only alternation
as the dependent measure.

as the experiment progresses. The relative-interest score corrects for
these three problems.

In order to remove trials with ceiling effects and on which the child
did not attend at all, a relative-interest score was excluded from the
analysis if the child looked for the full 10 seconds or less than one sec-
ond during one of the three trials contributing to the score. Because
each type of alternation was presented twice in the experimental pro-
cedure, a child could contribute two relative-interest scores for one
type of alternation. If both relative-interest scores met the criteria for
inclusion in the analysis, only the first relative-interest score of the
first alternation trial of that type was included. A participant was ex-
cluded from the analysis if (s)he did not provide at least one relative-
interest score for a full-vowel alternation, a quality-only alternation,
and a duration-only alternation. As indicated above, 23 infants were
excluded for this reason.

3.3.2 Results

The average relative-interest scores for the three alternation types,
separated for the 11- and 15-month-olds, can be found in Figure 8.
A repeated-measures analysis of variance (ANOVA)16 with Type II
sums of squares was performed on the relative-interest scores with
Type of alternation (full-vowel, quality-only, duration-only) as repeated
factor and Age (11 months, 15 months) and Reference syllable ([sAk],

16 Using the function Anova{} in the package {car} (Fox, 2002) in the statistical software
package R (R Development Core Team, 2004).
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Figure 8: The mean relative-interest scores in the two between-subjects
age conditions (left: 11-month-olds, right: 15-month-olds) and the
three within-subjects alternation conditions (from left to right: full-
vowel, quality-only, duration-only). Error bars display 95% confi-
dence intervals of the mean.

[sa:k]) as between-subjects factors. The results of this analysis are re-
ported in Table 9, and revealed a significant main effect of Type of
alternation (F[2, 37] = 3.58, p = .038).

Because no other main effects or interactions from the ANOVA ap-
proached significance (all F < 1.5, all p > .25), the data were pooled
over the age groups and the reference conditions in the post-hoc
Tukey HSD tests. These showed that infants had a larger relative inter-
est in the full-vowel alternation than in the quality-only alternation
(z = 2.36, p = .048) or the duration-only alternation (z = 2.36, p =

.048). There was no significant difference between infants’ relative in-
terest in the quality-only and duration-only alternation (z < 0.01, p =

1.00).
Relative-interest scores above 1 were expected if participants re-

garded the alternation as different from the repetition. One-sample
t-tests against 1 indicated that infants regarded the full-vowel alter-
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nation as different from the repetition (t41 = 2.63, p = .012, m =

1.21, sd = 0.508). No significant difference from 1 was found for the
quality-only alternation (t41 = −0.72, p = .476, m = 0.96, sd = 0.473)
or the duration-only alternation (t41 = −0.57, p = .57, m = 0.96, sd =

0.377).

3.3.3 Discussion

For the development of native speech sound perception, infants need
to learn which cues signal a phonemic contrasts. The present results
show that Dutch infants of 11 and 15 months of age discriminated
better between the Dutch low vowels /A/ and /a:/ when both vowel
duration and vowel quality signaled the contrast than when stimuli
differed in only one of the relevant cues. This reveals that Dutch in-
fants of 11 and 15 months old know that both vowel quality and
duration contribute to the contrast between the vowels /A/ and /a:/,
but do not regard either cue as fully contrastive in its own right.

The infants’ speech perception can be related to the distributions
of /A/ and /a:/ in Dutch IDS as presented in Study 1. The present
results suggest that Dutch infants acquire two vowels from the input
distributions they receive: a vowel with a low F2 and short duration
–namely, /A/, and a vowel with a high F2 and long duration –namely,
/a:/. The typical vowel sounds [A] and [a:] belong to those different
categories and are discriminated. Vowel sounds with atypical combi-
nations of cue values, [A:] and [a], could belong to either category and
infants discriminate these atypical tokens less well from the typical
[A] and [a:]. The present perception data thus suggest that infants are
able to induce and represent speech sound categories that are defined
by multiple auditory cues (Pierrehumbert, 2003; Werker and Curtin,
2005).

These data suggest that neither the salient vowel duration cue nor
the early-acquired vowel quality cue completely dominates Dutch in-
fants’ perception of /A/ and /a:/ at 11 and 15 months of age. That
result is in accordance with the distributions in the input corpus, ac-
cording to which infants should rely approximately equally on vowel
duration and vowel quality to discriminate between /A/ and /a:/.
However, the lack of a difference between the vowel-quality and du-
ration conditions could also be due to the fact that discrimination
procedures give binary rather than continuous outcomes (Aslin and
Fiser, 2005).

3.4 General Discussion

The aim of this paper was to gain insight into the learning mechanism
infants use to acquire a vowel contrast that is signaled by multiple
cues. To answer this question, the auditory distribution of /A/ and



68 learning phonemes from multiple auditory cues

/a:/ in Dutch IDS was investigated and Dutch infants’ perception of
these same vowels was tested.

The input study (Study 1) showed that if the tokens of /A/ and /a:/
in IDS were combined into one distribution without category labels,
the frequency distribution of their vowel qualities was monomodal, as
was the frequency distribution of their durations. In the two-dimensional
distribution, for which both dimensions were considered simultane-
ously, the distribution of the /A/ and /a:/ tokens had multiple local
maxima. Importantly, the back and short /A/-like tokens fell under
different local maxima than the front and long /a:/-like tokens. To
acquire the categories /A/ and /a:/ from only the auditory proper-
ties of the vowels in IDS, it thus appears crucial to perform multidi-
mensional distributional learning. These conclusions were identical
for the corpora with and without speaker normalization, suggesting
that distributional learning as the mechanism behind phoneme ac-
quisition does not crucially rely on infants’ ability to perform speaker
normalization. The perception study (Study 2) revealed that Dutch in-
fants of 11 and 15 months old were better at discriminating between
typical exemplars of /A/ and /a:/, which differ in both vowel quality
and duration, than between vowel sounds that differ only in vowel
quality or only in vowel duration. These results show that infants rely
neither exclusively on vowel quality nor exclusively on vowel dura-
tion in their perception of the contrast between /A/ and /a:/. Rather,
it is the combination of both cues that fully signals the contrast for
them. The results from both studies combined strongly suggest that
infants’ early phonological categories are associated with multiple au-
ditory cues, because they have to learn their phonological categories
through multidimensional distributional learning.

To the best of my knowledge, the present study is the first to
have directly investigated the shape of the auditory distributions of
two vowels in IDS. Earlier work investigated with the help of com-
puter models whether or not distributional learning on infants’ in-
put would result in the correct vowel categories, but did not report
the shape of the distributions (De Boer and Kuhl, 2003; Vallabha
et al., 2007). Furthermore, De Boer and Kuhl (2003) and Vallabha
et al. (2007) simulated multidimensional distributional learning only
and did not address the question whether distributional learning
along the individual dimensions would be successful (as suggested
by Boersma et al., 2003; Maye et al., 2008). The present results show
that different local maxima for /A/ and /a:/ can only be found in the
two-dimensional auditory distribution defined by vowel quality and
duration. Most laboratory tests of distributional learning in infants
have tested learning along individual auditory dimensions (Maye
et al., 2002, 2008; Yoshida et al., 2010) and have therefore investigated
a learning mechanism that is too simple for the actual input that
infants have to learn from. Cristiá et al. (2011) tested distributional
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learning from a two-dimensional auditory distribution, but the distri-
butions were bimodal along both individual dimensions as well. In
the visual domain, infants become sensitive to correlated visual fea-
tures around seven and possibly four months of age (Younger and
Cohen, 1986; Mareschal et al., 2005). Because vowel perception starts
to become language specific by 6 months of age, infants as young as 6

months old might be able to perform multidimensional distributional
learning. Alternatively, it could be hypothesized that infants first ac-
quire vowel contrasts that can be learned through distributional learn-
ing along a single auditory dimension. This hypothesis implies that
if a vowel contrast forms monomodal distributions along all individ-
ual dimensions, as seems to be the case for Dutch /A/ and /a:/, in-
fants will initially lose sensitivity to this contrast prior to acquiring
it through multidimensional distributional learning. Further studies
into infants’ distributional learning and vowel perception are needed
to test these hypotheses.

In the perception study, infants’ stronger reaction to the full-vowel
contrast than to the duration-only contrasts or the quality-only con-
trasts proves that Dutch infants know that vowel duration and vowel
quality alone are not enough to signal the contrast between /A/ and
/a:/. This is in agreement with infants’ language input. The absence
of a reaction to the single-cue contrasts is a null result and must be
treated with caution (Aslin and Fiser, 2005). Yet, it is important to con-
sider how this null-result relates to earlier research suggesting that
Dutch infants do use vowel duration in speech perception (Dietrich,
2006) and word learning (Dietrich et al., 2007). Cross-linguistically,
younger infants than those tested here are sensitive to vowel dura-
tion differences (Bohn and Polka, 2001; Mugitani et al., 2009; Dietrich,
2006), which indicates that vowel duration is acoustically salient prior
to perceptual reorganization (Bohn, 1995). For Dutch infants, the ap-
parent loss of sensitivity to vowel duration differences is consistent
with their language input, where the two local maxima in the dis-
tributions of /A/ and /a:/ differ not only in duration, but also in
vowel quality. The reduced sensitivity to the duration-only contrast
as compared to the full-vowel contrast is thus suggestive of percep-
tual reorganization. However, Dutch 18-month-olds are sensitive to
duration contrasts in word learning (Dietrich et al., 2007). In this
respect it is important to consider that the infants in Dietrich et al.
(2007) only heard variation in vowel duration, whereas infants in the
present study heard variation in vowel quality as well as duration.
The absence of vowel quality variation in Dietrich et al. (2007) may
have encouraged infants to interpret a duration-only difference as
contrastive, which is something adult listeners can do as well (Noote-
boom and Doodeman, 1980; Heeren, 2006). The presence of variation
in both dimensions, as in the present study, may have caused infants
to rely on both dimensions in perception. In addition, adults and chil-
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dren rely on both auditory dimensions when both are varied in the
stimuli (Van Heuven et al., 1986; Escudero et al., 2009a; Brasileiro,
2009; Giezen et al., 2010).

While the present data suggest that Dutch infants acquire the con-
trast between Dutch /A/ and /a:/ through multidimensional distribu-
tional learning on vowel quality and duration, this does not imply
that phoneme categories are acquired solely from auditory distribu-
tions. Specifically, it has been suggested that infants use the broader
context in which sounds occur to learn phoneme categories (Feldman
et al., 009b; Swingley, 2009). The phonotactic contexts of Dutch /A/
and /a:/ only partially overlap, as /a:/ can occur in a syllable without
a coda and not with all complex coda clusters, whereas monosyllabic
words with /A/ must end in a coda and syllables with /A/ allow
all complex coda clusters (Moulton, 1962). These phonotactic differ-
ences between /A/ and /a:/ can naturally be regarded as a third di-
mension that contributes to the separation between these vowels in a
highly multidimensional space. However, because infants of 9 but not
6 months show evidence of learning their native language’s phono-
tactics (Friederici and Wessels, 1993; Jusczyk et al., 1993, 1994; Archer
and Curtin, 2011), it remains to be seen to what extent the phonotac-
tic context of speech sounds is a source of information that infants
employ in the initial stages of phoneme acquisition. Future models of
distributional learning need to take into account both auditory and
non-auditory cues and the age at which infants can employ such cues
in order to fully understand infants’ acquisition of phoneme contrasts
(Feldman et al., 009b).

3.5 Summary

This study investigated infants’ acquisition of phoneme contrasts that
are signalled by multiple cues. The distributions of vowel quality and
duration of /A/ and /a:/ in Dutch infants input show that phoneme
categories can only be induced from the auditory distributions of
the tokens by means of multidimensional distributional learning. In
speech perception, Dutch infants discriminate between typical and
atypical tokens of /A/ and /a:/ in a manner that is consistent with
the multidimensional clusters of /A/ and /a:/ in their language input.
Infants thus associate their initial phoneme categories to multiple au-
ditory cues. The present study illustrates that investigating infants’
sensitivity to individual cues and directly relating infants’ percep-
tion to the auditory distributions in their input leads to a deeper un-
derstanding of the learning mechanisms that underly infants’ early
phoneme acquisition.
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An adapted version of this chapter is:
Benders, T. & Mandell, D.J. (in preparation).

Abstract

To achieve native-like speech-sound perception, infants need to inte-
grate the multiple acoustic dimensions that signal phoneme contrasts.
The present study investigates Dutch 9-month-olds’, 15-month-olds’
and adults’ perception of /A/ and /a:/, which differ in vowel quality
and duration. This is done by testing their perception of vowel sounds
with typical and atypical combinations of vowel quality and duration.
Both categorization behavior in the two-choice categorization task, as
measured by reaction times, and attention allocation, as measured by
pupil dilations, were investigated. Dutch adults consistently catego-
rized atypical [A:] as the vowel /A/, but their categorization of atyp-
ical [a] depended on the context that was created during training.
Dutch 15-month-old infants’ attention allocation changed in reaction
to atypical [A:] and [a] in comparison to their reaction to typical [A]
and [a:]. The influence of context on infants’ attention allocation mir-
rored the effect of context on adults’ categorization behavior. Infants’
change in attention allocation to the atypical vowel sounds shows
that their vowel representations are specified for the combinations
of vowel duration and quality. Additionally, infant’s receptive vocab-
ulary was related to their attention allocation to the atypical vowel
sounds. This study shows that 15-month-old infants can integrate the
dimensions of vowel duration and vowel quality in their vowel rep-
resentations, and that the detailed knowledge of rare and ambiguous
cue combinations develops hand in hand with vocabulary size.

71
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4.1 Introduction

Across languages, two of the major phonetic cues that signal vowel
contrasts are vowel quality (measured by the first, second, and third
formant; F1, F2, and F3) and vowel duration (Maddieson, 2011). How
listeners weight these cues in their perception of vowel categories
depends on their native language (Gottfried and Beddor, 1988) and
native dialect (Escudero and Boersma, 2004). In order to understand
infants’ developing representations of their native language vowel cat-
egories, it is crucial to chart infants’ changing sensitivity to these pho-
netic cues and to their combinations. The current paper investigates
whether infants’ vowel categories are primarily defined by vowel du-
ration, vowel quality, or the combination of vowel quality and dura-
tion.

4.1.1 Infants’ sensitivity to vowel duration and vowel quality

Newborn infants divide a vowel-quality continuum into categories
that roughly correspond to the vowel categories that are found across
the languages of the world, even if their language does not use all
these categories (Aldridge et al., 2001). Language-specific perception
of vowel sounds begins around 6 months when infants begin to lose
the ability to discriminate between non-native vowel contrasts (Polka
and Werker, 1994) and show stronger prototype effects for native
than for non-native vowels (Kuhl et al., 1992; but see Polka and Bohn,
1996). At 12 months of age, infants’ neural responses to vowel-quality
changes are language specific (Cheour et al., 1998). Infants’ ability to
discriminate vowel-quality contrasts becomes language specific within
the first year after birth.

In contrast, infants remain sensitive to vowel-duration differences
for a protracted period of time, independent of their language back-
ground. German 6-to-12-month-olds discriminate vowel sounds on
the basis of duration differences whenever possible (Bohn and Polka,
2001). Vowel duration differences in German are always accompanied
by differences in vowel quality (Heid et al., 1995) and adult native
speakers of German do not primarily rely on vowel duration to cat-
egorize or discriminate vowel sounds (Sendlmeier, 1981; Bohn and
Polka, 2001). English-learning infants distinguish between non-native
long and short vowel sounds well past their first birthday (Mugitani
et al., 2009). English vowels differ mainly in vowel quality (Hillen-
brand et al., 1995) and adult native speakers of English almost exclu-
sively rely on vowel quality to categorize vowel sounds (Flege et al.,
1997). Like infants, and unlike adult native speakers, adult second-
language learners readily use vowel duration as a cue to distinguish
between non-native vowel contrasts (Flege et al., 1997). Vowel dura-
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tion thus is a psycho-acoustically salient cue (Bohn, 1995), to which
infants and adults do not lose sensitivity.

Even though vowel duration is acoustically salient, Japanese infants
seem to have difficulty incorporating this cue in their linguistic vowel
representations. Vowel duration differences are phonologically con-
trastive in Japanese in the absence of major vowel-quality differences
(e.g., /seki/ ‘seat’ versus /se:ki/ ‘century’, Vance, 1987; examples from
Hirata and Tsukada, 2009). As Japanese 4-month-olds nevertheless
do not discriminate between a duration-cued vowel contrast, while
they do note a quality-cued difference, Sato et al. (2010) argue that
Japanese 4-month-olds do not yet interpret the vowel-duration dif-
ference as linguistically relevant. At 18 months of age, Japanese in-
fants’ perception of vowel duration seems to differ from the percep-
tion of this cue by younger Japanese infants or English infants of the
same age (Mugitani et al., 2009). Also in a neuro-imaging paradigm,
language-specific duration discrimination was found to be acquired
slowly by Japanese infants, as it was not until after their first birthday
that their categorical discrimination of short and long vowel sounds
on the opposite sides of the category boundary had a neural response
indicative of linguistic processing (Minagawa-Kawai et al., 2007).

In contrast, Dutch infants appear to develop language-specific du-
ration perception prior to 18 months of age. In Dutch, duration dif-
ferences between vowels are always accompanied by vowel-quality
differences (Moulton, 1962). Vowel quality is the more important cue
for adult native speakers and school-aged children (Van Heuven et al.,
1986; Escudero et al., 2009a; Brasileiro, 2009; Giezen et al., 2010). Dutch
infants in their first year after birth are sensitive to vowel-duration
differences in the same way as English infants, irrespective of the
vowel-quality differences between the sounds (Dietrich, 2006). By 18

months, Dutch infants, but not English infants, regard such vowel-
duration differences as phonologically contrastive in word learning
(Dietrich et al., 2007). Prior to 18 months of age, 15-month-old Dutch
infants better discriminate these vowels on the basis of a difference in
vowel quality as well as duration than on the basis of a difference in
either cue (Chapter 3).

Several aspects of infants’ developing sensitivity to vowel duration
and quality are still unknown. With few exceptions (Bohn and Polka,
2001; Sato et al., 2010; Chapter 3), studies into infants’ vowel percep-
tion have investigated infants’ perception of either vowel duration or
vowel quality and not their perception of both cues. Only Bohn and
Polka (2001) and Chapter 3 studied the relative contribution of these
cues to infants’ perception. Therefore, it is still poorly understood
how vowel quality and duration interact during phoneme acquisition,
especially after the infants’ first birthday.

None of the aforementioned studies have attempted to investigate
how infants’ acquisition of these phonetic cues relates to their con-



74 dutch infants’ sensitivity to vowel quality and duration

current receptive vocabulary size. Infants’ language-specific phoneme
perception and word knowledge may develop in mutual dependence
as infants’ increasing sensitivity to their native-language phoneme
categories may enable a better recognition of word forms (Kuhl et al.,
2008). Additionally, infants’ growing vocabulary may enable them to
better select which phonetic information is crucial for word recogni-
tion and to make their phoneme representations more precise (Werker
and Curtin, 2005). Boersma et al. (2003) attribute an even larger role
to infants’ word knowledge in phoneme acquisition, as they propose
that word knowledge enables infants to integrate acoustic dimen-
sions into phoneme representations. Support for the hypothesis that
phoneme perception facilitates word acquisition is provided by the re-
lation between infants’ language-specific speech perception at 6 and 7

months of age and their later vocabulary size (Tsao et al., 2004; Kuhl
et al., 2005, 2008). At 14 and 17 months of age, infants’ vocabulary
size is related to their ability to learn similar sounding words (Werker
et al., 2002), which is considered evidence that infants’ word knowl-
edge has refined their phoneme representations (Werker and Curtin,
2005). If there is a mutual dependence between phoneme perception
and vocabulary, infants’ concurrent vocabulary size is expected to
be related to more fine-grained aspects of speech perception as well,
such as the infants’ sensitivity to the relevant cues. That prediction is
tested in the present study.

The Dutch low vowels /A/ and /a:/ differ in both vowel duration
and vowel quality, as /a:/ is longer and has a higher F1 and F2 than
/A/ (Adank et al., 2004; Nooteboom and Doodeman, 1980; Rietveld
et al., 2003), also in infant-directed speech (Chapter 3). These are the
two most frequent full vowels in Dutch child-directed speech (Ver-
steegh and Boves, tion). Therefore, /A/ and /a:/ provide an ideal test
case to further investigate the development of language-specific sen-
sitivity to vowel duration and vowel quality. The present study inves-
tigates Dutch 9- and 15-month-olds’ representation of vowel quality
and duration as linguistically relevant cues to the /A/–/a:/ contrast.

4.1.2 Methods to study infants’ phoneme representations

A discrimination task is not the best choice to investigate which pho-
netic cues infants find linguistically relevant. If an infant discrimi-
nates between two speech sounds that differ in duration, it does not
mean that the infant regards the duration difference as linguistically
contrastive (Dietrich et al., 2007). On the other hand, if infants do not
discriminate between two speech sounds in a simple discrimination
task, they may still be able to differentially associate them with a lo-
cation (Albareda-Castellot et al., 2011). Therefore, the present study
used a two-alternative categorization task that required participants
to form associations between a sound and a spatial feature (McMur-
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ray and Aslin, 2004; Kovács and Mehler, 2009; Albareda-Castellot
et al., 2011). In this procedure task, the participant is presented with
one of two cueing sounds, after which a visual outcome, a small an-
imation, is presented on either the left or the right of the screen, de-
pending on which cueing sound was played. The participant learns
to associate the cueing sounds with the outcome locations. In order
for participants to generalize this association to a novel stimulus it
is not enough to note that the novel stimulus is different from the
previous stimuli. Rather, the participant has to decide which of the
learned cueing sounds the novel stimulus is most similar to. There-
fore, it asks participants to categorize novel stimuli as one or the other
category, this procedure is similar to the two-alternative categoriza-
tion tasks used to test cue weighting in adults and older children
(e.g., Nittrouer, 1992). The exact procedure is a variant on the proce-
dures employed by McMurray and Aslin (2004); Kovács and Mehler
(2009); Albareda-Castellot et al. (2011).

In the task employed in the present paper, participants were first
presented with outcomes on the left and right of the screen, depen-
dent on the cueing sounds [tAm] and [ta:m]. These words contained
vowels with a typical combination of vowel quality and duration of
the phonemes /A/ and /a:/1. To assess the contribution of vowel du-
ration and quality in participants’ representations of the vowels, par-
ticipants’ reaction to the sounds with atypical combinations of vowel
duration and quality, [tA:m] and [tam], were tested.

The first outcome measure in the study was the reaction time (RT)
to each outcome location after the cueing sounds were played. If par-
ticipants relied primarily on the salient vowel-duration cue, as could
be expected for the infants (Bohn and Polka, 2001; Mugitani et al.,
2009), they would look faster to the [ta:m]-location upon hearing the
atypical stimulus [tA:m] and faster to the [tAm]-location upon hearing
the atypical stimulus [tam]. If participants relied primarily on vowel
quality, as was expected for the adults (Van Heuven et al., 1986; Escud-
ero et al., 2009a), they would look faster to the [tAm]-location upon
hearing atypical [tA:m], and faster to the [ta:m]-location for atypical
[tam]. If participants let neither cue prevail in their representations of
the typical vowel sounds [A] and [a:], they would not have a difference
in RTs to the atypical vowel sounds. A fourth possibility is that there
would be individual differences between infants in their weighting of
vowel quality and duration. Anticipatory eye-movement paradigms
have the potential of revealing such individual differences (McMur-
ray and Aslin, 2004).

In addition to the RTs, participants’ pupil dilations in reaction to
the typical and atypical sounds were assessed. It has been proposed

1 In this paper we adhere to the tradition in the phonological literature to present ab-
stract representations of speech sounds or words with / /, and phonetic realizations
of these abstract categories with [ ]. In Dutch, the vowel category /A/ is typically
realized as [A] , and the vowel category /a:/ is typically realized as [a:].
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that pupil dilations in a cognitive task can reflect attention and arousal
as well as processing conflict in a decision (Aston-Jones and Cohen,
2005). As our two-alternative categorization task required participants
to make a decision as to where they expected the outcome to appear,
the pupil dilations during a trial not only tapped participants’ general
attention to the stimuli, but specifically the processing of the stimuli
in order to make that decision. For a participant that is able to cate-
gorize the atypical stimuli [tA:m] and [tam], the pupil dilations may
reveal that categorizing atypical stimuli is more difficult than cate-
gorizing the typical stimuli. Pupil dilations can be especially infor-
mative in infants (Jackson and Sirois, 2009; Gredebäck and Melinder,
2010), as associating a sound with a location is not a trivial task for
them (McMurray and Aslin, 2004; Kovács and Mehler, 2009). Even if
infants are unable to correctly categorize the typical stimuli, a change
in attention allocation to the atypical stimuli would reveal that they
regard these cue combinations as atypical.

To conclude, the present study investigates Dutch infants’ develop-
ing representations of the vowels /A/ and /a:/ in a two-alternative
categorization task. The question was whether infants’ representa-
tions are primarily defined 1) by vowel duration, which is acousti-
cally salient; 2) by vowel quality, which becomes linguistically rele-
vant early in development; or 3) for the combination of vowel dura-
tion and quality. We investigate how participants categorize and allo-
cate attention to typical examples of the categories, [A] and [a:], and
to tokens with an atypical combination of vowel duration and quality,
[A:] and [a]. To investigate infants’ development just before and after
the onset of word acquisition, the performance of 9- and 15-month-
old Dutch infants was assessed and compared to that of adults. To
investigate the relation between language acquisition and vowel per-
ception at an individual level, the 15-month-olds’ performance was
releated to their vocabulary size.

4.2 Method

4.2.1 Subjects

Participants were 40 (21 females) 9-month-olds (260–297 days), 50 (26

females) 15-month-olds (445–479 days), and 30 (21 females) adults
(18–64 years). Participating children were from predominantly Dutch
families, born at a gestational age of at least 36 weeks, with no known
visual or auditory problems. Participating adults were monolingually
raised native speakers of Dutch and reported (corrected to) normal vi-
sion and no auditory problems. All adult participants and the parents
of all child participants gave informed consent prior to participating.
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4.2.2 Sound stimuli

The test words used in the experiment can be transcribed as [tAm],
[ta:m], [tA:m], and [tam]. The stimulus design can thus be considered
as a two-by-two grid of two vowel quality values (lower [A] and higher
[a]) by two duration values (short and long).2[tAm] and [ta:m] are
phonotactically legal word forms of Dutch3. The vowel sounds [A:]
and [a] feature combinations of vowel quality and duration that do
not typically occur in Dutch.

For the sound stimuli, a voice-trained female native speaker of
Dutch was recorded producing the words /tAm/ and /ta:m/. The
recordings were made in a sound-proof booth, using a Sennheiser HF
condenser microphone MKH-105 on a Tascam CD-recorder, sampled
at 44100 Hz.

Three recordings were selected of /tAm/ and of /ta:m/, on the basis
of a close match in perceived pitch level and pitch contours. The three
natural recordings of /tAm/ served as the basis for the tokens of [tAm]
and [tA:m], while the three natural recordings of /ta:m/ served as the
basis for the tokens of [ta:m] and [tam]. The duration of the vowels
in all six tokens was changed to 120 ms to create the six tokens with
a short vowel duration, [tAm] and [tam], and to 240 ms to create the
six tokens with a long vowel duration, [ta:m] and [tA:m]. The result-
ing twelve tokens formed three of the earlier mentioned two-by-two
stimulus grids of the two vowel quality and two duration values.

The consonantal frames remained unaltered in the duration ma-
nipulation. Irregular waveform periods, which occurred as a conse-
quence of the duration manipulation, were manually removed from
the signal, so that the duration of the short and long vowel sounds
was usually somewhat shorter than 120 ms and 240 ms, respectively.
Table 10 gives the durations and vowel qualities of the tokens after
manipulation.

Each stimulus presented one of the test words ([tAm], [ta:m], [tA:m],
or [tam]) in the form of a sequence of the three different tokens of the
test word.4 Per test word, that is, for [tAm], [ta:m], [tA:m], and [tam],
three such stimuli were made, with different orders of the tokens.

All manipulations were done with Praat (Boersma and Weenink,
2010). The resynthesis was performed using the overlap-add proce-
dure (Moulines and Charpentier, 1990, as implemented in Praat).

2 Thanks to Bob McMurray for the wording suggestion.
3 [ta:m] is a pseudo-word in Dutch. [tAm] is a real word that means ‘tame’ and is

unlikely to be known by our child participants. Stimuli based on the word [tAm]
have been used previously by Dietrich et al. (2007).

4 The first token started after a silence of 265 ms, and ended in between 634 ms (for
the shortest token) and 816 ms (for the longest token); the second token started in
between 1682 ms (for the longest token) and 1863 ms (for the shortest token), and
ended at 2233 ms; the third token started at 3124 ms and ended in between 3494 ms
and 3675 ms.
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Vowel quality F0 measures Vowel duration

Test To-
(same for short and long)

(differs between

word ken short and long)

F1 F2 maximum range short long

[tAm] 1 877 1252 131 25 110 217

& 2 841 1261 139 23 120 227

[tA:m] 3 841 1310 130 23 112 232

[tam] 1 910 1521 200 99 120 240

& 2 898 1527 200 100 120 230

[ta:m] 3 944 1549 200 99 120 222

Table 10: Acoustic measurements of the 12 tokens used in the present ex-
periment.

In the exit interview after the experiment, the majority of the adult
participants transcribed the sounds they had heard during the exper-
iment as “tam” and “taam", which are the Dutch spellings of [tAm]
and [ta:m]. The remaining participants wrote “tan" and “taan". These
transcriptions indicate that the stimuli contained clear examples of
the intended vowels.

The experiment started with the Dutch pseudo-words /tibi/ and
/druk@l/ (Swingley, 2007) as cueing sounds. The recordings for these
words were made by a different female native speaker of Dutch. One
token was selected per word and three copies of that token were com-
bined into a stimulus.

4.2.3 Visual stimuli

All visual stimuli were 150 by 150 pixel yellow or pink rectangular
boxes with white stripes. The outcome presented at the end of the
trial was an animation in a 150 by 150 pixel box of either a dancing
panda, a pink elephant with balloons, or Teletubbies’ Tinky Winky
throwing a ball.

4.2.4 Set-up and procedure

Prior to the experiment, parents were instructed not to interact with
their child during the procedure. Adult participants were instructed
that they would participate in an experiment for small children and
received no further instructions. Either before or after the experi-
ment, parents of 15-month-old infants filled out the short version
of the Dutch adaptation (N-CDI, Zink and Lejaegere, 2002) of the
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Figure 9: The sequence of visual events in the trials in the two-alternative
categorization task. The visual events are identical across outcome
trials and away trials until 3330 ms into the trial. The bottom two
boxes on the left give the last visual events on outcome trials. The
bottom two boxes on the right give the last visual events away
trials. The numbers in the corner of the boxes give the timing of
the visual events in ms. The waveforms indicate the approximate
onsets of the three auditory tokens.

MacArthur Communicative Development Inventory (Fenson et al.,
1993).

The experiment was conducted in a sound-proofed booth at the
University of Amsterdam. Black curtains hid the equipment from
view. Children were seated in an elevated car seat with their parent
sitting on a chair behind them. Adult participants were seated on a
chair. The experimenter was in a different room but could observe the
participant through a webcam. The auditory stimuli were presented
at a level of 65 dB(A). The visual stimuli were presented on the screen
of a Tobii T120 Eye Tracker system, which was mounted on a mov-
able arm. The monitor was placed 60 cm from the adult participants’
eyes and 65 cm from the child participants’ eyes. The eye-tracker was
calibrated using an age-appropriate 9-point calibration from the To-
bii Studio software and for the stimulus locations for which the Tobii
Sudio software recorded no look on the first run a recalibration was
attempted. The experiment was programmed in E-Prime and run on
a personal computer.

The sequence of events in a trial is outlined in Figure 9. At the be-
ginning of each trial, two striped boxes appeared side by side in the
center of the screen. After 270 ms, the boxes began to flash with rain-
bow colors and the first auditory token was played. At 1300 ms into
the trial, the boxes stopped flashing and began moving horizontally
across the screen in opposite directions. Then the second auditory to-
ken was played, which had its offset at 2233 ms. The third auditory
token was played at 3100 ms. There were two types of trials. On out-
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come trials, the boxes stopped moving at 3330 ms and an outcome
video was played in one box until the end of the trial at 4670 ms. On
away trials, both boxes continued to move across the screen towards
the edge of the screen until the end of the trial.

Within each trial, the presentation of multiple auditory tokens was
intended to ensure that infants had sufficient opportunity to process
the sound before making a decision. This better processing of the
stimulus within each trial was hoped to transfer to better learning of
the sound–side associations. The presentation of moving blocks dur-
ing the complete trial were intended to engage the infants’ attention.

The experiment consisted of 40 trials, divided over four blocks. A
summary of the trials per block is given in Table 11.

Block Outcome trials Away trials

1 tibi (4) druk@l (4) tibi (1) druk@l(1)

2 tAm (4) ta:m (4) tAm (1) ta:m(1)

3 tAm (3) ta:m (3) tAm(1) ta:m (1) tA:m (1) tam (1)

4 tAm (3) ta:m (3) tAm(1) ta:m (1) tA:m (1) tam (1)

Table 11: A summary of each of the four blocks in the experiment: The
number of outcome trials per stimulus word and the number of
away trials per stimulus word.

The first block was designed so that subjects could become accus-
tomed to the procedure. Participants first saw six outcome trials with
the words /tibi/ (left) and /druk@l/ (right) as cueing sounds. These
associations were then tested on two away trials, one with /tibi/ and
one with /druk@l/, which were then followed by two more outcome
trials.

In block 2, participants were shown the sound–side associations
with the typical test words [tAm] and [ta:m] as cueing sounds. Eight
outcome trials were presented and then two away trials. In blocks 3

and 4, the sound–side associations with [tAm] and [ta:m] were rein-
forced on six outcome trials per block. The remaining four trials in
block 3 and in block 4 were away trials, one with each of the typ-
ical test words [tAm] and [ta:m], and one with each of the atypical
generalization test sounds [tA:m] and [tam].

Whether [tAm] or [ta:m] was the cueing sound for an outcome on
the left or right of the screen was counterbalanced between partici-
pants within each age group. The first two trials of block 2 always pre-
sented [tAm] and [ta:m], the order of which was randomized across
participants. The order of all other trials was randomized for each par-
ticipant, with the restrictions that each cueing sound was presented
on no more than three trials in a row and there were no more than
three away trials in a row. Before the first trial and in between trials,
a green dot appeared in the center of the screen. The experimenter
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could prompt looming of the dot with a bell sound to redirect the
participant’s attention to the screen.

4.2.5 Analysis plan

The data were divided into three phases. Phase I started 270 ms into
the trial, which marks the onset of the first sound and of the flashing
boxes, and ended at 1500 ms, after the movement began. Phase II
began at 1700 ms, just before the onset of the second sound, and
ended at 3100 ms. The choice phase began at 3100 ms, just before
the onset of the third sound. For the RT analysis, the choice phase
continued until 4670 ms, the end of the trial. For the pupil analysis,
the choice phase ended at 3700 ms, that is, 400 ms after the outcome
would have appeared.

The data were cleaned by identifying missing segments shorter
than 500 ms, which were classified as tracking errors. Missing seg-
ments longer than 500 ms were classified as a look away from the
screen.

For the RT analysis, the XY-coordinates of where the participant
was looking were classified as being in the [a:]-outcome Area of In-
terest (AOI), the [A]-outcome AOI, or the elsewhere AOI. The [a:]-
outcome AOI was defined as the area on the screen where the out-
come would appear on outcome trials with the cueing sound [ta:m].
The [A]-outcome AOI was the area where the outcome would appear
on outcome trials with [tAm]. The segments that were missing due to
tracking errors were assigned to the last valid AOI before the missing
data occurred.

The maximum possible RT for an actual look during the trial to-
ward the [A]-outcome AOI or the [a:]-outcome AOI after the onset of
the third sound is 1540 ms. If the participant looked to only one out-
come AOI on a trial, the RT for the other AOI was given an RT of 2000

ms. No RTs were computed if the participant did not look at either
outcome AOI on a given trial. By assigining a ceiling value of 2000

ms to the trials on which the participant was involved in the task but
not looking at the outcome, we respect the fundamental difference
between trials on which the participant made a choice and random
missingness. The analyses of the RTs to the [A]-outcome AOI and the
[a:]-outcome AOI on away trials are both reported, but only the RTs
to the [A]-outcome AOI are interpreted.

Pupil data were cleaned for each participant separately, with all
pupil sizes more than three standard deviations away from the par-
ticipant’s mean excluded. This resulted in less than 3% of each par-
ticipant’s data being excluded. For each gaze point, the pupil sizes
of both eyes were averaged into 50-ms time bins. Missing 50-ms time
bins that were due to tracking errors were replaced with linear inter-
polation. The data were not interpolated if the missing data were at
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a visual transition point (from flashing to stable colors at 1300 ms or
from moving boxes to outcome at 3330 ms) of if the data were missing
due to a look away.

The average dynamic pupil response across the entire trial was
computed on the initial learning trials for [tAm] and [ta:m] (trials 11

through 18). The pupil response on all away trials in blocks 3 and 4

was baselined by subtracting the average response to [ta:m] on the ini-
tial learning trials in each 50-ms time bin from the pupil response at
that point in the away trial5. The dependent variable of all pupil anal-
yses was the attention allocation on away trials to words with typical
and atypical vowel sounds in reference to each infant’s attention to
the initial [ta:m] trials.

The data were analyzed using multi-level modeling (MLM). Each
age group was analyzed separately, but in order to facilitate compar-
ison across the age groups, a specific effort was made to fit the same
equation to each age group’s data. For the RT analyses, the vowel
sound that the participant heard (typical [A] or [a:], or atypical [A:]
or [a]) was included in the equation. The participant was the sub-
ject level variable and sequence number, which refers to the 1st, 2nd,
3rd, etc. . . time that the participant was tested on an away trial, was
included as the repeated measure. These models were fit using an
identity covariance structure.

The pupil data were analyzed separately for each of the three phases.
Pupil dilations can reflect processing of the stimulus or conflict in de-
cision (Aston-Jones and Cohen, 2005). In the present task, pupil di-
lations during the first two phases were thought to reflect stimulus
processing. Pupil dilations during the choice phase were interpreted
to reflect choice conflict. In the pupil analyses, trial and timing within
the trial were modeled as a two-level repeated measure. Those con-
tinuous independent variables were preferably modeled as a random
factor because these factors will not necessarily have identical effects
among subjects. Therefore, it is more conservative to model them as a
random effect whenever possible. If the model did not converge, tim-
ing within the trial was modeled as a fixed factor and this will be men-
tioned explicitly. For the 15-month-old children additional analyses
were conducted to assess the relation between the outcome measures
and the raw receptive-vocabulary score from the N-CDI (henceforth:
CDI-score).

4.3 Results

The effect of the initial training trials with /tibi/ and /druk@l/ was
assessed. Across all age groups, it was clear that the training trials af-

5 [ta:m] was chosen as the baseline because [a:] is the more peripheral vowel in the
Dutch vowel space and may therefore serve as the referent in perception (Polka and
Bohn, 2003, 2011)
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fected the RT measures as well as the pupil measures. All participants
had to associate /tibi/ with the left side of the screen. In one situation,
which we refer to as the duration-congruent condition, the shorter
words /tibi/ and [tAm] were associated with one side of the screen,
and the longer words /druk@l/ and [ta:m] were associated with the
other side. In the other situation, which we refer to as the quality-
congruent condition, the words with a front vowel, /tibi/ and [ta:m],
were associated with one side of the screen, and the words with a
back vowel, /druk@l/ and [tAm], were associated with the opposite
side of the screen. To account for the effect of the training condition,
a main effect of training condition and an interaction between con-
dition and vowel sound were included in all the analyses. As the
research question concerned the vowel sounds, only the main effects
of vowel sound and the interactions between condition and vowel
sound were interpreted.

A subset of infant participants appeared to have a bias for one side,
the same substantive result patterns were found in the data with and
without those side-biased infants. Only the analyses without the side-
biased infants are reported.

G
ro

up

Ef
fe

ct RTs to [A]-outcome AOI RTs to [a:]-outcome AOI

F df p F df p

A Int 300.50 1,278 <.001 397.20 1,278 <.001

C 5.97 1,278 .015 6.16 1,278 .014

V 36.46 3,278 <.001 22.77 3,278 <.001

V∗C 3.70 3,278 .012 2.14 3,278 .096

15 Int. 222.00 1,227 <.001 307.50 1,227 <.001

C 2.74 1,227 .099 10.61 1,227 .001

V 0.50 3,227 .681 0.91 3,227 .435

V∗C 0.70 3,227 .551 1.39 3,227 .246

9 Int. 390.60 1,299 <.001 290.00 1,299 <.001

C 1.49 1,299 .224 0.26 1,299 .608

V 0.14 3,299 .939 2.15 3,299 .094

V∗C 1.07 3,299 .362 0.30 3,299 .827

Table 12: Analysis of reaction times. Fixed effects (Int.=Intercept,
C=Condition, V=Vowel sound) for reaction times to the /A/-
outcome AOI (left columns) and the /a:/-outcome AOI (right
columns) from the final MLMs fit to each age-group (A=Adults,
15=15-month-olds, 9=9-month-olds).
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Figure 10: Mean reaction times to the [a:]-outcome AOI (left y-axis, solid
line, white circles) and the [A]-outcome AOI (right y-axis, striped
line, black squares) in the duration-congruent condition (top
graphs) and the quality-congruent condition (bottom graphs)
in the Adults (subfigure a), 15-month-olds (subfigure b) and 9-
month-olds (subfigure c). Reaction times are given for (from left
to right): typical [ta:m], atypical [tam], atypical [tA:m], and typical
[tAm]. The means are the means over participants and the error
bars give 95% CIs for the mean RT to that sound.
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4.3.1 RT analysis

4.3.1.1 Adults – RT analysis

There was a significant vowel by condition interaction for adults’ RTs
to the [A]-outcome AOI (F[3, 278] = 3.70, p = .012), as can be seen in
Table 12. Figure 10a shows adults’ reaction times to the [A]-outcome
AOI in reaction to each of the four test words. Adults in both condi-
tions were significantly faster to look at the [A]-outcome AOI on trials
with the typical vowel sound [A] than on trials with [a:].

The atypical vowel sound [A:] patterns with typical [A] for adults in
both conditions. However, adults in the duration-congruent condition
had a slower RT to the [A]-outcome location when hearing [A:] than
those in the quality-congruent condition. The atypical vowel sound
[a] patterns with [A] for adults in the duration-congruent condition,
but with [a:] for adults in the quality-congruent condition.

These results suggest that adults readily categorized the typical
vowel sounds [A] and [a:]. Their categorization of the atypical vowel
sound [A:] was consistent across the training conditions with both
groups categorizing it as /A/. This shows that adults relied on vowel
quality to categorize [A:]. However, their categorization of the atypical
vowel sound [a] depended on their training history. Adults thus did
not rely automatically on vowel quality for their categorization of [a].

4.3.1.2 Infants – RT analysis

There were no significant differences in the 9- and 15-month-olds’ RTs
to the vowel sounds or significant interactions between the conditions
and vowel sounds. The results of this analysis, which are shown in
Table 12, do not show that infants were able to form associations
between the typical words [tAm] and [ta:m] and the outcome locations.
The mean RTs in Figures 10b and 10c show that the infants’ RTs to
the outcome locations were not significantly different for the four test
words.

4.3.2 Pupil analysis

4.3.2.1 Adults – pupil analysis

For the analysis of adults’ pupils when the first and second sound
were played, time was included as a fixed effect. For the analysis
of the choice phase, when the third sound was played, time was in-
cluded as a random effect. The results from these analyses are given
in Table 13 and adults’ attention allocation per phase and condition
is displayed in Figure 11(a).

During the first phase there was a significant effect of vowel on
adults’ pupil responses (F[3, 196.50] = 3.43, p = .018). While this
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Figure 11: Mean pupil dilations averaged over all trials to demonstate the
average dynamic response to the task (top figures). The mean
pupil response, baselined to the initial [ta:m]-trials, averaged for
phase I, phase II, and the choice phase (bottom figures). The
dashed lines represent the beginning of each phase in the trial.
Results are separated for the duration-congruent condition (black
bars, solid line) and the quality-congruent condition (white bars,
striped line) and given for (from left to right): typical [ta:m], atyp-
ical [tam], atypical [tA:m], and typical [tAm]. Results are reported
separately for Adults (subfigure a), 15-month-olds (subfigure b)
and 9-month-olds (subfigure c). The reported means are the esti-
mated means from the analyses with time as a random factor. The
error bars give 95% CIs. For these error bars, the points where the
error bar does not cross the horizontal line are significantly dif-
ferent from the pupil dilations in the baseline trials with [ta:m].

.
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G
ro

up
Ef

fe
ct Phase I Phase II Choice Phase

F df p F df p F df p

A Int. 8.60 1, 349.68 .004 0.54 1,1369.91 .463 2.17 1, 39.31 .149

C 0.81 1, 196.50 .371 6.25 1, 211.99 .013 4.91 1, 39.31 .033

V 3.43 3, 196.50 .018 4.67 3, 211.99 .004 1.36 3, 176.47 .256

V∗C 1.65 3, 196.50 .180 1.72 3, 211.99 .164 3.75 3, 176.47 .012

(T) 28.59 1,3861.79<.001 0.442 1,3167.37 .506

15 Int. 6.40 1, 168.90 .012 9.02 1, 165.15 .003 10.60 1, 28.44 .003

C 0.07 1, 168.90 .794 6.66 1, 165.15 .011 4.85 1, 28.44 .036

V 30.11 3, 186.58<.001 22.09 3, 227.14<.001 1.85 3, 132.04 .142

V∗C 18.10 3, 186.58<.001 10.88 3, 227.14<.001 2.67 3, 132.04 .050

(T)

9 Int. 8.32 1, 242.71 .004 0.85 1,1122.54 .357 37.04 1,2178.44<.001

C 10.17 1, 242.71 .002 1.23 1, 237.52 .268 4.93 1, 207.70 .027

V 6.80 3, 275.87<.001 0.49 3, 237.50 .689 0.35 3, 207.69 .790

V∗C 1.60 3, 275.87 .190 0.29 3, 237.52 .832 0.09 3, 207.70 .967

(T) 3.61 1,5633.10 .058 41.00 1,2157.71<.001

Table 13: Analysis of pupil dilations. Fixed effects (I=Intercept,
C=Condition, V=Vowel sound) for pupil dilation from the fi-
nal MLMs fit to each age group (A=Adults, 15=15-month-olds,
9=9-month-olds) for each of the three phases of the trial. Only if
time (T) was included as a fixed instead of a random factor, the
last row is filled.

shows that the response differed between the vowels, the pupil re-
sponse for none of the vowel sounds significantly differed from base-
line. During the second phase, there was a significant main effect of
condition (F[1, 211.99] = 6.25, p = .013) and of vowel (F[3, 211.99] =
4.67, p = .004). Adults had a large pupil response to the two atypical
vowel sounds [A:] and [a] relative to baseline. For the choice phase,
there was a sound by condition interaction (F[3, 176.47] = 3.75, p =

.012). Adults in the duration-congruent condition had larger than
baseline pupils to the typical vowel [a:] and both atypical sounds.
Adults in the quality-congruent condition did not have a pupil re-
sponse that differed from baseline. Together, the results from all three
phases suggest that adults needed more attention to process the atyp-
ical vowel sounds than the typical vowel sounds.
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4.3.2.2 15-month-olds – pupil analysis

The results from the analyses on the 15-month-olds’ pupil responses
can be found in Table 13 and Figure 11(b). These results show that
when the first word was played there was a significant vowel by
condition interaction (F[3, 186.58] = 18.10, p < .001). Infants in both
conditions had an increase in attention over baseline to the atypical
vowel sound [A:]. Infants in the duration-congruent condition had a
significantly smaller pupil than baseline to the atypical vowel sound
[a], whereas the pupil response of infants in the quality-congruent
condition to this sound was not significantly different than baseline.
During the second phase, there was also a significant vowel by con-
dition interaction (F[3, 227.14] = 10.88, p < 0.001). Infants in both
conditions showed a larger than baseline pupil response to words
with the atypical [A:]. Infants in the duration-congruent condition
had a significantly smaller than baseline pupil response to the typ-
ical vowel sound [a:] and the atypical vowel sound [a]. Infants in
the quality-congruent condition had a larger than baseline pupil re-
sponse to the atypical vowel sound [a]. During the choice phase, the
15-month-old infants had a significant vowel by condition interaction
(F[3, 132.04] = 2.67, p = .050). Only infants in the quality-congruent
condition had a larger than baseline pupil response to the words with
the atypical vowel sounds.

In both conditions, 15-month-olds showed increased attention al-
location to the atypical vowel sound [A:] over baseline as compared
to the typical vowel sounds, indicating that irrespective of the early
training trials infants viewed this sound as unusual. This showed that
infants reacted to the unusual combination of vowel quality and du-
ration in this vowel sound and did not fully rely on either its famil-
iar vowel-quality characteristics or its familiar duration characteris-
tics. Whether the atypical vowel sound [a] was viewed as unusual
depended on the infants’ training history.

4.3.2.3 9-month-olds – pupil analysis

For the analysis of the 9-month-olds’ pupils in the first phase time
was included as a random effect. For the analysis of the second and
the choice phase time was included as a fixed effect. The results from
these analyses can be found in Table 13 and Figure 11(c).

The first phase showed main effects of condition (F[1, 242.71] =

10.17, p = .002) and vowel sound (F[3, 275.87] = 6.80, p < .001) on
the 9-month-olds’ pupil responses. For both conditions the 9-month-
olds showed an increase over baseline in attention to the words with
the atypical vowel sound [a]. There were no significant differences
between the conditions or the vowel sounds in the second phase. In
the choice phase, there was a significant difference between the con-
ditions (F[1, 207.70] = 4.93, p = .027), but this factor did not interact
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RTs to [A]- RTs to [a:]-

Ef
fe

ct outcome AOI outcome AOI

F df p F df p

Int 14.06 1, 39.12 .001 39.16 1, 41.82 .001

C 1.97 1, 38.39 .168 6.23 1, 41.68 .017

V 0.40 3,207.39 .754 0.18 3,206.15 .910

V∗C 0.69 3,206.51 .557 1.56 3,205.41 .201

CDI 2.00 1, 42.31 .165 0.53 1, 44.48 .472

V∗CDI 0.31 3,207.92 .821 0.67 3,206.62 .571

Table 14: Analysis on 15-month-olds’ reaction times and CDI-score. Fixed
effects (Int.=Intercept, C=Condition, V=Vowel sound, CDI=CDI-
score) for reaction times from the final MLMs relating 15-month-
olds’ CDI-score to their performance in the task.

Ef
fe

ct Phase I Phase II Choice phase

F df p F df p F df p

Int 1.01 1,158.81 .317 1.55 1,160.15 .215 .01 1, 96.58 .911

C 0.61 1,159.12 .437 0.03 1,160.47 .856 2.87 1, 93.39 .094

V 1.21 3,159.48 .307 1.18 3,160.80 .321 2.74 3,148.68 .045

V∗C 9.43 3,168.49<.001 9.14 3,169.52<.001 2.44 3,147.80 .067

CDI 10.80 1,158.96 0.001 4.68 1,160.10 .032 1.36 1, 96.34 .247

V∗CDI 6.30 3,162.13<.001 6.07 3,163.37 .001 10.56 3,172.17<.001

Table 15: Analysis on 15-month-olds’ pupil dilations and CDI score. Fixed
effects (Int.=Intercept, C=Condition, V=Vowel sound, CDI=CDI-
score) for pupil sizes from the final MLMs relating 15-month-olds’
CDI-score to their attention allocation in the task, for each of the
three phases of the trial.

with vowel, nor was there a main effect for vowel. These results show
that despite an initial increase in attention to the atypical vowel sound
[a], there was no evidence that the 9-month-olds sustained their atten-
tion throughout the trial.

4.3.3 15-month relation between CDI-scores and RTs and pupil sizes

In order to investigate the relation between vocabulary size and vowel
perception, the MLMs were run again on the data of the 15-month-
olds, but with the CDI-score and the interaction between vowel sound
and CDI-score entered as fixed effects. The results from these analyses
are given in Tables 14 and 15.
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For the analysis of RT, there was no significant interaction between
vowel sound and CDI-score, nor was there a main effect of CDI-
score on 15-month-olds’ general RT. For the analysis of pupil di-
lation, vowel sound significantly interacted with CDI-score during
the first phase (F[3, 162.13] = 6.30, p < .001). Infants with a higher
CDI-score had a larger pupil response to the atypical vowel sound
[A:] than those with a lower CDI-score (β = 0.008, p = .020). There
was a negative relation between CDI-score and the pupil response
to the atypical [a] (β = −0.007, p = .044). During the second phase,
there was also a significant vowel sound by CDI-score interaction
(F[3, 163.37] = 6.07, p = .001). As in the first phase, there was a pos-
itive relation between CDI-score and pupil response to the atypical
vowel sound [A:] (β = 0.008, p = 0.026) and a negative relation be-
tween CDI-score and pupil response to the atypical vowel sound [a]
(β = −0.008, p = .042). In the choice phase, the significant vowel by
CDI-score interaction was maintained (F[3, 172.17] = 10.56, p < .001),
with a positive relation between CDI-score and the pupil response to
[A:] (β = 0.006, p = .006). In the choice phase, the negative relation be-
tween CDI-score and the pupil response to [a] was not significant, but
there was a significant negative relation between CDI-score and the
pupil response to the typical vowel sound [a:] (β = −0.006, p = .006).

4.4 Discussion

The central aim of this paper was to investigate whether infants’
vowel categories are primarily defined by vowel duration, vowel qual-
ity, or the combination of vowel quality and duration. The results of
the present study show that by 15 months of age, infants are combin-
ing these cues in their vowel representations, because they react dif-
ferently to atypical than to typical combinations of vowel quality and
duration. An unexpected finding was that both adults’ categorization
of and infants’ attention allocation to the atypical combinations of
vowel quality and duration were influenced by the experimental con-
text. As will be explained later, the context only influenced the adults’
and infants’ interpretation of the atypical combination that was a pos-
sible but ambiguous vowel sound, but not their interpretation of the
combination that was a very infrequent vowel sound.

Only the adults reliably predicted the outcome locations for the
words with the typical vowel sounds [A] and [a:] on away trials. The
atypical vowel sound [A:], which had the vowel quality of /A/ and
duration of /a:/, was consistently categorized by the adults as /A/.
This finding shows that adults rely more on vowel quality, the cue
that is generally found to dominate their perception of /A/ and /a:/
(Van Heuven et al., 1986; Escudero et al., 2009a; Giezen et al., 2010),
as well as their categorization of other vowels (Van Heuven et al.,
1986). Vowel sounds like [A:] are infrequent in Dutch infant-directed
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speech (Chapter 3) and Dutch listeners give vowel sounds like [A:]
low acceptability ratings (Van Heuven et al., 1986)6. The present re-
sults show that Dutch adults nevertheless consistently categorize [A:]
as /A/, which indicates that they use their default categorization strat-
egy, reliance on vowel quality, to categorize this infrequent vowel
sound.

Adults’ categorization of the atypical vowel sound [a], with the du-
ration of /A/ and the vowel quality of /a:/, was dependent on the
initial training trials with /tibi/ and /druk@l/. Adults in the duration-
congruent condition categorized [a] as /A/, whereas adults in the
quality-congruent condition categorized [a] as /a:/. The effect of the
training condition shows that adults rely on the cue that is favored
by the context to determine how [a] should be categorized. The atyp-
ical vowel sound [a] is ambiguous between /A/ and /a:/. In Dutch
IDS, the phonemes /A/ and /a:/ are both sometimes produced as the
vowel sound [a]. Vowel sounds like [a] can be found as a realization of
/A/ in Northern Dutch (Adank et al., 2007) and in Amsterdam Dutch
before some coronal codas (Faddegon, 1951) and as a realization of
/a:/ before a stressed syllable (Rietveld et al., 2003). The adults’ incon-
sistent categorization of [a] as both /A/ and /a:/ is most likely due to
the ambiguity of this vowel sound. Adult listeners thus take the con-
text of the situation into account when categorizing this ambiguous
vowel sound.

Although the 15-month-olds did not reliably categorize the typical
cueing sounds [A] and [a:], the infants did show evidence of combin-
ing vowel duration and quality in their perception by increasing their
attention to the atypical cueing sound [A:]. Adults consistently cate-
gorized [A:] as /A/, but there are good reasons to assume that adults
recognize that [A:] is an infrequent vowel sound. Infants’ increased at-
tention allocation to [A:] shows that they similarly recognize that [A:]
is uncommon in their language environment. If either vowel duration
or quality had dominated infants’ perception and vowel representa-
tions, infants would have recognized [A:] as familiar, either because
it has the familiar vowel quality of /A/ or because it has the familiar
vowel duration of /a:/. Only if infants attended to both cues could
they notice that these familiar vowel quality and duration character-
istics were incorrectly combined in [A:], which is what was found.
Therefore, these results confirm those in Chapter 3 by showing that
by 15 months of age, Dutch infants have representations for /A/ and
/a:/ that involve vowel duration as well as vowel quality.

6 Informally, we observed in the exit interviews that participants more readily noted
[A:] as a deviant vowel than they reported on [a] as sounding unfamiliar. In Dutch,
the vowel sound [A:] marginally appears in loanwords from English (e.g. [mA:st@r],
‘master’) and in that respect forms a third infrequent phoneme category. Length-
ening of /A/, does not typically occur in Dutch and [A:] is therefore an unlikely
realization of /A/. In Amsterdam Dutch, vowel sounds that resemble [A:] can be a
realization of /a:/ (Brouwer, 1989).
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Just as the training conditions differentially influenced adults’ cat-
egorization of [a], they differentially affected the infants’ attention al-
location to [a]. At the group level, the 15-month-olds in the duration-
congruent reduced their attention to [a], whereas infants in the quality-
congruent condition increased their attention to [a]. As the effect of
the training condition on adults’ categorization of [a] was a result
of the linguistic ambiguity of this vowel sound, we hypothesize that
the effect of the training condition on infants’ attention allocation to
[a] is also evidence of the infants’ linguistic processing of the sound.
These results show that if infants acquire a contrast that is signaled by
the early acquired vowel-quality cue and the later acquired duration
cue, they are able to combine vowel duration and vowel quality in
their representations before turning one and a half years of age, and
are sensitive to the relative frequency and ambiguity of atypical cue
combinations.

The 9-month-old infants did not reliably predict the outcome lo-
cations. Although they allocated more attention to the atypical vowel
sound [a] in the beginning of the trials, this was not sustained through-
out the trials. From these results we cannot draw any conclusions
about 9-month-old infants’ representations of /A/ and /a:/.

Importantly, the 15-month-olds’ attention allocation to the atypical
vowel sounds was related to the infants’ vocabulary size: Infants with
a larger vocabulary allocated more attention to [A:] and less attention
to [a] than infants with a smaller vocabulary. Linguistically more ad-
vanced infants thus better recognize that [A:] is an infrequent vowel
sound. The adult results showed that they recognize [a] as a poten-
tial realization of both /A/ and /a:/. The finding that infants with
a larger vocabulary react with less surprise to [a] shows that they
have begun to recognize that [a] is a possible vowel sound in their
language. These infants thus went beyond noticing the acoustic dif-
ferences between the typical and atypical vowel sounds and reacted
selectively to the atypical combinations of vowel duration and quality
in [A:] and [a], which have a different linguistic status and frequency
in their native language.

Several studies to date have reported a relation between infants’
phoneme perception and language development.7 Language-specific
speech discrimination skills in the second half of infants’ first year
have been found to be related to later vocabulary size (Tsao et al.,
2004; Kuhl et al., 2005; Rivera-GAxiola et al., 2005; Kuhl et al., 2008).
Conboy et al. (2008) report a relation between speech perception and
concurrent vocabulary size. To the best of our knowledge, the present
study is the second result that indicates a concurrent relation between
speech perception and vocabulary. Infants’ speech perception skills
are often measured in looking-time procedures, which tend to give

7 See for an overview the Individual Variability in Infancy project on
sites.google.com//site/invarinf/
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binary rather than continuous outcomes (Aslin and Fiser, 2005). Fur-
thermore, such studies mostly test infants’ perception of very typical
exemplars, which is well established by the time infants start learning
their first words (Kuhl et al., 1997; Polka and Werker, 1994). By using
the continuous pupil dilation measure and testing infants’ perception
of atypical examples (cf. Tsao et al., 2004), the present study could re-
veal subtle relations between infants’ perception of phonemes and
their language development. Infants’ speech perception skills and vo-
cabulary size might be independently influenced by the amount of in-
put they receive (cf. Huttenlocher et al., 1991). However, this finding
also lends support to accounts of infant language acquisition that pro-
pose a tight connection between the development of these two skills
(Boersma et al., 2003; Werker and Curtin, 2005; Kuhl et al., 2008).

Infants’ inability in the present study to associate the stimuli [tAm]
and [ta:m] with the two outcome locations cannot be due to their in-
ability to discriminate between the vowels /A/ and /a:/. Chapter 3 has
found that 15-month-old Dutch infants can discriminate between /A/
and /a:/ in a simple discrimination task, and the change in infants’
attention allocation to atypical [A:] and [a] reveals fine-grained sensi-
tivity to the possible realizations of these vowels. The present results
therefore confirm once more that it is difficult for infants to use their
speech perception abilities to learn arbitrary audio-visual associations
(cf. McMurray and Aslin, 2004; Kovács and Mehler, 2009; Albareda-
Castellot et al., 2011). Possibly the most important of such arbitrary
audio-visual associations that infants must acquire are word-object
associations. Infants of 14 months old can discriminate between [bI]
and [dI] in a speech discrimination task, but have difficulties using
this ability in a word learning task with the minimal pair [bI] and [dI]
(Stager and Werker, 1997; but seeYoshida et al., 2009). It has been pro-
posed that infants’ limited processing capacaties prevent them from
listening carefully to the shape of the speech sounds when they have
to form word-object associations (Werker et al., 2002; Fennell and
Waxman, 2010; Fennell, 2012). In the present two-alternative catego-
rization task the pupil dilations revealed that infants were processing
the speech sounds in detail and in accordance with the distribution
of such speech sounds in their language environment. Therefore, in-
fants’ difficulties with forming audio-visual associations must not be
automatically ascribed to their inability to listen to the exact shape
of the speech sounds. Rather, the present results suggest that infants
always listen to the details of speech sounds and relate these to their
emerging phoneme representations.

4.5 Summary

In this study we have shown that Dutch infants of 15 months old asso-
ciate their vowel categories of /A/ and /a:/ each with a combination
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of vowel quality and duration. Infants furthermore react differently
to the infrequency of one atypical token, namely [A:], and the am-
biguity of a second atypical token, namely [a]. This detailed insight
in infants’ category structure could only be obtained in a task that
included typical as well as atypical category examples, and tested in-
fants’ recognition both in overt behavior and unconscious attention
allocation.
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S P E E C H : T W O D I S T R I B U T I O N A L - L E A R N I N G
M O D E L S

An adapted version of this chapter is:
Benders, T. & Boersma, P. (in preparation).

Abstract

Infants are often said to acquire their language-specific speech per-
ception through the mechanism of distributional learning, but the
exact properties of this mechanism are rarely discussed. This paper
aims at bringing insight in the mechanism of distributional learning
by comparing two types of computational models of distributional
learning (Mixture-of-Gaussian models and neural network models)
and several learning scenario’s (learning a representation for each in-
dividual auditory dimension, or for auditory dimensions combined).
All models are trained on the same data, a corpus of /A/s and /a:/s
in Dutch infant-directed speech, and compared against Dutch infants’
perception of these same vowels as found in previous studies. Both
types of models were more successful in learning the contrast when
categories could be formed for multiple auditory cues than when
they had to form the categories for individual auditory dimensions.
This result suggests that infants might associate their earliest cate-
gories with multiple auditory dimensions, which was also found in
the earlier speech perception studies. The models differed in the in-
fant perception data they could account for and the robustness of the
acquired representations. The paper closes off with an in-depth dis-
cussion of the differences between the models, possible extensions,
and empirical questions for further experiments with infants.
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5.1 Introduction

From the earliest possible moment that infants hear speech, they ac-
tively process this input, as shown by fetuses’ sensitivity to their na-
tive language (Kisilevsky et al., 2009) and newborns’ preference for
their native language rhythm (Moon et al., 1993). Six months after
birth, infants in speech perception experiments show evidence that
they have actively organized the speech sounds in their input into
categories, as they begin to perceive speech sounds in a manner that
is compatible with their native language’s phonological system (for a
review, Gervain and Mehler, 2010). Most current theories of infants’
acquisition of phoneme perception have distributional learning as the
central mechanism behind infants’ early perceptual skills (Pierrehum-
bert, 2003; Werker and Curtin, 2005; Kuhl et al., 2008; Boersma et al.,
2003). A fundamental tenet of distributional learning is that infant
speech perception is shaped by the speech-sound distribution in the
input, more specifically, that infants form a category for each local
maximum in that distribution.

Two prerequisites must be met before distributional learning can
be considered the learning mechanism that underlies the reorgani-
zation of speech sound perception in infancy. The first prerequisite
is that infants must be able to perform distributional learning. The
second is that a distributional-learning mechanism must be able to
learn the relevant phoneme categories from the input that infants en-
counter. Laboratory experiments have shown that infants’ perception
of speech sounds can be shaped by the distribution of these sounds in
their environment. When infants are exposed to a bimodal distribu-
tion of stimuli along an auditory continuum, they will subsequently
discriminate between two sounds that each fall under a different peak
in the distribution, but when they are exposed to a monomodal distri-
bution, infants subsequently do not discriminate between the sounds
along the continuum (Maye et al., 2002, 2008; Yoshida et al., 2010).
The application of computational distributional-learning models to
the distributions of speech sounds in infant-directed speech (IDS) has
demonstrated that vowel categories are learnable from English and
Japanese IDS using distributional learning (Vallabha et al., 2007), that
the categories for the corner vowels1 are more easily acquired from
IDS than from adult-directed speech (ADS) (De Boer and Kuhl, 2003),
and that vowel categories could be even better learned from IDS if
only the tokens with prosodic focus are taken into account (Adriaans
and Swingley, 2012). The distributional-learning mechanism thus pro-
vides an explanation for the observation that infants stop discriminat-
ing between speech sounds that are not contrastive in their native lan-
guage, while they remain able to discriminate between speech sounds
that are contrastive (Werker and Tees, 1984; Polka and Werker, 1994).

1 The corner vowels are /i/, /u/, and one or two low vowels such as /a/.
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However, even if the distributional-learning mechanism that infants
can employ could in principle lead to the acquisition of the phoneme
categories from the input that infants receive, there is no guaran-
tee that infants actually acquire phoneme categories through distri-
butional learning. If distributional learning is truly the mechanism
behind the acquisition of phoneme perception in infancy, it must be
possible to directly relate infants’ perception of two phonemes to the
results of a distributional-learning model that was trained on the ac-
tual distributions of those phonemes in the infants’ input. In this pa-
per we show that many aspects of Dutch infants’ perception of the
contrast between the vowels /A/ and /a:/ are directly explained by
computational models of distributional learning that are trained on
the /A/s and /a:/s in Dutch IDS.

Most work in which learning is modeled from actual pooled distri-
butions of IDS uses a Mixture-of-Gaussians model, and this method
is still gaining popularity.2 The MoG model is the first model we test.
It equates phoneme categories with Gaussian functions and estimates
the number of Gaussian functions that is most likely to have gener-
ated the observed distribution, as well as the parameters of these
functions. However, a model based on symmetric Gaussian distribu-
tions does not necessarily correctly account for the learning biases
that human learners bring to distributional learning.3 Moreover, the
MoG approach to phoneme acquisition provides a computational or
algorithmic level description of the learning process (Marr, 1982) and
does not describe how distributional learning could be implemented
in the human brain.

Neural network (NN) models of distributional learning provide
an architecture that comes one (small) step closer towards explain-
ing how the brain could actually acquire phoneme categories using
a distributional-learning meachanism. Two different NN implemen-
tations of distributional learning, in Guenther and Gjaja (1996) and
Vallabha and McClelland (2007), modeled the development of the per-
ceptual magnet effect (Kuhl, 1991).4 McMurray and Spivey (2000) de-

2 See for instance the Symposium Mapping the acoustic landscape of IDS: What are its
implications for learning? at the XVIII Biennial International Conference on Infant
Studies 2012, Minneapolis, Minnesota, USA, where 2 out of 4 abstracts indicated the
use of a MoG model, whereas none applied a non-Gaussian model.

3 Vallabha et al. (2007) acknowledged this potential objection against the MoG ap-
proach to phoneme acquisition and proposed a non-Gaussian unsupervised learn-
ing algorithm. The relatively low success rate of this model in acquiring the correct
number of categories from English and Japanese IDS (approximately 5.5 out of 10

simulations with this non-Gaussian model resulted in the correct number of cate-
gories, as compared to a success rate of 7.8 out of 10 with the MoG model) may have
prevented the adoption of this model by other researchers.

4 The perceptual magnet effect implies that listeners poorly discriminate between two
slightly different vowel stimuli in the typical region of a vowel category, whereas
they better discriminate between two slightly different vowel stimuli in the atypical
region of that category (Kuhl, 1991). The perceptual magnet effect has received con-
siderable attention amongst computational modelers, leading to accounts invoking
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veloped a NN model that could perform distributional learning and
replicated the graded nature of phoneme categories in human speech
perception. A fourth NN model of distributional learning, introduced
in Boersma et al. (2012), aimed at additionally explaining the emer-
gence of discrete categories over the course of a child’s life and the
development of these categories over generations and is integrated
in a larger model of speech perception and production (Boersma,
2007). Even though these models go further than MoG modeling in
the sense that they explain human behavior as found in speech per-
ception experiments and languages, they still lag behind MoG mod-
eling in another aspect of empirical testing: NN models have not yet
been trained on distributions that reflect the real environment of a
language-learning infant. To close this gap, the second half of this pa-
per extends Boersma et al.’s (2012) NN model of distributional learn-
ing to an architecture that can handle input along multiple auditory
dimensions and trains it on the input distributions of /A/ and /a:/ in
Dutch IDS. As with the MoG model, the NN model is then compared
to Dutch infants’ perception of /A/ and /a:/.

By training two different models of distributional learning on the
same distribution in IDS and then comparing the two models to the
same infant perception results, we can determine which modeling
outcomes are a general result of distributional learning, and which
outcomes are restriced to a specific implementation of the mechanism.
Moreover, by comparing the modeling results to the perception of real
infants, we can test whether the distributional-learning mechanism
provides an explanation of infants’ actual phoneme perception.

5.2 The distributions of /A/ and /a:/ in Dutch infant-
directed speech

The phonemes /A/ and /a:/ are the two lowest vowels (acoustically,
the vowels with the highest first formant, F1) of the Dutch vowel
system (Moulton, 1962; Booij, 1995). Typical examples of the vow-
els /A/ and /a:/ differ in both vowel quality and duration, as /A/
has a lower first and second formant (F2) than /a:/ and is shorter
(Adank et al., 2004; Nooteboom and Doodeman, 1980; Rietveld et al.,
2003). Vowel sounds like [a], with a vowel quality usually associated
with the phoneme /a:/ and a duration usually associated with the
phoneme /A/, are relatively frequent in Dutch, as they can be a posi-
tional variant of /a:/ before a stressed syllable (Rietveld et al., 2003).
A vowel sound like [a] can also be a realization of /A/ if it occurs be-
fore a coronal consonant coda or some coronal consonant clusters in

exemplar storage (Lacerda, 1995; Shi et al., 2010), an account in terms of constraint
ranking (Boersma et al., 2003), and an account in terms of optimal perception in
noise (Feldman et al., 009a).
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Amsterdam-Dutch (Faddegon, 1951).5 Dutch listeners recognize the
ambiguity of the speech sound [a], as they can classify it as either
the phoneme /A/ or the phoneme /a:/ (Chapter 4; cf. Van Heuven
et al., 1986). Vowel sounds like [A:], with the typical vowel quality of
/A/ and the typical duration of /a:/, appear marginally in loanwords
from English (e.g., [mA:st@r] master). A vowel sound similar to [A:] can
also be a realization of /a:/ in Amsterdam Dutch (Brouwer, 1989). By
contrast, the short vowel /A/ does not have a positional or regional
variant [A:]. Still, Dutch listeners consistently classify vowel sounds
like [A:] as the phoneme /A/ (Chapter 4; Van Heuven et al., 1986).

As said, the distributional-learning models are trained on the dis-
tributions of /A/ and /a:/ in Dutch IDS. The corpus of the vowels /A/
and /a:/ in Dutch IDS that was used in the simulations in the present
paper was earlier presented in Chapter 3. The aspects of the IDS cor-
pus that are relevant for the present modeling work are presented
here.

[A]

[A:]

[a]

[a:]

Figure 12: The distribution of the /A/ tokens and /a:/ tokens from the
corpus in an auditory space defined by F2 and duration. a) Sep-
arated for /A/ (red triangles) and /a:/ (blue squares). b) Without
the category information (in gray circles). c) With the vowel space
divided in quadrants for the typical vowel sounds [A] (bottom-
left) and [a:] (top-right) and the atypical vowel sounds [A:] (top-
left) and [a] (bottom-right).

The corpus contains 414 /A/ tokens and 313 /a:/ tokens, produced
by 18 mothers in running speech to their infants of 11 and 15 months
of age. The vowel quality of the tokens was measured as F2.6 F2 and
duration were transformed to place the measures on psychoacoustic
scales and then normalized between speakers for vocal tract length
and overall speaking rate (see Chapter 4 for details). The boundary

5 Throughout this paper we adhere to the distinction between abstract phoneme cat-
egories, denoted with / /, and their acoustic realizations, speech sounds, denoted
with [ ]. E.g., the Dutch phoneme /A/ is mostly realized as the speech sound [A].

6 F2 is the main acoustic correlate of vowel backness, which is the phonological feature
that /A/ and /a:/ are thought to differ in (Moulton, 1962). The vowels /A/ and /a:/
differ more in F2 than they differ in F1 or the third formant (Adank et al., 2004), also
when measured on the psychoacoustic Bark scale.
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/A/ /a:/ Vowels pooled

F2 Duration F2 Duration F2 Duration

mean -0.39 -0.33 0.55 0.39 0.08 0.03

sd 0.68 0.29 0.61 0.45 0.79 0.52

skewness -0.07 0.03 0.11 0.10 -0.14 0.45

Table 16: The descriptive statistics of the vowels /A/ and /a:/ in the corpus
of Dutch IDS, as well as the descriptives of the pooled distribution
based on 5000 random samples of /A/ and /a:/ from the corpus.

Figure 13: The distribution of the /A/ tokens and /a:/ tokens from the
corpus along the dimension of F2 (left) and duration (right). ab)
The separate distributions of /A/ (red, rising diagonals) and /a:/
(blue, falling diagonals) in 5000 random samples from the corpus
with an equal number of /A/ and /a:/ tokens. cd) The pooled
distributions of the 5000 random samples from the corpus.

between the categories along both auditory dimensions is at a value
of zero. In Dutch IDS /A/ and /a:/ differ in F2 and duration, as seen
Figure 12a and Figures 13a and 13b. Table 16 gives the descriptive
statistics of the F2 and duration of /A/ and /a:/ in this corpus.
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Learners perform distributional learning without access to each to-
ken’s category label, i.e., over the distribution that is pooled over both
vowels. In the distributional-learning simulations presented below in
sections 5.5 and 5.7, the models are presented with approximately
equal numbers of /A/ and /a:/ tokens, drawn with replacement from
this corpus. To illustrate the input that the models would receive, the
pooled distribution of a random sample of 5000 tokens, drawn with
replacement from the corpus with an equal number of /A/ and /a:/
tokens, is presented in the two-dimensional auditory space in Fig-
ure 12c and along the individual auditory dimensions in Figures 13c
and 13d. This pooled distribution is monomodal along the individual
auditory dimensions, but has local maxima corresponding to /A/ and
/a:/ in the two-dimensional auditory space (Chapter 3). Furthermore,
the distributions are skewed along the duration dimension, but not
along the F2 dimension (D’Agostino test for skewness on the pooled
sample of 727 tokens. F2: skewness = −0.07, z = −0.52, p = 0.60;
Duration: skewness = 0.63, z = 4.25, p < 0.05.).

To facilitate the visual inspection of the input data and the later
modeling results, the two-dimensional auditory space of the input
distribution was divided into four quadrants, corresponding to the
typical vowel sounds [A] and [a:] and the atypical vowel sounds [A:]
and [a] (Figure 12c). The four quadrants were all given the same size.
The quadrants exclude the highest F2 values and the longest duration
values of /a:/ and include only the more average F2 and duration of
/A/ and /a:/.

5.3 Dutch infants’ perception of /A/ and /a:/

Several studies have investigated Dutch infants’ perception of /A/
and /a:/, specifically testing whether infants are sensitive to the vowel
quality difference and/or the duration difference between the vowels.
To this end, these studies tested how infants react to vowel sounds
with the typical combinations of vowel quality and duration, namely
[A] and [a:], in comparison to vowel sounds with the atypical combina-
tions of vowel quality and duration, namely [A:] and [a]. This research
is reviewed here, as these studies provide the aspects of infants’ per-
ception that we aim to explain through the modeling.7

Chapter 3 tested Dutch infants’ perception of the phonemes /A/
and /a:/ in a speech sound discrimination task. It was found that
Dutch infants of 11 and 15 months old could discriminate between
the typical examples of the vowels. Infants found it more difficult to

7 A fourth study into Dutch infants’ perception of the contrast between /A/ and /a:/
is Dietrich (2006), who has found that Dutch infants in the second half of the first
year of life are sensitive to the vowel duration of /A/. As vowel duration is a salient
cue for infants under one year of age (cf. Bohn and Polka, 2001), it is not clear
whether those results can be interpreted as evidence of an acquired representation
of a relevant vowel duration contrast.
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discriminate between examples that differed only in vowel quality
or only in vowel duration. From these results, it was concluded in
Chapter 3 that Dutch infants have representations of /A/ and /a:/
that are associated with both vowel quality and duration.

In Chapter 4, the same conclusion was reached from the finding
that 15-month-old infants change their attention allocation to the words
[tA:m] and [tam], which contain vowel sounds with the atypical cue
combinations, as compared to the words [tAm] and [ta:m], which con-
tain vowel sounds with the typical combinations of vowel quality and
duration. Moreover, especially infants with a larger vocabulary re-
acted differently to atypical [A:] than to atypical [a]. In Chapter 4, in-
fants’ attention differentiation between [A:] and [a] was interpreted as
an indication that by 15 months of age, Dutch infants have acquired
the different status of infrequent [A:] versus ambiguous [a] and are
still refining this knowledge.

Whereas the results from Chapters 3 and 4 show that infants asso-
ciate their /A/ and /a:/ categories with combinations of vowel quality
and duration, Dietrich et al. (2007) showed that Dutch 18-month-olds
regarded vowel duration as contrastive in a word learning context.
After being habituated to [tAm] and [tA:m] as the novel names of
two novel objects, the infants reacted with surprise when [tAm] was
presented with the object previously called [tA:m] (or vice versa). As
similar results were obtained with the novel labels [tæm] and [tæ:m],
which contain a vowel quality that is atypical for Dutch.8 Dietrich
et al. (2007) have shown that in the absence of vowel quality differ-
ences Dutch 18-month-old infants can use vowel duration as an audi-
tory cue to a phonological contrast.

These three studies combined raise the following three questions.
Can a computationally implemented distributional-learning mecha-
nism that is trained on the auditory distributions of /A/ and /a:/
explain that Dutch infants know that:

1. /A/ and /a:/ differ in vowel quality and duration (as the results
from Chapters 3 and 4 suggest)?

2. the atypical vowel sounds [A:], which is infrequent, and [a],
which is ambiguous, have a different status in Dutch (as the
results from Chapter 4 suggest)?

3. vowel duration can be used as an auditory cue for a phonolog-
ical contrast in the absence of vowel quality differences (as the
results from Dietrich et al., 2007, suggest)?

8 Dutch does not have the phoneme /æ/.
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It is these three questions that we wish to answer in the present paper
by modeling distributional learning on the auditory distribution of
/A/ and /a:/ in Dutch IDS, which was reviewed in Section 5.2.

5.4 A computational-level model to link input and per-
ception : Incremental Mixture-of-Gaussians model

We first model distributional learning using a MoG model, which is
the most frequently used model to simulate distributional learning
from IDS (De Boer and Kuhl, 2003; Vallabha et al., 2007; Adriaans
and Swingley, 2012). An extensive mathematical description of our
MoG model and the learning rules are provided in Section 5.11. A
conceptual overview is given here.

5.4.1 The Mixture-of-Gaussians model

Modeling an observed distribution as a Mixture of Gaussians (MoG)
means approximating that distribution as a sum (mixture) of a num-
ber of Gaussian functions. If the distribution is over a single auditory
continuum, each Gaussian function, Gg, is defined by the following
parameters: The probability of occurrence, φg; the mean of the Gaus-
sian curve along along an auditory continuum, µg; and the standard
deviation along that same continuum, σg. Gg describes the probability
that if the model were to produce, or generate, a vowel sound from
that category, the vowel sound would have certain auditory values.
For instance, for a distribution along the F2 continuum alone, each
Gg comes with a φg, a µF2g, and a σF2g (Equation 4). If a distribu-
tion is over two auditory continua simultaneously, say F2 and Dura-
tion, each Gg is characterized by six parameters: a single probability
φg, means and standard deviations along both continua (µF2g, σF2g,
µDurg, and σDurg), and the F2-Duration correlation, ρg (Equation 5).
Each Gaussian function is thought to correspond to a phoneme cat-
egory (Vallabha et al., 2007). By estimating the number of Gaussian
functions and their parameters, the model learns the number of cat-
egories as well as their locations in the auditory space. MoG models
simulate distributional learning, as they acquire the categories from
the auditory distributions of the input data, without access to the
category labels.

5.4.2 Distributional learning

A MoG model can be fit to a complete distribution at once using
an Expectation–Maximization algorithm (Bilmes, 1998). However, in-
fants hear the speech sounds they learn from one by one rather than
all at once. To simulate this incremental learning process with a MoG
model, learning rules based on gradient descent have been developed
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that update the number of Gaussians, K, in the MoG model as well as
their parameters in reaction to each individual input token (Vallabha
et al., 2007; McMurray et al., 2009a). In the present study, we adopt
the learning rules as formulated by Toscano and McMurray (2010)
with some corrections (Toscano and McMurray, 2012).

The model begins with K Gaussian functions Gg, each with ran-
domly initialized parameters. On each iteration, an input token i is
drawn from the /A/s or /a:/s in the corpus and the model updates its
parameters in reaction to i. To achieve this, the model first computes
how the parameters of each Gg, except φg, would need to be updated
to increase the probability that Gg generates i. The model also com-
putes which of the K Gg has the highest probability of generating i,
after weighting by φg. The model then updates for all Gg all parame-
ters, with the exception of φg, so that the MoG model now becomes
more likely to generate i than before the update. Only for the win-
ning Gg φg is increased. Functions with a φg below 0.008 (which are
5 times less likely than the categories in the initial state of the model
and unlikely to ever win) or a σg below 0 (which is impossible) are
removed from the MoG model. The model thus eliminates obsolete
functions while the remaining functions become a better description
of the input distribution.

All updates are made in very small steps, suggesting that the learn-
ing mechanism is relatively slow. The small size of the learning steps
ensures (and assumes) that the learning mechanism is robust as well,
so that a single token will not drastically change the acquired cat-
egories. After approximately 100000 iterations, the model reaches a
stable state, with a constant number of categories that have stable pa-
rameter values. This is the final state of distributional learning, which
we compare to Dutch infants’ perception of /A and /a:/.

5.4.3 Evaluation of the MoG modeling

The success of the modeling was first assessed on the basis of the
number of models that resulted in a two-category state after 500000

iterations. Only the models that resulted in a two-category state were
further assessed. To evaluate whether a model was in agreement with
the input distributions, it was investigated whether 1) its two cate-
gories had approximately equal values for φ; 2) µF2 and µDur of these
categories were close to the average F2 and duration of /A/ and /a:/
in the input; and 3) σF2 and σDur of these categories were similar to
the standard deviation in F2 and duration of /A/ and /a:/. For the fur-
ther evaluation, the category with the lowest µF2 and µDur is referred
to as /A/ and the category with the highest µF2 and µDur is referred
to as /a:/.9

9 There were no simulations in which the category with the lowest µF2 had the highest
µDur or vice versa.
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It was then evaluated whether the model correctly categorized to-
kens from the input distribution it was trained on. For all tokens in
the corpus we computed the probability that the /A/ category would
generate the token and the probability that the /a:/ category would
generate the token, and weighed these by the respective φ values to
get the /A/ probability and /a:/ probability of the token. It was as-
sumed that the model perceived the token as the category with the
highest probability. The percentage of tokens that the model assigned
to the correct category was computed for all tokens together, as well
as for the subsets of tokens in each of the four quadrants in Figure 12c.

To measure the perceptual competence of a MoG model after learn-
ing, we divided the complete auditory space into a grid of 30 ∗ 30 =

900 test sounds. Each test sound corresponds to a unique combination
of F2 and duration. For each test sound, we computed the /A/ proba-
bility, the /a:/ probability, and whether the MoG would perceive the
test sound as /A/ or /a:/. A diagonal boundary between the areas in
the auditory space perceived as /A/ and /a:/ would show that the
MoG model used both F2 and duration to classify stimuli as /A/ or
/a:/ (question 1).

The sum of the /A/ probability and the /a:/ probability of the test
sound is the total probability that the MoG model generates the test
sound rather than anything else. We regarded this summed probabil-
ity as the MoG model’s estimate of the frequency of the test sound.
The estimated frequency was used to evaluate whether the model rec-
ognized [A:]-like sounds as less frequent than [A]-, [a:]-, and [a]- like
sounds (question 2a). The certainty with which the MoG model clas-
sifies each test sound was operationalized as the probability that the
‘winning’ category for the test sound has generated the test sound,
divided by the total probability of the test sound given all functions
in the MoG. A classification certainty close to 1 indicates that the
‘winning’ category has a much higher likelihood for the test sound
than the other category, so that the categorization of the test sound is
not ambiguous. If the classification certainty is close to 0.5, both clus-
ters have an approximately equal likelihood for the test sound and
the categorization of the test sound is ambiguous. The classification
certainty is used to evaluate whether the model had learned that [a]-
like sounds are more ambiguous than [A]-, [a:]-, and [A:]- like sounds
(question 2b).

If the MoG model found 2 categories, one for /A/ and one for /a:/,
and specified the contrast in vowel duration, this could be taken as
evidence that the model has discovered a binary length feature (ques-
tion 3). This explanation requires the additional assumption that in-
fants can somehow separate their representations of /A/ and /a:/
into a representation of vowel quality and a second representation
of vowel duration.
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To quantify the models’ perception of the typical sounds [A] and
[a:] and the atypical sounds [A:] and [a], the four measures described
above were averaged over the test sounds that correspond to the four
quadrants in Figure 12. Recall that the highest F2 values and the
longest duration values were excluded from the quadrants in order
to have quadrants of equal sizes with boundaries at 0 between the
quadrants. Each of the four quadrants consisted of 13 F2 values ∗ 12

duration values = 156 test sounds in the grid. The averages over the
/A/ probability, the /a:/ probability, the estimated frequency, and the
classification certainty in the four quadrants provided a numerical es-
timation of the model’s perception of the four types of vowel sounds
that were used to test Dutch infants’ perception of /A/ and /a:/.

5.5 MoG modeling of distributional learning

In the first set of simulations, we trained a MoG model on /A/ and
/a:/ in Dutch IDS in order to test whether these three aspects of Dutch
infants’ perception of the vowels /A/ and /a:/ can be explained as a
result of distributional learning:

1. Dutch infants know that /A/ and /a:/ differ in vowel quality
and duration;

2. Dutch infants are sensitive to the different status of the atypical
vowel sounds [A:] and [a];

3. Dutch infants interpret vowel duration differences as phonolog-
ically contrastive in the absence of vowel quality differences.

In order to capture aspects 1 and 2, simulations were conducted
with bivariate MoG models (defined in Equation 5, and with the up-
date rules in Equations 11, 12, potentially 13, and 15). In a bivariate
MoG model both cues contribute to the decision which category is
heard, so that the F2 of a token i indirectly influences the update
of the parameters µDur and σDur, and vice versa. Two specific im-
plementations of the bivariate MoG model were simulated. The first
implementation estimated all the parameters in the bivariate MoG
model, namely φ, µF2, σF2, µDur, σDur, and ρ. This is referred to as the
2-cue-with-ρ MoG. The 2-cue-with-ρ MoG is the most complex model
considered here and comes closest to theories proposing that infants
initially use and store all possible information about speech sounds
(Pierrehumbert, 2003; Werker and Curtin, 2005).10 A disadvantage of
the 2-cue-with-ρ MoG is that the number of parameters the model
has to estimate for each category increases exponentially with every
extra dimension that is included, because ρg is defined for each pair

10 Although the MoG approach to phoneme acquisition is definitely not an exemplar
model.
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of dimensions. Therefore, ρ was kept at a constant value of 0 in the
second implementation of the bivariate MoG model. This is referred
to as the 2-cue-no-ρ MoG. Because ρ is kept constant, the number of
parameters to be estimated for each category increases linearly with
the number of dimensions.11

Recall that the pooled distribution of /A/ and /a:/ is bimodal only
in the two-dimensional auditory space (Figure 12c), but monomodal
along the individual dimensions (Figures 13c and 13d, Chapter 3). If
we adopt the informal definition of distributional learning, namely
learning a category for each local maximum, it appears impossible
to acquire the contrast between /A/ and /a:/ by performing distribu-
tional learning on the individual dimensions. However, Boersma et al.
(2003) and Maye et al. (2008) suggest that infants may not form mul-
tidimensional categories, but first perform distributional learning on
individual auditory dimensions. These categories for the individual
dimensions are then integrated with other cues later in development
(Boersma et al., 2003) or generalized to new cue combinations (Maye
et al., 2008). If these theories are correct, it should be possible to learn
the opposition between short and long vowels from the duration dis-
tribution of /A/ and /a:/ in Dutch infants’ input, and to induce the
contrast between back and front vowels from the vowel quality distri-
bution. To test the apparent conflict between the input data and the
hypotheses in Boersma et al. (2003) and Maye et al. (2008), infants’
acquisition was simulated with two univariate MoG models (defined
in Equation 4, with the update rules in Equations 8, 9, and 10). The
1-cue-F2 MoG was trained on the F2 values of the /A/s and /a:/s in
the corpus and each of its functions was defined by the parameters
φ, µF2, and σF2. The 1-cue-duration MoG was trained on the duration
values and each function was defined by φ, µDur, and σDur.

By comparing the results from the 2-cue and 1-cue MoGs, we can
evaluate to what extent the availability of both cues improves cate-
gory learning over learning from an individual cue. It was expected
that the 2-cue MoGs would capture the input data better than the
1-cue MoGs, as a supervised model learns vowel classification more
accurately if more cues are added to the model (Hillenbrand et al.,
1995), and a connectionist model can learn to segment words only
if it has access to multiple probabilistic and redundant cues (Chris-
tiansen et al., 1998).

The specifications of the initial values of the simulations with the
MoG models can be found in Section 5.11. Each of the four MoG
models was simulated 25 times. Each simulation was run for a maxi-
mum of 100000 iterations, or was terminated when only one category
remained in the model.

11 Mathematically, ρ is specified for each pair of dimensions in the MoG model. Because
ρ is kept constant at 0, we consider it conceptually absent.
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5.5.1 Results 2-cue-with-ρ MoG

Only 1 of the 25 simulations with the 2-cue-with-ρ MoG resulted in
a final state with two categories. The only simulation that resulted
in two categories had µF2 of both categories over 100 and µDur be-
low −100. This model did not reflect the data accurateley. Of the 24

simulations that resulted in one category, 9 had σF2 and σDur that
were larger than 10. After exclusion of these models, the average µF2

was 0.31 (sd=0.344); the average µDur was 0.27 (sd=0.403); the aver-
age σF2 was 1.19 (sd=1.606); the average σDur was 2.10 (sd=2.752);
and the average ρ was 0.03 (sd = 0.227). The merger of the cate-
gories in the 2-cue-with-ρ MoGs cannot be directly ascribed to the
positive correlation between F2 and duration in the input corpus
(r = 0.41, t(725) = 12.22, p < 0.001), as we found both positive and
negative ρ’s when these models entered the one-category state, with
an average ρ around 0.

Mixture of Gaussians

2-cue 1-cue-F2 1-cue-Duration

/A/ /a:/ /A/ /a:/ /A/ /a:/

φ
0.50 0.50 0.42 0.58 0.57 0.43

(0.008) (0.014) (0.021)

Table 17: The MoG models’ frequency estimates of the categories /A/ and
/a:/. The average value for φ of each category is given. The values
in italics in parentheses give the standard deviations in φ across
the simulations. The averages for the 2-cue MoG are computed
over the 22 successful simulations with the 2-cue-no-ρ MoGs. The
averages for the 1-cue-F2 MoG are computed over the 3 successful
simulations with that model.

5.5.2 Results 2-cue-no-ρ MoG

Of the 25 simulations with the 2-cue-no-ρ MoG, 22 resulted in a two-
category state. This two-category state was found in an average of
62802 iterations (range: 463–379993). The other 3 simulations resulted
in a 1-category state. A success rate of 0.88 in recovering the cor-
rect number of categories with an incremental MoG model is slightly
higher than the success rate in Vallabha et al. (2007); those authors
similarly found that the unsuccessful simulations contained too few
categories rather than too many.

In the 22 successful 2-cue-no-ρ MoGs, the /A/ category and the
/a:/ category had virtually identical values for φ (Table 17), indicating
that the MoG model acquires two roughly equally frequent categories.
The average /A/ category, with µF2 around -0.42 and µDur around -
0.32, and the average /a:/ category, with µF2 around 0.55 and µDur
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F2 Duration

Data Mixture of Gaussians Data Mixture of Gaussians

2-Cue 1-Cue-F2 2-Cue 1-Cue-Duration

/A/

µ
-0.39 -0.42 -0.41 -0.33 -0.32 -0.24

(0.045) (0.033) (0.0036) (0.040)

σ
0.68 0.69 0.76 0.29 0.32 0.36

(0.043) (0.004) (0.034) (0.031)

/a:/

µ
0.55 0.55 0.41 0.39 0.36 0.38

(0.050) (0.077) (0.042) (0.037)

σ
0.61 0.57 0.69 0.45 0.48

(0.068) (0.095) (0.045)

Table 18: The parameters of the categories /A/ (top) and /a:/ (bottom) for
F2 (left) and duration (right) that describe the average locations
of the categories in the Mixture of Gaussians (MoG) in the au-
ditory space. Data columns: The rows µ give the average F2 and
duration of /A/ and /a:/ in the input corpus, and the rows σ give
the standard deviations thereof. MoG columns: The rows µ give
the average µF2 and µdur of the respective categories in the models
and the rows σ give the average σF2 and σdur. For the models, the
value in italics in parentheses gives the standard deviation of the
parameter across the simulations. The averages for the 2-cue MoG
are computed over the 22 successful simulations with the 2-cue-
no-ρ MoGs. The averages for the 1-cue-F2 MoG are computed over
the 3 simulations with a two-category end state.

around 0.36, both resembled the actual average /A/ and /a:/ in the
input corpus (Table 18). Also in accordance with the input data, σF2

of /A/ was larger than σF2 of /a:/, while σDur of /A/ was smaller than
σDur of /a:/ (Table 18). As the models’ /A/ and /a:/ category differed
in both µF2 and µDur and varied along both dimensions, the boundary
between the two categories was diagonal (Figure 14a).

The models categorized an average of 87.90% of the tokens in the in-
put corpus into the correct category (Table 17). The lowest percentage
of correct classifications was found for the tokens in the [a]-quadrant,
where the /A/ cluster and /a:/ cluster overlap (Table 19, Figure 14b).

When categorization of the auditory space in the quadrants was
considered, it was found that atypical vowel sounds like [A:] had a
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lower estimated frequency than the vowel sounds in the other three
quadrants (Figure 14c, Table 19). Atypical vowel sounds like [a] were
ambiguous as the models could classify them as both /A/ and /a:/
(Figures 14a and 14d, Table 19). The locations in the other quadrants
were unambiguously categorized as belonging to either the /A/ cate-
gory or the /a:/ category. The [A:]-quadrant was divided over the two
categories, which by and large did not overlap in that quadrant.

measure
typical atypical

[A] [a:] [A:] [a]

Percentage correctly 96.65 93.51 82.79 70.47

classified tokens (0.000) (0.000) (1.873) (3.658)

/A/ probability
0.132 0.008 0.021 0.052

(0.0071) (0.0026) (0.0064) (0.0053)

/a:/ probability
0.008 0.129 0.024 0.046

(0.0018) (0.0082) (0.0059) (0.0055)

estimated frequency
0.140 0.137 0.045 0.098

(0.0073) (0.0084) (0.0096) (0.0090)

classification certainty
0.967 0.966 0.859 0.712

(0.0086) (0.0107) (0.0318) (0.0419)

Table 19: The 2-cue-no-ρ MoG models’ perception quantified per quadrant.
First the average percentage of correctly classified tokens from the
corpus in each of the four quadrants. Then the /A/ probability, /a:/
probability, estimated frequency, and classification certainty for the
quadrants corresponding to the typical vowel sounds [A] and [a:],
and the atypical vowel sounds [A:] and [a]. The non-italicized num-
bers give the averages over the 22 successful 2-cue-no-ρ MoG mod-
els and the italicized numbers between parentheses give the stan-
dard deviations.

5.5.3 Results 1-cue-F2 MoG and 1-cue-duration MoG

Of the 25 simulations with the 1-cue-F2 MoG, 3 resulted in a two-
category state. Those three 1-cue-F2 MoGs reached this two-category
state in an average of 247829 iterations (range: 206893—283667 itera-
tions). They quite accurately captured the location of the categories in
the auditory space (Figure 15a, Table 18), but estimated that the two
categories had an unequal frequency (Table 17). Moreover, the µF2 of
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Figure 14: The average final 2-cue-no-ρ MoG. a) The categorization of the
stimuli by the MoG, with the saturation of the red color indicat-
ing the relative probability that a stimulus was generated by the
/A/ category rather than the /a:/ category, and the saturation of
the blue color indicating the relative probability that a stimulus
was generated by the /a:/ category rather than the /A/ category,
such that a purple color indicates a stimulus could have been gen-
erated by both categories. The white dotted lines give where the
probability of one category divided by the summed probability
of both categories is 0.9. b) The tokens in the input corpus as
categorized by the 2-cue-no-ρ MoGs. The red triangles (/A/) and
blue squares (/a:/) indicate the categorization of the token by the
model. A filled symbol indicates that the categorization by the
model is different from the actual label of the token. c) The esti-
mated frequency, with a more saturated black indicating a higher
estimated frequency. d) The classification certainty, with a more
saturated black indicated a higher classification certainty.

/a:/ were less in accordance with the input data in these 1-cue-F2

MoGs than in the 2-cue-no-ρ MoGs.
The other 22 simulations with the 1-cue-F2 MoG resulted in a one-

category state. Their average µF2 was close to 0 (m = 0.09, sd =
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0.050) and σF2 was such that the complete function encapsulated the
complete input distribution (m = 0.82, sd = 0.037, Figure 15a).

All 25 simulations with the 1-cue-duration MoG resulted in a two-
category state. They reached this two-category state in an average of
15944 iterations (range: 6690–36345 iterations). A success rate of 1 is
higher than the success rate in the simulations with the 2-cue-no-ρ
MoG. The 1-cue Duration MoGs quite accurately captured the dura-
tion distribution of the categories in the auditory space (Figure 15b,
Table 18). However, the models estimated that the two categories had
unequal frequencies (Table 17) and the µdur of /A/ was further from
the mean /A/ in the input data than µdur in the 2-cue-no-ρ MoGs.

As the 1-cue MoGs only associate each category with values along
a single dimension, they cannot use both cues in their categorization
of /A/ and /a:/. Consequently, they cannot react differently to the
vowel sounds [A:] and [a] than to the typical vowel sounds [A] and
[a:]. These aspects of the models’ behavior were not investigated for
the 1-cue MoGs.

5.5.4 Discussion

By using the MoG method to model infants’ distributional learning,
we tried to account for several aspects of Dutch infants’ perception
of the vowels /A/ and /a:/. It was shown that by performing distri-
butional learning on the two-dimensional distribution of the F2 and
duration values of the vowels in their input, virtual Dutch infants
with MoG brains could acquire categories for /A/ and /a:/ that are
different in both F2 and duration, and learn to recognize the atypical
vowel sound [A:] as infrequent and the atypical vowel sound [a] as am-
biguous. The modeling results thus show Dutch infants could have
acquired their perception of /A/ and /a:/ as reported in Chapters 3

and 4 through distributional learning.
From these modeling results, at least three accounts can be given

for the finding that Dutch infants regard vowel duration differences
as phonologically contrastive in the absence of vowel quality differ-
ences (Dietrich et al., 2007). The bivariate MoG models that success-
fully found two categories specified the opposition between /A/ and
/a:/ in F2 and in duration. This could be taken as evidence that the
model acquires a general binary vowel-backness feature as well as
a general binary vowel-length feature through acquiring the specific
contrast between /A/ and /a:/. Because the MoG models trained on
a monomodal, but skewed input distribution along the duration di-
mension acquired two categories, Dutch infants might also acquire a
featural vowel length contrast from distributional learning along only
the duration dimension. It is discussed below that this explanation
relies on infants having a Gaussian bias in distributional learning. A
third possibility is that Dutch infants in Dietrich et al. (2007) did not
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Figure 15: The average final 1-cue-F2 MoG (left) and 1-cue-dur MoG
(right). ab) The distribution of /A/ (red, rising diagonals) and
/a:/ (blue, falling diagonals) separately, and separate posterior
probability distributions for the Gaussian functions in the MoG.
cd) The summed distribution of both vowel categories, and the
summed posterior probability distribution of the Gaussian func-
tions in the MoG. For the 1-cue-F2 MoG, the solid lines give the
average function in the 22 models that resulted in a one-category
state and the striped lines give the average functions in the 3

models that resulted in a two-category state.

regarding vowel duration differences as phonologically contrastive,
but used the contrast between a vowel sound that they recognize as
typical and frequent (namely, [A]) and a vowel sound that they rec-
ognize as atypical and infrequent (namely, [A:]) to learn a minimal
pair. These three alternatives illustrate that with modeled distribu-
tional learning on input data, hypotheses can be generated about the
representations that underly infants’ speech perception.

A MoG model is restricted to representing Gaussian clusters; a
Gaussian cluster is by definition symmetric, and its mean, median,
and mode are identical. The univariate 1-cue-duration MoG models,
which were trained on the skewed duration distribution, acquired
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two categories. A skewed distribution is by definition asymmetric
with the mode at the peak of the distribution, the mean in the tail, and
the median somewhere in between the mode and the mean. At least
two Gaussians, a larger and a smaller one, are required to capture a
skewed distribution. The first Gaussian describes the steeper side of
the distribution with a high φ, small σ, and a µ close to the mode
of the skewed distribution. The second Gaussian describes the tail
of the distribution with a lower φ, larger σ, and a µ shifted towards
the tail. The 1-cue-duration MoGs described the negatively skewed
duration distribution by means of a first Gaussian with a high φDur,
relatively small σDur, and µDur close to the peak of the distribution,
combined with a second Gaussian with a lower φDur, larger σDur, and
µDur towards the tail of the distribution. The estimated µDur of /A/
was higher than the actual mean duration in the input data, which is
due to the extension of the tail of the distribution towards the higher
duration values (Figure 15b, Table 18).

The success of the univariate 1-cue-duration MoG models in recov-
ering the two categories was only apparent, as they failed to acquire
the equal frequency of the categories and estimated the locations of
the categories inaccurately. The deviations between the models and
the actual data show that the univariate 1-cue-duration MoG models
were approaching a monomodal, skewed distribution with multiple
Gaussians. Since distributional learning is normally conceptualized
as acquiring a category for each local maximum in the distribution,
there is a divergence between the conceptual understanding and the
MoG modeling of distributional learning. In the following sections
we investigate distributional learning with a neural network model.
This model differs from the MoG modeling as it has no Gaussian
restriction and brings us one step closer to understanding how distri-
butional learning could take place in the brain.

5.6 A neural network model to link input and percep-
tion : Emergent categories in symmetric neural net-
works

To simulate distributional learning in a neural network architecture,
we used the symmetric neural networks (NNs) with the inoutstar
learning rule presented in Boersma et al. (2012). In what follows we
provide a conceptual overview of these NNs and their distributional-
learning mechanism and extend the architecture of the model so that
it can receive input that varies along two auditory dimensions. The
reader is referred to Section 5.12 for the precise specifications and
equations of the model.
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5.6.1 The neural network architecture

The NNs presented in Boersma et al. (2012) consist of one layer of in-
put nodes and one layer of output nodes (Figure 16). The NNs used
in our actual simulations, which are reported in the next section, had
one or more input layers of 30 input nodes and one output layer of
10 output nodes. These in- and output nodes form a network: Each
input node is connected to each output node by means of an excita-
tory input–output connection; the nodes in the output layer are fully
connected to each other with inhibitory output–output connections;
the input nodes are not connected to each other. In the figures (such
as Figure 16), the excitatory connections are drawn in black and the
inhibitory connections in gray.

Figure 16: Example of one neural network model. The bottom row of nodes
is the input layer, with 16 input nodes. These nodes represent an
auditory continuum that runs from low values (left) to high val-
ues (right). The top row of nodes is the output layer, with 8 output
nodes. The input nodes are not connected to each other. The 128

excitatory input–output connections between the bottom row of
input nodes and the top row of output nodes are drawn in black.
Thicker lines represent connections with larger weights. Note that
many input–output connections have such a low weight that they
are invisible in the figure. The 28 inhibitory output–output con-
nections between each pair of output nodes are drawn in gray.
All output–output connections have the same weight and are
therefore drawn with equally thick lines. Activity on the nodes
is drawn as black disks on the input nodes, where the size of
the disk represents the amount of activity. Clamped nodes are
drawn with a solid line around the node, unclamped nodes with
a dotted line around the node.

5.6.2 Activity spreading

The input nodes represent an auditory continuum, for example the
position of F2 in the frequency spectrum. When there is no sound,
there is no activity on the input nodes. This is displayed by the ab-
sence of black disks on the input nodes in the two top figures in
Figure 17. For every incoming speech sound, the input node cor-
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Figure 17: Illustration of activity spreading in a neural network with one
input layer. The eleven figures in each column show a sequence
from no activity on the input nodes (figures a), to activity on
the input nodes (figures b), to gradual spreading of activity from
the input to the output nodes in 10, 20, 30, ..., 100 iterated steps
(figures c through k). Left column: If input activity is given on
node 4 at the input layer, the model reacts with activity on out-
put nodes 1, 5, 6, and 8. Right column: If input activity is given
on node 12 of the input layer, the model reacts with activity on
output nodes 2, 3, 4, and 7. This model, i.e., these specific input–
output connection weights, is the result of distributional learning
from a bimodal input distribution with the two local maxima ap-
proximately corresponding to nodes 4 and 12 in the input layer.
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responding to the F2 of the speech sound receives a large activity,
which is shown in the figure as a large black disk on the input node.
The neighboring input nodes, where ‘neighboring’ means reacting to
similar frequencies and not necessarily spatial proximity, also receive
some activity, which is distributed according to a Gaussian-shaped
bump and is shown as smaller black disks on the neighboring input
nodes. This dispersed input activity will become crucial in the discus-
sion of distributional learning. The activity pattern on the input nodes
is completely determined by the outside world. Therefore, the activ-
ity on the input nodes is clamped, meaning that their activity cannot
change in reaction to the activity on other nodes. The activity on the
output nodes is the model’s reaction to the input. The output nodes
are unclamped, meaning that their activity can change in reaction to
the activity on other nodes. Clamping is shown in the figures with a
solid line around a node, the absence of clamping with a dotted line.

If the model ‘hears’ a sound, activity spreads from the clamped
input nodes to the unclamped output nodes through the excitatory
input–output connections (as per Equations 16 and 17). As an out-
put node becomes more active, its negative connections to the other
output nodes automatically start to inhibit the activity on those other
nodes more; in this way, the output nodes can be said to start to com-
pete with each other. Activity spreads through the network in small
iterated steps, during which some output nodes become more and
more active (with a maximum activity of 1) and others remain inac-
tive (with a minimum activity of 0). The procedure of activity spread-
ing is illustrated in Figure 17. Towards the end of activity spreading
(which is restricted to 100 steps in our simulations), each output node
reaches a stable level of activity that does not change much with more
time steps of activity spreading: The NN reaches an equilibrium state.
After activity spreading is completed and possibly a learning step has
occurred (which is described later), the activity on all nodes is reset
to zero and the model is ready for new input.

5.6.3 Distributed categories and categorical perception

An input pattern will typically activate multiple output nodes. In
Figure 17, for instance, both input patterns activate four output nodes
and keep the remaining four output nodes inactive. This distributed
pattern of active and inactive output nodes is the NN’s reaction to the
input.

Human listeners often perceive speech sounds along an auditory
continuum categorically: They report perceiving one category for one
part of an auditory continuum and a second category for a second
part of an auditory continuum. Even though the auditory properties
of the speech sounds along the continuum change gradually, the lis-
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Figure 18: Illustration of categorical perception by pacing through a neu-
ral network with one input layer. The eleven figures show a net-
work with activity on input node 1.5 (figure a), 3 (figure b), 4.5
(figure c), ..., 15 (figure k). All networks have spread activity for
100 activity spreading steps. The model perceives the input cate-
gorically, with output nodes 1, 5, 6, and 8 being active in reaction
to large activity on the first seven input nodes, and output nodes
2, 3, 4, and 7 being active in reaction to large activity on the last
seven input nodes. This model, i.e., these specific input–output
connection weights, is the result of distributional learning from
a bimodal input distribution with the two local maxima approx-
imately corresponding to nodes 4 and 12 in the input layer. This
is the same NN as shown in Figure 17.
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tener reports only a sudden change in the perceived category between
sounds at opposite ends of the category boundary.

A NN displays categorical perception if activity on an input node
in, say, the first half of the input layer leads to one distributed output
pattern, and activity on a node in, say, the second half of the input
layer leads to a second distributed output pattern. Categorical percep-
tion is illustrated in Figure 18. Because each output pattern is a stable
reaction to multiple non-identical input values, the output patterns
can be considered categories. In the network in Figure 18 activity on
input node 9 results in low activity on the output nodes from both
categories, which suggests that the model recognizes this input from
halfway the continuum as ambiguous.

5.6.4 Distributional learning

Boersma et al. (2012) show that distributed categories emerge in NNs
through distributional learning with the inoutstar learning rule (Equa-
tion 18). During distributional learning, NN learners are presented
with multiple tokens drawn from a distribution of auditory values,
as is the case for MoG learners. For each incoming token, the net-
work first spreads activities and then performs one learning step. In
what follows, we discuss this distributional-learning mechanism in
some detail.

When a NN is created, its excitatory connections between the input
and output nodes have small random weights. The NN reacts to each
input pattern with some, but crucially not identical, activity on all
output nodes. After activity spreading in reaction to an input pattern,
the NN can update the weights of its excitatory input–output con-
nections according to the inoutstar learning rule (Equation 18). This
learning rule is a variant of Hebbian learning (Hebb, 1949): At the
moment of the weight update, the connection between an input node
and an output node is strengthened if both nodes have a high activ-
ity, and weakened if one of them has a high activity and the other a
low activity. As a result of this learning step, if the same input is pre-
sented again on a next epoch, the model will react with even more
activity on the output nodes that are strongly active in the current
output pattern, and with even less activity on the output nodes that
are less strongly active in the current output pattern.

The first property of the network that is crucial for distributional
learning of categories in the NN is the aforementioned dispersed in-
put activity over multiple auditorily neighboring input nodes. For
each input sound, neighboring input nodes either share a large ac-
tivity or a small activity, and learning gives neighboring input nodes
similar connection weights to each of the output nodes. Input nodes
that lie far away auditorily often have very different activities, and
learning gives nodes that lie far apart dissimilar connection weights
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to each of the output nodes. As a result of dispersed input activity
and learning, auditory similarity becomes (very) indirectly encoded
in the connection weights.

The second network property that is crucial for distributional learn-
ing is the competition between the output nodes during activity spread-
ing. When one output node becomes very active for a given input,
it suppresses the activity on the other output nodes. The idea that
competition between output nodes is important for unsupervised
category learning comes from the literature on competitive learning
(Grossberg, 1976; Rumelhart and Zipser, 1985).

Dispersed input activities and competition between output nodes
are properties of the processing of each individual input token. The
outcome of learning from many input tokens is that each output
node becomes strongly connected to one region of neighboring in-
put nodes, and weakly connected to the other regions. The shape of
the input distribution determines the regions of input nodes to which
the output nodes can be either strongly or weakly connected. In the
case of a bimodal input distribution, output nodes are either strongly
connected to the input nodes around the first local maximum and not
to the input nodes around the second local maximum, or vice versa.

In learning from a bimodal input distribution, the network learns to
perceive most input values along the input continuum as one of two
stable output patterns (Figure 18).12 Although the stable output pat-
terns can be seen as categories, these are not stored representations.
The network’s memory lies in the input–output connections, and the
existence of a category is stored only indirectly in these input–output
connections: Categorical output patterns emerge each time the lis-
tener receives an auditory input.

5.6.5 A NN architecture for two input dimensions

To train a NN on the input distributions of /A/ and /a:/, a network
was required that allowed for input from multiple dimensions. This
was implemented as an architecture with two separate input layers
(Figure 19): One layer for F2 (the bottom layer in Figure 19) and a
second layer for duration (the top layer in the Figure), which are each
fully connected to a single layer of output nodes (the middle layer in
the Figure). The input layers are not connected to each other. The rea-
son for choosing this architecture is parsimony: the number of nodes
and connections increases linearly with the number of input dimen-
sions. If, instead, each input node corresponded to a unique combina-
tion of values along the multiple dimensions, the number of nodes

12 If the model is presented with a trimodal distribution of speech sounds, it learns
to recognize the input continuum with three stable patterns, and so on. Boersma
et al. (2012) describe in some more detail the conditions under which distributional
learning in these networks is or is not successful.
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and connections would exponentially increase with the number of in-
put dimensions. The linearity of the number of nodes as a function of
the number of input continua is the same as in earlier connectionist
models of learning from multiple input dimensions (McClelland and
Elman, 1986; Guenther and Gjaja, 1996; McMurray, 2012).

For each input token, the activity pattern on the F2 layer is deter-
mined by the F2 value of the token and the activity pattern on the
duration layer is determined by the duration value of the token. Ac-
tivity spreads through the excitatory input–output connections and
the inhibitory output–output connections according to Equation 16.
Because the output layer is connected to both input layers, the model
perceives one output pattern for each combination of input values.
The excitatory input–output connections are updated according to
the inoutstar learning rule (Equation 18). Since both F2 and duration
influence the emerging pattern at the output layer and the output
pattern determines learning, the F2 of an input token indirectly in-
fluences the update of the connections between the duration input
nodes and the output nodes, and vice versa. Therefore, although
the information for the F2 dimension and the duration dimension
are stored in separate connection weights, the acquisition of the con-
nection weights for the individual cues crucially depends on both
input dimensions. After learning, the weights of the input–output
connections are redistributed across the whole network. Figure 19

shows a network with two input layers, one for F2 and one for du-
ration, which has learned from a two-dimensional bimodal distribu-
tion where sounds with a low F2 typically had a short duration and
sounds with a high F2 typically had a long duration.

5.6.6 Evaluation of the NN modeling

To measure the perceptual competence of a NN model after learning,
we divided the complete auditory space into a grid of 30 ∗ 30 = 900
test sounds. Each test sound corresponds to a unique combination of
activity on one of the 30 F2 input nodes and one of the 30 duration
input nodes, with the dispersed activity on the neighboring input
nodes. The network’s output pattern of active and inactive nodes in
reaction to each test sound was recorded and the number of unique
output patterns was counted to assess the number of categories the
network had learned from the input. In this count, we did not include
an output pattern with only active output nodes, since such a pattern
is ambiguous. The first basis for the evaluation of the network’s suc-
cess was the number of categories the network had acquired. Only
networks with two unique output patterns were considered success-
ful and investigated further. The output pattern that was most active
for test sounds with low F2 values and short duration values is re-
ferred to as /A/, the output pattern that was most active for the test
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Figure 19: Pacing through a neural network with two input layers (F2: bot-
tom row, duration: top row). All networks have spread activity
for 100 activity spreading steps. The network reacts with activity
on output nodes 3, 7, and 8 to sounds with a low F2 and short
duration (in the bottom-left corner of the Figure), and with activ-
ity on output nodes 1, 2, 4, 5, and 6 to sounds with a high F2 and
long duration (in the top-right corner of the Figure). This model
is the result of distributional learning from a bimodal distribution
with a local maximum around values with a low F2 and short du-
ration, and a second local maximum around values with a high
F2 and long duration.

sounds with high F2 values and long duration values is referred to as
/a:/.13

For each token in the input corpus, it was determined whether
the network categorized it as the /A/ category, the /a:/ category, or
the ambiguous output pattern. This gives the percentage of correctly
perceived tokens, that is, the percentage of tokens perceived as the
correct category and not as the incorrect category or the ambiguous
output pattern. It also gives the percentage of not-incorrectly per-
ceived tokens, that is, the percentage of tokens that is perceived as
the correct category and not as the incorrect category after the tokens
recognized with an ambiguous output pattern have been disregarded.
These measures evaluate to what extent the model is able to correctly
categorize tokens form the training input and are computed for all
tokens in the corpus, as well as for the tokens in each of the four
quadrants (Figure 12c).

13 We encountered no situation in which one output pattern was most active for test
sounds with low F2 values and long duration values, or to test sounds with high F2

values and short duration values.
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It was determined how many of the ten output nodes were active
in the /A/ pattern (henceforth: /A/ output nodes) and in the /a:/
pattern (henceforth: /a:/ output nodes). An equal number of output
nodes dedicated to the /A/ pattern and the /a:/ pattern indicates that
the model recognizes the equal frequency of the two categories in the
input (Boersma et al., 2012).

For each of the 900 test sounds, the summed activity on the /A/
output nodes was computed. This is the network’s /A/ activity in
reaction to each of the 900 test sounds. The test sound that resulted
in the highest /A/ activity was considered the network’s auditory
prototype (PT, Boersma, 2006) of the phoneme /A/, with the values
PTF2 and PTdur.14 Similarly, the /a:/ activity in reaction to each of
the 900 test sound was measured, and the network’s PTF2 and PTdur
of /a:/ were determined. PTF2 and PTdur of the NN’s /A/ category
and /a:/ category were compared to the average F2 and duration of
/A/ and /a:/ in the input corpus to evaluate whether the model’s
representations capture the properties of /A/ and /a:/ in the input
corpus. A diagonal boundary between the areas on the vowel space
perceived as /A/ and /a:/ would show that the NN model uses both
F2 and duration in its perception of these vowels (question 1).

The sum of the /A/ activity and the /a:/ activity for a test sound
is the network’s overall activity for that sound. Boersma et al. (2012)
show that output nodes are more active for frequent than for infre-
quent inputs. Therefore, the network’s overall output activity in re-
action to a sound is a measure of how frequent a specific sound is
according to the model. This measure is referred to as the estimated
frequency of the test sound. The same term was used in the evalua-
tion of the MoG models. The estimated frequency is used to evaluate
whether the network bears evidence of the low frequency of [A:]-like
sounds as compared to [A]-, [a:]-, and [a]-like sounds (question 2a).

The certainty with which the NN classifies each test sound was
operationalized as the activity on the output nodes of the most active
category for the test sound divided by the overall output activity for
the test sound. If the classification certainty for the test sound is 1,
the network only perceives the ‘winning’ category with no activity
on the nodes in the other output pattern and the categorization of
the test sound is unambiguous. The more the classification certainty
approaches 0.5, the more the network perceives the test sound with
equal activity on the output nodes and the more the categorization

14 The prototype is the test sound that has the strongest connection weights to either
the /A/ output nodes or the /a:/ output nodes. Our use of the term prototype is
equivalent to that of Boersma (2006), who defines the prototype as the auditory
form that is most strongly activated if the phoneme is activated in the top-down
direction. Both definitions are equivalent in the present model, because they are both
determined by which auditory values are most strongly connected to the specific
phoneme. Our use of the term prototype does not imply that we adhere to a view
on speech sound perception according to which categories are mentally represented
by prototypes, as Kuhl et al. (2008) do.
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of the test sound is ambiguous. The classification certainty is used
to evaluate whether the network recognizes [a]-like sounds as more
ambiguous than [A]-, [a:]-, and [A:]-like sounds (question 2b).

To quantify the networks’ perception of the typical sounds [A] and
[a:] and the atypical sounds [A:] and [a], the auditory space was di-
vided into four quadrants of 156 test sounds each (see also Figure 12c).
The /A/ activity, /a:/ activity, estimated frequency, and classification
certainty were averaged over the the test sounds in each of the four
quadrants. These averages provide a numerical estimation of these
four quantities for the quadrants with [A]-like sounds, [a:]-like sounds,
[A:]-like sounds and [a]-like sounds.

As a last evaluation of the NN model we counted the number of
unique output patterns that resulted from input along the entire du-
ration continuum in the absence of any input on the F2 input nodes.
If the network perceives two categories along the duration continuum
(again, excluding the ambiguous output pattern with activity on all
output nodes), the NN has learned to consider the contrast between
long and short vowels as phonologically contrastive in the absence of
any vowel quality differences (question 3).

5.7 NN modeling of distributional learning

In a second set of simulations, we trained NN models on /A/ and /a:/
in Dutch IDS. Recall that the objective of these simulations was to test
whether the following three aspects of Dutch infants’ perception of
the vowels /A/ and /a:/ can be explained in terms of distributional
learning as implemented in the NN models considered here:

1. Dutch infants recognize that /A/ and /a:/ differ in vowel quality
and duration;

2. Dutch infants recognize the different status of the atypical vowel
sounds [A:] and [a];

3. Dutch infants interpret vowel duration differences as phonolog-
ically contrastive in the absence of vowel quality differences.

In order to allow the NNs to capture aspects 1 and 2, an architec-
ture with two input layers was used: One layer for F2 and a second
for duration. This 2-layer network is referred to as the 2-cue NN. Ad-
ditionally, we implemented NNs with only one input layer, represent-
ing either F2 or duration. These 1-layer networks are referred to as
the 1-cue-F2 NN and the 1-cue-Dur NN. As in the MoG modeling,
the 1-cue NN models can be used to test whether infants could learn
speech sound contrasts by performing distributional learning along
individual auditory dimensions (cf. Boersma et al., 2003, and Maye
et al., 2008) and whether the availability of multiple cues improves
category induction (cf. Christiansen et al., 1998).
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Specifications of the initial states of the NNs can be found in Sec-
tion 5.12. Each of the three NN models was simulated 25 times. Each
simulation was run for 5000 iterations.

5.7.1 Results: 2-cue NN

All 25 simulations with the 2-cue NN resulted in a two-category state.
A success rate of 1 in recovering the correct number of categories is
higher than the success rate found in the simulations with the MoG
model trained on two cues, and also higher than the success rate of
Vallabha et al.’s (2007) non-Gaussian distributional-learning model.

The percentage of correctly categorized tokens (in which ambigu-
ous classifications were counted as incorrect) was quite low at only
60.01% (Figure 20b, Table 20). Most tokens that the NN model did
not classify into the correct category were classified with the am-
biguous output pattern (Figure 20b). Therefore, the percentage of
not-incorrectly classified tokens (in which the tokens that the model
perceived as ambiguous were disregarded) was very high at 95.73%.
This indicates that whenever the NN does categorize an input token
into one of the two categories, its categorization is mostly correct. In-
correct classifications were found in both the [a]-quadrant and the
[A:]-quadrant (Figure 20b, Table 22).

The /A/ pattern and the /a:/ pattern consisted on average of an
approximately equal number of active output nodes (Table 20). This
indicates that the NNs recognized that both categories have an ap-
proximately equal frequency in the input. The average /A/ category,
with PTF2 around -0.62 and PTDur of -0.42, was more peripheral than
the actual average /A/ in the input data. The average /a:/ category,
with PTF2 around 0.57 and PTDur around 0.33, resembled the actual
average /a:/ in the input with a somewhat more extreme PTF2 and
a somewhat less extreme PTDur than the averages in the input cate-
gories (Table 21). The average contrast between the /A/ and /a:/ cat-
egories was enhanced in comparison to the average contrast between
/A/ and /a:/ in the input corpus.

The boundary between the region of the auditory space classified
as /A/ and the region classified as /a:/ is diagonal between the values
associated with a typical /A/ and /a:/ (Figure 20a), which shows that
the network has learned to use both cues in its perception of /A/
and /a:/. When the models’ perception was considered for each of
the four quadrants separately, atypical vowel sounds like [A:] and [a]
were found to both have a lower estimated frequency than the vowels
sounds in the quadrants corresponding to [A] and [a:] (Figure 20c,
Table 22). Also, the categorization certainty for both [A:] and [a] was
lower than the categorization certainty for [A] and [a:] (Figures 20a
and 20d, Table 22). In a last test of the NN model, it was found that all
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NN models recognized two categories along the duration continuum
in the absence of input from the F2 nodes.

Neural Network

2-cue

/A/ /a:/

number of output nodes
4.92 5.08

(0.493)

Table 20: The estimates of the frequency of the categories /A/ and /a:/ by
the NN model. The number of active output nodes in the output
pattern of the categories is given. The italicized values in parenthe-
ses give the standard deviations across the simulations.

5.7.2 Results: 1-cue-F2 NN and 1-cue-Duration NN

None of the 25 simulations with the 1-cue-F2 NN and the 1-cue-Dur
NN resulted in a two-category state. The 1-cue-F2 NNs resulted in, on
average, 4.76 (sd = 1.012) stable output patterns and the 1-cue-Dur
NNs resulted in, on average, 9.52 (sd = 1.531) stable output patterns.
The 1-cue NNs were unsuccessful in acquiring the categories /A/ and
/a:/ from the monomodal distributions of F2 and duration in this
corpus of IDS.

5.7.3 Discussion

By modeling distributional learning in a NN model, we have con-
firmed the first main result from the simulations with the MoG mod-
els, namely that the categories for /A/ and /a:/ are learnable from the
two-dimensional auditory distribution of the F2 and duration values
of these two vowels in IDS. The NN models used both vowel qual-
ity and duration in their perception of /A/ and /a:/ and, therefore,
the NN modeling accounts for infants’ use of both cues in perception
(Chapters 3 and 4). Because the simulations with the models trained
on only F2 or duration were unsuccessful in acquiring two categories,
these results strongly suggest that only distributional learning from a
two-dimensional distribution would enable Dutch infants to acquire
/A/ and /a:/ from the input distributions. The models trained on the
two-dimensional distribution showed categorical perception for dura-
tion in the absence of vowel quality information. Therefore, the NN
model trained on both F2 and duration can explain that Dutch infants
consider vowel duration differences as phonologically contrastive (Di-
etrich et al., 2007). Since the models trained on only the duration di-
mension did not acquire categorical perception for duration, these
results suggest that distributional learning along multiple auditory
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F2 Duration

Data Neural Network Data Neural Network

/A/

µ/PT
-0.39 -0.62 -0.33 -0.42

(0.097) (0.066)

σ 0.68 0.29

/a:/

µ/PT
0.55 0.57 0.39 0.33

(0.092) (0.063)

σ 0.61 0.45

Table 21: The parameters of the 2-cue NN for the categories /A/ (top) and
/a:/ (bottom) that describe the location of the categories in the
auditory space defined by F2 (left) and duration (right). Data
columns: The rows µ/PT give the average F2 and duration of /A/
and /a:/ in the input corpus, and the rows σ give the standard de-
viations thereof. neural network columns: The rows µ/PT give the
PTF2 and the PTdur of the categories in the model. For the models,
the italicized value in parentheses gives the standard deviation of
the parameter across the simulations.

dimensions is necessary in order to acquire categorical perception
along each individual auditory dimension. The NN model did not ac-
quire that the atypical vowel sound [A:] is infrequent and the atypical
vowel sound [a] ambiguous. The NN model thus does not account
for the finding in Chapter 4 that 15-month-olds react differently to
[A:] than to [a].

5.8 Discussing the NN modeling of distributional learn-
ing

In this section, we discuss three aspects of the NN models’ learning
and behavior in order to more thoroughly understand their work-
ings. This is important as the distributional-learning mechanism for
this NN modeling has been developed very recently by Boersma et al.
(2012), and the present paper is the first time that the model is ex-
tended to an architecture with two input layers. At some points in
this discussion, we make a direct comparison to the results and work-
ings of the MoG model, to outline the differences between the two
models. Most of this section is dedicated to the NN modeling per se,
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Figure 20: One example of a final 2-cue NN. a) The categorization of the
stimuli by the NN, with the saturation of the red color indicat-
ing the relative activity on the /A/ pattern as compared to the
/a:/ pattern, and the saturation of the blue color indicating the
relative activity on the /a:/ pattern as compared to the/A/ pat-
tern, such that a purple color indicates a stimulus leads to an am-
biguous output pattern with activity on both patterns. The white
dotted lines indicate where the activity of one pattern divided
by the summed activity of both patterns is 0.9. b) The tokens in
the input corpus as categorized by the 2-cue-NN. A black circle
indicates that the model perceives the token as ambiguous. The
red triangles (/A/) and blue squares (/a:/) indicate the catego-
rization of the token by the model. A filled symbol indicates that
the categorization by the model is different from the actual label
of the token. c) The estimated frequency, with a more saturated
black indicating a higher estimated frequency. d) The classifica-
tion certainty, with a more saturated black indicating a higher
classification certainty.

and not to the relation between the models’ and infants’ perception.
At the end of this section, we identify how a NN model with two
separate input layers could learn that [A:] and [a] have a different fre-
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measure
typical atypical

[A] [a:] [A:] [a]

Percentage correctly 94.14 87.91 4.50 6.39

classified tokens (2.181) (5.135) (4.223) (4.029)

Percentage not-incorrectly 97.34 96.68 60.18 61.56

classified tokens (0.732) (1.966) (43.080) (25.772)

/A/ probability
0.146 0.0007 0.046 0.0653

(0.0131) (0.0009) (0.0070) (0.0069)

/a:/ probability
0.002 0.135 0.053 0.050

(0.0013) (0.0107) (0.0077) (0.0065)

estimated frequency
0.076 0.068 0.049 0.058

(0.0024) (0.0025) (0.0016) (0.0016)

classification certainty
0.983 0.995 0.767 0.778

(0.0089) (0.0049) (0.0193) (0.0210)

Table 22: The 2-cue NN models’ perception quantified per quadrant. First
the average percentage of correctly classified tokens and not-
incorrectly classified tokens from the corpus in each of the four
quadrants. Then the average /A/ probability, /a:/ probability, esti-
mated frequency, and classification certainty for the quadrants cor-
responding to the typical vowel sounds [A] and [a:], and the atypi-
cal vowel sounds [A:] and [a]. The non-italicized numbers give the
averages over all 25 successful NN models, the italicized numbers
in parentheses give the standard deviations

quency and ambiguity in the input, which is the aspect of the infants’
perception that the model currently fails to account for.

5.8.1 Understanding the dynamics of learning with two input layers

The first aspect to understand is how the network has learned to
connect each output node strongly to either the low F2 values and
short duration values that are typical of /A/, or to the high F2 values
and long duration values that are typical of /a:/. This organization
of the input–output connections is not trivial, since F2 and duration
were not consistently related in the input corpus. By this we mean
that in the corpus a low F2 implied a short duration (tokens like
[A] occured in the corpus, but tokens like [A:] did not), but a short
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duration did not imply a low F2 (tokens like [a] were quite frequent
in the corpus as well). Similarly, a long duration implied a high F2

(the corpus contained tokens like [a:], but not tokens like [A:]), but
a high F2 did not imply a long duration (tokens like [a] form the
counterexample).

Recall that through learning, input nodes that consistently share
the same activity get similar input–output connection weights. If F2

and duration were consistently related in the input corpus, all tokens
with a low F2 would have a short duration and all tokens with a
high F2 would have a long duration (i.e., only tokens like [A] and
[a:]). During learning from such a corpus, each output node would
become strongly connected to the low F2 values and short duration
values of /A/ and weakly connected to the high F2 and long duration
values of /a:/, or vice versa. If, on the other hand, F2 and duration
were consistently unrelated in the input (i.e., tokens like [A], [a:], [A:],
and [a] all occurred with equal frequency), each output node would
become strongly connected to either the high F2 values, or the low
F2 values, or the short duration values, or the long duration values.15

The actual input corpus presents an intermediate learning scenario,
but as a consequence of the learning dynamics, the final organiza-
tion of the input–output connection weights looks as though F2 and
duration were consistently related in the input.16

15 It is noteworthy that this property of the network architecture makes it very suitable
for learning larger phonological systems. The Dutch front high vowels /i, y, I, Y/, for
example, can be organized in a 2-by-2 matrix defined by the dimensions vowel height
(high /i, y/ versus mid-high /I, Y/) and rounding (unrounded /i, I/ versus rounded
/y, Y/). Phonologically speaking, the presence or absence of lip rounding in this set
of vowels is uncorrelated with vowel height. In work in progress, we trained a NN
model on an idealized input distribution of the Dutch front high vowels. The input
consisted of four clusters of tokens. Two clusters shared the mean F1 (the acoustic
correlate of vowel height) typical of the high vowels /i/ and /y/, and two other clus-
ters shared the mean F1 of the mid-high vowels /I/ and /Y/. Each pair of clusters
with the same F1 differed in F2 (one acoustic correlate of rounding), such that two
clusters shared the mean F2 typical of the unrounded vowels /i/ and /I/ and the
two other clusters shared the mean F2 typical of the rounded vowels /y/ and /Y/.
After learning, approximately half of the nodes react to changes along the F1 dimen-
sion and not to changes in F2, while the other half reacted to changes along the F2

dimension and not to changes in F1. That each node becomes selectively sensitive to
one dimension resembles the results with competitive learning networks in Rumel-
hart and Zipser (1985). To achieve this result, Rumelhart and Zipser (1985) needed
clusters of hidden units with the same number of nodes as the number of categories
to be learned. The success of our NNs is more general, as it does not so crucially
depend on the number of nodes in the output layer. This preliminary work suggests
that learning only two vowels may have been too simple a task for the network, as
this prevented the network from learning, for example, that short and long vowel
durations occur in combination with a wide range of vowel quality values and must
thus be projected on different nodes than the vowel quality. More complete simula-
tions with this network architecture are necessary to further explore its applicability
to the acquisition of larger phonological systems from auditory distributions.

16 To test our analysis more rigorously, we trained the network on an artificial input
distribution in which stimuli were uniformly sampled from the stimulus space, but
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Two aspects of the learning dynamics in the NN models were re-
sponsible for this effect. In the first place, the connection weights
change more on an individual learning step if the activity on the con-
nected nodes is greater. As an output node can become more active
if it is strongly connected to input nodes on both input layers than
if it is connected to input nodes on only one input layer, the learn-
ing mechanism favors the situation that an output node is connected
to input nodes in both input layers. Secondly, the extent to which a
connection weight is updated is dependent on the connection weight
itself. Roughly speaking, the larger a connection weight, the less it
is updated (if the input and output activities are kept equal). Om
the simulations, learning from an [a]-like token weakened the connec-
tions between the low F2 values and the /A/ output nodes more than
the connections between the short duration values and the /A/ out-
put nodes. Subsequent learning from an [A]-like token corrected this
difference in connection weights again, because this learning strength-
ened the weakened connections between the low F2 values and the
/A/ output nodes more than the still strong connections between the
short duration values and the /A/ output nodes. Therefore, in the
long run, the /A/ output nodes were equally strongly connected to
the low F2 values as to the short duration values. Along the same
lines, the connections between the long duration values and the /a:/
output nodes that were weakened by learning from [a] tokens were
returned to full strength by learning from [a:] tokens. As can be seen,
the learning rules combined with the two separate input layers were
responsible for the organization of the connection weights after learn-
ing from the input corpus in which F2 and duration were inconsis-
tently related.

At the level of the network, two categories were acquired from the
present input distribution, each associated only with the cue values
that unambiguously signal the category. The strong association be-
tween output nodes and the cue values that unambiguously signal
the category was advantageous for the models, considering the net-
works’ success rate of 1 in acquiring two categories. The disadvanta-
geous consequence is that the NN model found [A:]-like and [a]-like
vowel sounds equally infrequent and atypical, because both combine
the cues associated with typical /A/ and /a:/ in an atypical way. The
dynamics that allowed the model to acquire the difference between
/A/ and /a:/ thus at the same time prevented the model from ac-
counting for the observations that Dutch infants perceive [A:] and [a]
to be atypical in different manners (Chapter 4). A possible solution is
proposed at the end of this section.

stimuli from the [A:]-quadrant were excluded. In other words, stimuli from the [A]-,
[a:]-, and [a]-quadrants were all equally frequent. The results were highly similar to
the results of the models trained on the input corpus.
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5.8.2 The acquisition of enhanced perceptual contrast

Within the range of cue values associated with /A/, the /A/ category
was more strongly associated with the cue values that were periph-
eral than the average cue values heard during learning. For instance,
the average F2 of /A/ in the input was −0.39 whereas the NN mod-
els’ PTF2 was -0.62. As a consequence, the difference between the
NN models’ PTF2 of /A/ and /a:/ was larger than the difference be-
tween the average F2 values of /A/ and /a:/ in the input corpus, and
the NN models similarly overestimated the duration difference be-
tween the two vowels. This outcome is realistic, as human listeners
find tokens prototypical if they are more peripheral than production
averages (Johnson et al., 1993). A specific property of the current re-
sults is that only the prototype for /A/ was more peripheral than the
input average, while the prototype for /a:/ was somewhat more pe-
ripheral than the input average for F2 and somewhat less peripheral
than the input average for duration. The prototype effect was mod-
eled earlier by Boersma (2006) with supervised acquisition of speech
sound perception in an Optimality Theory (OT) model. A crucial dif-
ference between our simulations and those in Boersma (2006), is that
our models acquired speech sound perception in an ‘unsupervised’
fashion, as the models were not given the category labels of the train-
ing tokens. However, the acquisition of the input–output connection
weights along one input dimension can be considered to have been
‘supervised’ by the other input dimension. This crucial prerequisite
for the acquisition of enhanced contrast is explained in the next para-
graph.

Most tokens in the input corpus with a peripheral value of /A/
along one dimension had a value associated with /A/ along the other
dimension as well (Figure 12). When these peripheral /A/ tokens were
presented, our NN model reacted with high activity on the /A/ out-
put nodes only. On the other hand, some tokens with the average
value of /A/ along one dimension had an /a:/-like value on the other
dimension. If these tokens with conflicting cue information were pre-
sented, the model reacted with low activity on all output nodes. Con-
sequently, the /A/ output nodes became more strongly connected to
the peripheral F2 and duration values of /A/ than to the average F2

and duration values of /A/. The result for /a:/ was somewhat differ-
ent because of the distribution of the /a:/ tokens. The tokens with
a peripheral F2 of /a:/ more often had the long duration associated
with /a:/ than tokens with the average F2 of /a:/. Therefore, the /a:/
category became more strongly connected to the peripheral than to
the average F2 values of /A/. As the tokens that were slightly shorter
than the average duration of /a:/ still always had the high F2 that
was typical of /a:/, PTdur of /a:/ was less peripheral than the average
duration of /a:/ in the input corpus.
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In these NN models with two separate input layers, the combi-
nations of input values on both layers taught the model which are
the unambiguous values along the individual dimensions. Combined
with the specific distributions in the input corpus, the presence of
two input dimensions resulted in the enhanced perceptual contrast
between the vowels, which is a second advantage of the two separate
input layers.

5.8.3 The absence of a representation of auditory distance

Human listeners’ categorization of sounds from a two-dimensional
auditory space into two phoneme categories can typically be described
with a single perceptual boundary between the categories (see for /A/
and /a:/, Van Heuven et al., 1986). In the region with the average F2

and duration values of /A/ and /a:/, which is the region that is typi-
cally used in speech perception experiments (see for /A/ and /a:/:, Es-
cudero et al., 2009a; Van Heuven et al., 1986), the NN models also had
such a single perceptual boundary between /A/ and /a:/ (Figure 20a).
When a NN model was presented with more peripheral stimuli, as
displayed in Figure 20a as well, it did not categorize the vowel space
into a continuous /A/ category and a continuous /a:/ category but
perceived each category in disconnected auditory areas, leading to
the patchwork of red and blue areas observed in Figure 20a. In this
respect, the NN models behaved very differently from the average
MoG model, which did perceive continuous /A/ and /a:/ categories,
even when the values were less typical along either dimension.17

As an example of this discontinuous perception, consider that the
NN models perceived the typical short stimulus [A] and the atypi-
cally long stimulus [A::] as /A/, but perceived the stimulus with the
intermediate duration [A:] as ambiguous between /A/ and /a:/. The
stimulus [A] led to activity on the /A/ output nodes only. The stimulus
[A:] led to equal activity on all output, because the low F2 activated
the /A/ output nodes and the long duration activated the /a:/ output
nodes. The stimulus [A::] led to more activity on the /A/ output nodes
than on the /a:/ output nodes, because the F2 was typical of /A/ but
a duration this long is not typical of /a:/. The competition between
the output nodes resulted in the emergence of the /A/ pattern over
the course of activity spreading.

More generally speaking, the competition between the output nodes
forces the NN model to perceive stimuli with extreme and conflicting
cue values according to the most reliable value along one dimension

17 Note that some MoG models showed discontinuous perception on the [a]-quadrant.
Tokens like [a::] and [a:] were perceived as /a:/, tokens like [a] were perceived as
/A/, but the shortest [a]-like tokens were categorized as /a:/ again. Discontinuous
perception in a MoG model occurs if one category has a much smaller σ along one
dimension than the other category. The MoG model did not show discontinuous
perception in the [A:]-quadrant.
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only, thereby overruling the information provided by the other di-
mension. This leads to discontinuous categories when the model’s
perception is tested outside the region with the average values. This
discontinuous perception outside the typical cue values is a direct
consequence of the absence of a representation of auditory distance.
The MoG model, which was discussed in the previous set of simula-
tions in Section 5.5, includes a representation of auditory distance, as
is made explicit, for example, in Equations 4 and 5 in Section 5.11.

An argument in favor of the absence of represented auditory dis-
tance can be found in Escudero and Boersma (2004). Their results
show that some English-speaking listeners that had to categorize
long and short [E]-like vowel sounds as (typically long) /i/ or (typ-
ically short) /I/ based their categorization solely on the duration of
the stimuli. These listeners probably disregarded the vowel quality
because the vowel quality of /E/ is not typical of either /i/ or /I/,
even though it is closer to the vowel quality of /I/. Those listeners
behaved as the NN model did, in that they did not compute audi-
tory distance but categorize stimuli according to the one dimension
that provides information that is typical of one of the categories. On
the other hand, the results from normalization experiments (for a re-
view of early studies Repp, 1984) suggest that listeners are able to use
auditory distance in order to adjust their categorization to the audi-
tory context. Furthermore, the NN model misclassified some of the
peripheral tokens in the training distribution (Figure 20b), because it
completely relied on one input dimension to perceive such peripheral
speech sounds. Since the MoG model uses auditory distance to cate-
gorize stimuli, it categorized these peripheral tokens as the categories
that the speakers intended (Figure 14b). Only by measuring listeners’
perception of stimuli with more peripheral values than are typically
used in categorization experiments, we can investigate whether lis-
teners compute auditory distances (as the MoG model predicts) or
exclusively rely on the single auditory value that provides them with
reliable information (as the NN model predicts). Such tests will show
to what extent auditory distance is or is not an inherent aspect of
listeners’ categorization.

One architectural change that would make the NN models more
sensitive to auditory distance, also across the two dimensions, is adding
lateral inhibition between the output nodes. Currently, the inhibitory
output–output connections all have equal weights. Therefore, out-
put nodes inhibit the output nodes in their own output pattern as
strongly as the output nodes that are active in a different output pat-
tern. With lateral inhibition between the output nodes, the output
nodes would more strongly inhibit output nodes that are spatially
further way on the output layer. As a result, the stable output pat-
terns would consist of nodes that lie close together on the output
layer and there would be stronger inhibition between than within
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categories. In case of conflicting information from the two input di-
mensions, the model would perceive the pattern of output nodes that
received the strongest activity from the input dimensions together,
and not the output pattern that received the strongest activity from
a single input dimension. Whether the implementation of inhibitory
output–output connections is necessary and what the consequences
of this implementation would be for distributional learning await fur-
ther research.

5.8.4 Learning with a lexicon to acquire the status of specific cue combina-
tions

The NN models used here represent two levels from a larger model
for bidirectional phonetics and phonology (BiPhon, Boersma, 2007;
Boersma et al., 2012 provided the first neural network implementa-
tion). According to the BiPhon model, the output patterns are not
solely determined by activity on the auditory input layers (as was the
case in the present simulations), but also by higher linguistic represen-
tations, such as the word that is activated. The lexicon can therefore
‘supervise’ perception and the subsequent update of the input–output
connections.18 Specifically, we argue that through such ‘supervised’
learning with a lexicon, the NN modeling can explain that infants
acquire the difference between [A:] and [a].

If the infant (or model) has a (rudimentary) lexicon, the non-linguistic
context can lead to the activation of a (familiar) word before the corre-
sponding auditory input is heard.19 In the infants’ input, the [a]-like
sounds with a somewhat lower F2 and shorter duration are mostly
/A/, and the [a]-like sounds with a somewhat higher F2 and longer
duration are mostly /a:/ (Figure 12c). A network that previously had
no lexicon, the developmental stage that was modeled in the present
Chapter, perceives [a]-like sounds as ambiguous. However, a network
that ‘expects’ to hear /A/ will perceive [a] as /A/, and a network
that ‘expects’ to hear /a:/ will perceive [a] as /a:/. Therefore, as a
result of learning with a (rudimentary) lexicon in place, the model
will acquire a single diagonal boundary between /A/ and /a:/ in the
[a]-region and not consider [a]-like sounds to be uncategorizable (cf.
Boersma et al., 2012). Because [A:]-like sounds are less frequent in
the infants’ input, infants might not acquire a categorization for the

18 Note that the connections in the BiPhon model are bidirectional, meaning that activ-
ity spreads bidirectionally through the levels of the model. The distinction between
‘supervised’ and ‘unsupervised’ becomes somewhat obscured by this bidirectionality.
Recall that the auditory information along the F2 dimension can be said to ‘super-
vise’ the acquisition of the input–output connections for the duration dimension.

19 Another possibility is that the word form is activated by partial auditory information,
especially if the auditory input leaves the output pattern ambiguous. See Boersma
(2009) for OT-modeling of lexical feedback on the perception of ambiguous speech
sounds.
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[A:]-like sounds and consequently acquire the different status of [A:]
versus [a].

Therefore, the NN modeling predicts that infants need a lexicon in
order to acquire the status of [A:] versus [a]. As Chapter 4 found that
infants with a larger lexicon are better at differentiating between [A:]
and [a], this aspect of the NN modeling may be correct. The hypoth-
esis that lexical information is important for infants’ acquisition of
phoneme categories is not new (Charles-Luce and Luce, 1990), and is
currently winning back ground on the distributional-learning hypoth-
esis (Swingley, 2009; Feldman et al., 009b). An advantageous property
of the NN model is that it predicts exactly what infants can acquire
through distributional learning —the difference between typical /A/
and /a:/—, and what they can only acquire with a lexicon —the dif-
ferent frequency and ambiguity of [A:] and [a].

5.9 General Discussion

In this Chapter we have modeled distributional learning of phoneme
categories using MoG models and NN models in order to provide ex-
plicit explanatory links between infants’ input and infants’ perception
of speech sounds. Taking the contrast between Dutch /A/ and /a:/
as a test case, the results show that a MoG model and a NN model
trained on /A/s and /a:/s in a corpus of Dutch IDS (Chapter 3) can ac-
count for the findings that Dutch infants acquire the contrast between
/A/ and /a:/ as a contrast signaled by two cues (Chapters 3 and 4) and
that Dutch infants are able to use vowel duration as an auditory cue
to a phonological contrast in the absence of vowel quality differences
(Dietrich et al., 2007). Furthermore, the MoG modeling predicts that
Dutch infants’ sensitivity to the different status of [A:] and [a] (Chap-
ter 4) is acquired through distributional learning, whereas the NN
modeling predicts that learning with a lexicon is necessary to acquire
such subtleties. The combined results in this Chapter show that many
aspects of infants’ speech sound perception can be accounted for in
terms of computationally implemented distributional-learning mech-
anisms if the exact distributions of the auditory cues in infants’ input
are taken as the training input. Therefore, this study lends support to
the hypothesis that distributional learning plays an important role in
infants’ acquisition of speech sound categories.

Most studies that tested distributional learning in infants contrasted
learning one category from a monomodal distribution with learning
two categories from a bimodal distribution (Maye et al., 2002, 2008;
Yoshida et al., 2010). Since the input distributions in the input cor-
pus were bimodal in the two-dimensional auditory space defined by
F2 and duration, but monomodal along the individual dimensions
(Chapter 3), it could have been expected that models of distributional
learning acquire two categories when trained on the two-dimensional
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distribution and one category when trained on input from a single
dimension. Both the NN models and the MoG models acquired two
categories from the two-dimensional distribution, although the NN
models did so more consistently. The result pattern in Vallabha et al.
(2007), who found that the MoG modeling outperformed the model-
ing without Gaussian representations, is thus reversed here in favor
of the non-Gaussian modeling. More surprisingly, neither MoG mod-
eling nor NN modeling resulted in one category for the individual di-
mensions. The MoG models acquired two categories from the skewed
monomodal distributions, which is due to the models’ Gaussian bias.
The NN models did not acquire two categories when trained on the
monomodal distributions along the individual input dimensions, but
did not acquire a single category either. These aspects of the MoG
and NN models are, at first sight, not in line with the results of dis-
tributional learning in human participants.

Thus far the monomodal distributions in experiments testing distri-
butional learning in infants were always symmetric. In natural speech
input, a monomodal distribution that is skewed along an individual
dimension can be the result of two underlying phonemes (Chapter 3).
The present results show that if distributional learning is accompa-
nied by a Gaussian bias, two categories can be learned from such
skewed monomodal distributions. The comparison across the two
models shows that this is not an inherent property of all distributional-
learning mechanisms. By testing human listeners’ distributional learn-
ing from skewed distributions, it is possible to experimentally explore
the potential role of a Gaussian bias in distributional learning and re-
fine the definition of distributional learning beyond monomodal ver-
sus bimodal distributions.

The results from both types of modeling suggest that co-occurring
cues play an important role in the distributional learning of phoneme
categories. The MoG models that formed representations for both
F2 and duration more accurately captured the properties of /A/ and
/a:/ in Dutch infants’ input than the MoG models that learned from
one of the dimensions. The NN models only acquired two categories
when they were provided with information about the input tokens’
F2 and duration. In particular the NN results go against Boersma
et al.’s (2003) and Maye et al.’s (2008) hypothesis that infants first ac-
quire categories for single auditory dimensions before they integrate
these into phoneme level representations, and suggest the reversed
hypothesis: Infants must learn from all cues simultaneously in order
to acquire categorical perception along single auditory dimensions.

Infants of 10 months old and younger can already use co-occurrences
between multiple correlated visual cues to induce category structure
and for non-linguistic rule learning (Younger, 1985; Younger and Co-
hen, 1986; Mareschal et al., 2005; Frank et al., 2009; Thiessen, 2012).
The only study on distributional learning of phoneme categories that
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varied multiple cues is Cristiá et al. (2011). Cristiá et al. (2011) found
that infants were tracking the two-dimensional distribution along
both dimensions, but did not test whether infants’ category learning
was improved by the redundancy between the cues. Testing the latter
question is crucial in order to investigate whether infants have the
distributional learning capacity to acquire categories from the over-
lapping distributions as they occur in real IDS.

5.10 Summary

To conclude, we have shown that Gaussian-based computational-level
Mixture-of-Gaussians models and non-Gaussian neural network mod-
els that are trained on the distribution of speech sounds as found in
IDS can explain many aspects of infants’ speech perception as found
in previous experiments. Both models have their own merits, as the
Mixture-of-Gaussians model is able to account for more aspects of
infants’ speech perception, whereas the results from the neural net-
work model are more robust. Which model accounts best for infants’
distributional learning of speech sound categories is a topic for future
research. Regardless of the outcome, this work shows that computa-
tional modeling of distributional learning can go beyond the question
of whether categories are learnable from IDS, and provides a power-
ful explanatory link between infants’ input and speech perception.
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5.11 Appendix A: The mathematical definition of the

MoG

In a MoG, each category, Gg, is modelled as a Gaussian distribution.
A univariate Gaussian function (Equation 4), is defined by a mean µg,
standard deviation σg, and probability of occurrence φg, and it gives
the probability of the value of token i if category g is intended. In
our simulations, the parameters of the univariate Gaussian functions
were either defined for F2 (with µF2g and σF2g) or for duration (with
µDurg and σDurg), and the function here is defined for F2:

Gg(F2i) = φg
1√

2πσ2
F2g

exp

(
−1

2
(i− µF2g)

2

σ2
F2g

)
(4)

A multivariate Gaussian function (Equation 5) is defined by φg, by
µg and standard deviation σg for each of the dimensions along which
the Gaussian is defined, and the correlation between each pair of di-
mensions ρg. In our simulations, the multivariate Gaussian functions
were defined for both F2 and duration and thus specified by the pa-
rameters φg, µF2g, µDurg, σF2g, σDurg, and ρF2Durg. Those functions give
the probability that the F2 and duration of token i are observed if cat-
egory g generates the data:

Gg(i) = φg
1

2πσF2gσDurg

√
1− ρ2

g

exp

(
− 1

2(1− ρ2
g)

Eq. 6

)
(5)

(F2i − µF2g)
2

σ2
F2g

+
(Duri − µDurg)

2

σ2
Durg

−
2ρ(F2i − µF2g)(Duri − µDurg

σF2gσDurg
(6)

The MoG is a mixture of K categories. The complete mixture of all K
categories, given in equation 7, estimates the probability of a given
value as the sum of the probability that the value was produced as a
realization of each of the K categories:

P(i) =
K

∑
g=1

Gg(i) (7)

In the simulations, K is initially set at 25 and all φ at 1/K. Initial µ’s
are drawn from a uniform distribution between the maximum and
minimum values of the dimension ± 0.5 times the range spanned by
the dimension. This means that the values of µF2 could range from
−4.30 to 4.90, and that the values of µDur ranged from −2.36 to 2.99.
All σ started at 0.02 times the range spanned by the dimension. This
means that the σF2 of all initial categories was 0.092, and that σDur in
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the initial state was 0.054. In the multivariate MoGs, the values of ρ

were initiated at 0.
The learning rate parameters, η, were different for each parameter

as each parameter could reach a different magnitude. ησF2 and ησF2

were set at 0.005. As the range of the duration distribution was 58% of
the range of the F2 distribution, ηµDur and ησDur were 0.58 · 0.005 =

0.0029. ρ can theoretically range from −1 to +1, and the range of ρ

(2) is 43% of the range of the F2 distribution (4.6), so that ηρ was
0.43 · 0.005 = 0.0022. φ can theoretically range from 0 to 1. Because
the range of φ (1) is 22% of the range of the F2 distribution, ηφ was
0.22 · 0.005 = 0.0011.

The learning rules update the parameters of the MoG by means
of gradient descent, such that after each update the MoG better ap-
proximates the distribution of the data. Updating only φb instead of
all φg introduces a form of competition between the categories that
was implemented by Vallabha et al. (2007), and explicitly shown by
McMurray et al. (2009a) to be a crucial prerequisite for the MoG to
acquire the number of categories underlying the real data.

Each iteration in the simulations would follow these 7 steps:

1. it was randomly selected whether a token /A/ or /a:/ was rep-
resented and from input tokens belonging to the selected vowel
category, a random data point i was selected for presentation to
the model;

2. the model computed Gg(i) for each category (using Equation 4

for the univariate MoGs and 5 for the bivariate MoGs) and Pi
over all K categories;

3. the model computed for each category the update of the pa-
rameters. For the univariate MoGs, the update of µg, σg and
φg was computed following the gradient descent functions in
equations 8, 9, and 10 respectively. For the bivariate MoGs, the
update of the parameters µF2g and σF2g according to the gra-
dient descent functions 11, 12, the update rules for µDurg and
σDurg mirror those for F2 given here, the updates for ρg and φg

were computed according to 13 and 15;

4. the model updated all parameters, except for φg;

5. only for category b with the highest Pi, φb was updated with
∆φb;

6. all φg were divided by ∑K
g=1 φg to ensure that ∑K

g=1 φg equals 1;

7. categories with φg <(1/5K) or a σg < 0 were eliminated from
the model, K was updated and all φg were again normalized to
sum to 1.
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Each simulation was run for a maximum of 500000 iterations, or
was terminated earlier if only one category remained in the model.

The following equations present the update rules for the parame-
ters, which we adopt from Toscano and McMurray (2010) with some
corrections (Toscano and McMurray, 2012).

∆µF2g = ηµF2
Gg(F2i)

P(F2i)

F2i − µF2g

σ2
F2g

(8)

∆σF2g = ησF2
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)
(9)
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1
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(15)
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5.12 Appendix B: The mathematical definition of the

NN

In a NN, input is provided to the network in the form of activity on
the clamped input nodes. The model reacts to this input with activity
on the unclamped output nodes.

The activity on the output nodes is zero when the activity is first ap-
plied to the input nodes. The output nodes become active because the
activity on the input nodes spreads to the output nodes through the
connection weights. Activity spreads gradually from the clamped in-
put nodes to unclamped output nodes, but also between unclamped
output nodes when these have received some activity. On every timestep,
the excitation of an unclamped output node ej is updated with ∆ej:

∆ej = ηa

(
Ni

∑
i=1

wijai − ej

)
(16)

where j is an unclamped output node, i is one of the Ni nodes
connected to j, wij is the strength of the connection between i and j,
ai is the current activity on i, ej the current excitation of j, and ηa the
activity spreaking rate. The total excitation of ej is thus the sum of all
excitations that j receives from the nodes i it is connected to. When a
node is excited, it becomes active itself. Several excitation-to-activity
functions are possible, but in the present study we employ a linear
function, which is clipped between 0 and 1:

aj = (max(0, min(ej, 1)) (17)

In, say, 100 of these iterative steps of activity spreading, the network
reaches a state in which the activities on the output nodes no longer
change. The pattern of activity on the output nodes after the activ-
ity spreading is completed forms the model’s reaction to the input
pattern.

After excitation spreading, each wij can be updated with ∆wij ac-
cording to the inoutstar learning rule:

∆wij = ηw

(
aiaj −

ai + aj

2
wij

)
(18)

where ηw is the learning rate. After the learning step, the weight
of the connections is redistributed, such that the sum of the connec-
tion weights to one output node equals 1. Inhibitory output–output
connections are not changed by learning.

In the simulations of the networks with two input layers, the net-
work consisted of a layer of 30 input nodes representing F2 and a
layer of 30 input nodes representing duration. In the simulations of



5.12 appendix b 143

the networks with one input layer, the network had 30 input nodes
which either represented F2 or duration. The output layer consisted
of 10 nodes. The weights of the excitatory input–output connections
are initially set at a value drawn from a random uniform distribu-
tion between 0 and 0.1. Next, the weights are redistributed, such that
the sum of the connection weights to one output node equals 1. The
weights of the inhibitory output–output connections were fixed at -
0.4.

The dispersed input activity over the input node followed a normal
distribution over the input nodes with a standard deviation of 10% of
the continuum. Activity spreading took place in 100 iterative steps,
with ηa set to 0.01. In learning, ηw was 0.01.

Each iteration in the simulations would follow these 6 steps:

1. the activity on the input nodes and the output nodes was set to
0;

2. it was randomly selected whether a token /A/ or /a:/ was rep-
resented and from input tokens belonging to the selected vowel
category, a random data point i was selected for presentation to
the model;

3. the activity on the input nodes was set according to the F2 and
duration of the data point i;

4. the activity spread through the network in 100 iterative steps
(using Equation 16 and 17);

5. the weights of the excitatory input–output connections were up-
dated (using Equation 18;

6. the weights of the excitatory input–output connections were re-
distributed, such that the sum of the connection weights to one
output node equals 1.

Each simulation was run for a total of 5000 iterations.





6
D I S C U S S I O N A N D C O N C L U S I O N : E VA L U AT I N G
N AT U R E ’ S D I S T R I B U T I O N A L - L E A R N I N G
E X P E R I M E N T

Abstract

This dissertation is the result of an integrated research program to
study distributional learning (the acquisition of speech-sound cate-
gories on the basis of the shape of the input distribution) in practice:
Nature’s distributional learning experiment. The input distributions
in this experiment were distributions as observed in mother-child in-
teraction (Part I; Chapters 2 and 3). The results of learning from this
input were observed in the native-language perception patterns of
infants (Part II; Chapters 3 and 4). Computer models with only a
distributional-learning device were then trained on the input distri-
bution and were found to account for the infant perception data (Part
3; Chapter 5). These results lend strong support to the distributional-
learning hypothesis.

145
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6.1 Summary of the study aims

In this dissertation it was investigated whether infants learn their
phoneme categories through distributional learning. To this end, I
pursued a three-part research program that I called “nature’s distributional-
learning experiment”:

Part I) investigate the acoustic properties and the auditory distribu-
tions of some phonemes in the infants’ environment (Chapters 2

and 3);

Part II) investigate infants’ perception of those same phonemes (Chap-
ters 3 and 4);

Part III) explain the perception as found in Part II from the distribu-
tions found in Part I through computationally simulated distri-
butional learning (Chapter 5).

It was argued in the Introduction (Chapter 1) that similarities and
differences between infants’ input and perception can be better de-
tected if the input distributions and infants’ perception are investi-
gated along multiple auditory dimensions. Because Dutch vowels /A/
and /a:/ as the test case typically differ in both vowel quality and du-
ration, the program was pursued with /A/ and /a:/ as the test case.

6.2 Summary of the empirical results :
Similarities between infants’ input and perception

In Chapters 2 and 3 it was shown that /A/ and /a:/ in Dutch IDS
differed in their mean vowel quality and duration. Nevertheless, the
pooled frequency distribution of the vowel quality values of the /A/-
and /a:/-tokens was monomodal, as was the pooled distribution of
their duration values. The pooled distribution of the two vowels only
had separate local maxima for /A/ and /a:/ in a two-dimensional
auditory space that was defined by both vowel quality and duration.
These results from Chapter 3 suggest that if infants learn the /A/–/a:/
contrast through distributional learning, they must learn it from the
two-dimensional frequency distribution. Dutch infants should learn
that each vowel is associated with a specific vowel quality as well as
with a specific duration.

In the discrimination task in Chapter 3, Dutch 11- and 15-month-
old infants were found to discriminate better between /A/ and /a:/
when the difference between the vowels was signalled by both cues
than when it was signalled by only vowel quality or only duration.
This first perception result shows that Dutch infants know that /A/
and /a:/ typically differ in two cues. In the categorization task in
Chapter 4, Dutch 15-month-old infants allocated their attention differ-
ently to the atypical vowel sounds [A:] and [a] than to vowel sounds
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with the typical combinations of vowel quality and duration, [A] and
[a:]. This second perception result shows again that Dutch infants as-
sociate their representations of /A/ and /a:/ with combinations of
vowel quality and duration. Moreover, the larger the infant’s vocabu-
lary, the more she reacted to [A:] as being less typical than [a]. In the
input distribution of /A/ and /a:/ from Chapter 3, vowel sounds like
[A:], with the vowel quality typically associated with the phoneme /A/
and the vowel duration typically associated with the phoneme /a:/,
were less frequent than vowel sounds like [a], with the vowel quality
of /a:/ and the vowel duration of /A/. The correlation between infants’
vocabulary size and attention allocation to the atypical vowel sounds
shows that by 15 months of age Dutch infants begin to develop fine-
grained sensitivity to the auditory speech sound distribution in their
language input.

6.3 Evaluating the role of computational models :
Tools or theories?

The computational modeling in Chapter 5 was an in integral part of
the program to investigate distributional learning in nature’s distributional-
learning experiment. The models were used to test whether infants
could have acquired their representations of /A/ and /a:/ (as tested
in the speech perception experiments in Chapters 3 and 4) from the
auditory frequency distribution of /A/ and /a:/ in their input (as
found in Chapter 3) through distributional learning. Distributional
learning was simulated with Mixture-of-Gaussians (MoG) models,
as well as with neural-network (NN) models that are embedded in
a larger model for bidirectional phonetics and phonology (Boersma,
2007; Boersma et al., 2012). Both types of models induced the vowel
contrast from the two-dimensional input distribution. The NN mod-
els were in this respect more robust than the MoG models. Both com-
putational models associated the categories /A/ and /a:/ with the
respective vowel quality and duration of the categories. The mod-
els thus captured an important aspect of infants’ early vowel repre-
sentations: They are associated with multiple cues. Because of this
similarity between the infants’ and the models’ representations, the
question whether infants could have acquired their native language
phoneme categories through distributional learning can be answered
with “yes”.

Of course, it is a qualified “yes”, because the two models did not
give exactly the same results. The extent to which each model ac-
counts for infants’ phoneme acquisition through distributional learn-
ing, can be evaluated in two ways.

The first evaluation compares the models’ representations of /A/
and /a:/ to what we conceptually think a model of distributional
learning should acquire from these input data. The MoG model ac-
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quired two categories from the monomodally distributed duration
distribution, which is not in line with the conceptual definition of
distributional learning. This unexpected result was due to the Gaus-
sian bias of the model. The NN model has no Gaussian bias and
did not show this behavior. The second evaluation of the models is
a comparison between the models’ and infants’ perception. Only the
MoG models learned to treat [A:]-like sounds as infrequent and [a]-
like sounds as ambiguous, a result that is in agreement with infants’
perception (Chapter 4). The NN models predicted that infants could
not acquire this difference between [A:]- and [a]-like sounds through
distributional learning. This result in the NN model was the conse-
quence of competition between the cues, which was absent in the
MoG model. By evaluating the models against the input and percep-
tion data, I treat the models as theories that can be refuted or refined
after an empirical test.

Earlier work that used computational modeling to test whether
phoneme categories are learnable from the distributions in IDS through
distributional learning primarily employed a Mixture-of-Gaussians
(MoG) model (De Boer and Kuhl, 2003; Vallabha et al., 2007; Adriaans
and Swingley, 2012). Although Vallabha et al. (2007) used a second,
non-Gaussian model as well and also McMurray et al. (2009b) apply
a Gaussian as well as a non-Gaussian model, the MoG approach to
distributional learning is gaining popularity (see Chapter 5). In that
line of work work, the MoG model is treated as a tool to help answer
questions about the learnability of the input data or the dynamics of
distributional learning. The MoG and NN models in Chapter 5 per-
formed distributional learning on the same input data but differed in
some outcomes. Therefore, neither can be regarded as a tool to model
distributional learning without any assumptions.

In Chapter 3, I proposed to simply count the number of local max-
ima in an input distribution. According to the conceptual definition
of distributional learning, the number of peaks should correspond to
the number of categories that infants acquire. Although the results in
Chapter 3 did not show two neat local maxima for /A/ and /a:/, I
believe that this method is important to explore in further research.
In the first place, this method contributes to the comparison between
the shape of the input distribution and the modeling results. In the
second place, as long as theories and frameworks of infant language
acquisition only adopt a conceptual understanding of distributional
learning, their assumptions and predictions can best be tested with
an assumption-free method.

The computational models in Chapter 5 were treated as specific
theories about the distributional learning mechanism. The compar-
ison between the MoG modeling and the NN modeling provided,
among other things, a comparison between learning with and with-
out a Gaussian bias. The comparison between models trained on one-
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dimensional and two-dimensional distributions tested to what extent
infants could acquire categories for individual dimensions (Boersma
et al., 2003; Maye et al., 2008) or whether they should integrate all
information that is available to them in order to acquire the speech
sound categories (Pierrehumbert, 2003; Werker and Curtin, 2005). Such
comparisons between learning scenarios require a definition of dis-
tributional learning that goes beyond a conceptual understanding
of the mechanism. Only with a specific definition of distributional
learning, theories and frameworks of infants’ acquisition of speech
sound perception can provide an explicit, computationally modeled,
link between infants’ input and perception. Such a level of specificity
is available for distributional learning in the BiPhon model (Boersma
et al., 2012), and for combined learning from speech sound distri-
butions and the lexicon in Pierrehumbert (2001) and Feldman et al.
(009b). Only with such explicit theories, the field can move to a for-
mal understanding of distributional learning that is testable in na-
ture’s distributional-learning experiment.

6.4 Investigating infants’ input :
Against data reduction

Earlier studies of the phonetic properties of speech sounds in infants’
input mainly focused on the enhanced contrast between category
means in IDS as compared to adult-directed speech (ADS; e.g., Kuhl
et al., 1997). The results in Chapter 2 on the realization of the cor-
ner vowels in Dutch IDS strongly suggest that the pronunciation of
the corner vowels in IDS is language specific. Dutch mothers reduced
their area of their vowel quadrilateral in IDS as compared to ADS.
This reduction seemed to occur because the mothers fronted all their
vowels in IDS as compared to ADS, but the back vowels more so than
the front vowel. Such a shift of the vowel space can only be detected
if the data are not reduced to the area of the vowel space and the
analysis takes into account the actual average formant values of the
vowels.

Apart from the fact that auditory contrasts between corner vowels
are not universally enhanced, it is sub-optimal to measure auditory
contrasts from only the category means and disregard the variance.
Statistical techniques customarily evaluate the absolute differences be-
tween group means against a measure of the variation in the groups
(t-test, Student, 1908; signal detection theory, Peterson et al., 1954;
Tanner and Swets, 1954). Cristiá and Seidl (ress) have applied this
insight to the measurements of auditory contrasts in IDS and have
shown that conclusions about enhanced or reduced auditory contrast
can change if variability is taken into account. This better measure
of auditory contrast could not be used in Chapter 2, because of the
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low number of vowel tokens for some mothers in the adult-directed
register.

Importantly, the higher mean F2 of the infant-directed corner vow-
els in Chapter 2 can serve as the starting point in explaining the ob-
servation that vowels are realized more variably in IDS than in ADS
(Cristiá and Seidl, ress, and references therein). A higher F2 can be an
acoustic consequence of smiling (e.g., Tartter and Braun, 1994) and
a joyful smile is one of the three typical facial expressions in IDS
(Stern, 1974; Chong et al., 2003). The other two typical infant-directed
facial expressions are soothing protruded lips, and a surprised open
mouth (Stern, 1974; Chong et al., 2003). Interestingly, these three fa-
cial expressions exaggerate the facial expressions that correspond to
the articulations of the three corner vowels: ‘smiled’ [i], ‘protruded’
[u], and ‘surprised’ [a]. If mothers produce all corner vowels in IDS
with these three infant-directed facial expressions, the realization of
the corner vowels in IDS will be more variable than in ADS. I thus
hypothesize that the affective speaking style in IDS is not only respon-
sible for the shifts of the vowel category means, but also for the larger
within-category variability. This hypothesis can only be investigated
if the data are not reduced to one mean value per category.

As discussed in Chapter 1, a reduction of the input data to one
mean per category is untenable in the investigation of the distributional-
learning hypothesis. Distributional learning takes place over a range
of auditory values and the shape of the frequency distribution is es-
sential. The number of local maxima in a distribution can only be
counted if the complete distribution is considered (Chapter 3). The re-
sults of the computational modeling of distributional learning would
have been extremely uninteresting if only the means of each category
had served as the input (Chapter 5).

To conclude, Chapter 2 shows that the vowel space should not be
reduced to only a surface value if the effect of affect on the realization
of phonemes is investigated. Chapters 3 and 5 illustrate that the cate-
gories should not be reduced to a mean if the distributional-learning
hypothesis is tested. Therefore, I argue that phoneme categories in
IDS are best studied with as little data reduction as possible.

6.5 Investigating infants’ phoneme perception :
Overt behavior and attention allocation

The reason for employing two tasks to test infants’ perception of /A/
and /a:/, a discrimination task in Chapter 3 and a categorization task
in Chapter 4, was that both provide a different type of information
about speech perception and have a different tradition in the research
into infants’ and adults’ phoneme perception (see Chapter 1). Because
the infants did not show anticipatory behavior in the categorization
task, it is at this point impossible to evaluate the relation between
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discrimination and categorization with respect to Dutch infants’ per-
ception of /A/ and /a:/.

In the discrimination task, infants showed evidence of discriminat-
ing between [A] and [a:]. In the categorization task, infants failed to
treat [A] and [a:] differently. This could be the result of the difficulty
of the task (cf. McMurray and Aslin, 2004). One advantage of the
two-alternative categorization paradigm in Chapter 4 was that infants
remained interested throughout the experiment and looked consis-
tently to the trials. This allowed for the investigation of their atten-
tion allocation through pupil dilations. Not only did infants allocate
their attention differently to atypical [A:] and [a] than to typical [A]
and [a:], the influence of context on the infants’ attention allocation
to [A:] and [a] mirrored the effect of context on adults’ categorization
of these atypical vowel sounds. In the discrimination task, a differ-
ence between the atypical vowel sounds [A:] and [a] was not found.
Thus, a discrimination task can hide infants’ sensitivity to the status
of atypical speech sounds that attention allocation reveals. Because
the procedures in Chapters 3 and 4 yielded null results and inter-
pretable results for different vowel sounds, their combination proves
once again how carefully behavioral null results must be interpreted,
especially if we do no yet fully understand which processes are re-
sponsible for success in the task.

It has been argued that especially in infants, pupil dilations provide
insight into a pre-conscious state of processing (Laeng et al., 2012). In-
fants’ ability to differentiate between [A:] and [a] in their attention allo-
cation in Chapter 4, but not in their behavior in Chapter 3, supports
this. A combination of behavioral and pupillary analyses in future
work will increase our understanding of the processes that underlie
infants’ behavior in speech perception tasks.

The studies to date that report infant pupil dilation results involved
a clear point of potential surprise, either about the physical world
(Jackson and Sirois, 2009; Sirois and Jackson, 2012) or the social world
(Gredebäck and Melinder, 2010, 2011), or they were engaging with
both audio and video (Lewkowicz and Hansen-Tift, 2012). The cate-
gorization task was relatively interesting, as shown by the low drop-
out rate and by the infants tracking the boxes throughout the trials.
Also, each trial could be split into parts during which arousal or a
conflict in decision was expected to affect the infants’ pupil dilations.
The discrimination task, on the other hand, was relatively boring, as
shown by the high drop-out rate. It is difficult to determine when
during a long, monotonous trials infants should experience arousal
from hearing an alternation between speech sounds. Moreover each
infant was looking to the screen at different intervals during each
trial. In order to take full advantage of the richness of pupil dilation
in infant speech perception research, an extensive reanalysis of exist-
ing data sets is necessary. I expect that the paradigms that involve a
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clear point of potential surprise or are sufficiently engaging overall
will allow for taking pupil dilation data into the equation.

6.6 Conclusion

Even though the parents of the participants in my studies were largely
unaware of the learning task that their infant was accomplishing and
spoke somewhat unclearly to their babies, they provided their chil-
dren with distributions from which even computational models with
basic distributional-learning mechanisms acquired the /A/–/a:/ con-
trast. Not only infants’ discrimination between typical examples of
/A/ and /a:/ but also aspects of infants’ perception of atypical exam-
ples could be accounted for in terms of these models. The results in
this dissertation therefore suggest that infants acquire the phonemes
of their native language through distributional learning. This means
that the phoneme categories emerge over the course of acquisition
and are not innate. The results also show that an explanation in
terms of distributional learning can only be maintained if infants
can integrate multiple auditory cues during distributional learning.
This finding requires further investigation of distributional learning
in principle, with two-dimensional input distributions in an artificial-
language learning experiment.

The results from all studies combined show that the research pro-
gram that I called “nature’s distributional-learning experiment”, an
integrated study of infants’ input, infants’ perception, and distributional-
learning models to provide the explanatory link, is an essential con-
tribution to testing the distributional-learning hypothesis of infants’
phoneme acquisition in practice.
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S U M M A RY I N E N G L I S H : L E A R N I N G S O U N D S
F R O M T H E C L O U D S ?

For many parents, their baby’s language development really takes off
with the production of the first word, even if the proud parents are
the only ones that recognize a word in what others still perceive as
a meaningless babble. In the months preceding this first word, the
baby has already been a dedicated language learner. Much of the
baby’s efforts have been spent on a challenge that parents often do not
even realize to be a part of language acquisition: The acquisition of
language-specific sound perception. Luckily, the parents do not need
to be aware of their baby’s learning task to be excellent teachers. As
long as they talk with their baby, their baby receives enough informa-
tion to learn the language-specific properties of their language. This
dissertation investigates how infants could learn language-specific
sound perception from the speech they hear from their parents.

Learning about man and maan

What is language-specific sound perception? Native speakers of Dutch
find it very easy to hear the difference between the words man and
maan because these words have a different meaning in their language.
One could object that speakers of Dutch hear the difference between
the words man and maan simply because the vowels in the words
sound different. However, the difference between the words man and
maan is very difficult to hear for native speakers of Spanish because
Spanish does not use this sound difference to signal a difference
in meaning. That babies acquire language-specific sound perception
implies that they learn which sound differences are important in
their language (the man-vowel sound and the maan-vowel sound for
a Dutch baby) and which sound differences they can ignore (the man-
vowel sound and the maan-vowel sound for a Spanish baby).

The vowels in the words man and maan differ in vowel duration:
The man-vowel is short and the maan-vowel is long. These vowels dif- Try this at home:

Pronounce the
man-vowel and the
maan-vowel in front
of the mirror. Do
you see the different
mouth shapes?
Those determine the
vowel quality.

fer also in vowel quality: The man-vowel has a darker vowel quality
and the maan-vowel has a more open vowel quality. In school, many
native speakers of Dutch have learned to refer to the man-vowel as the
‘short a’ and to the maan-vowel as the ‘long a’. In perception, however,
most native speakers of Dutch pay more attention to vowel quality
to determine whether vowel sounds that fall somewhere in between
these two typical sounds are more likely to be the man-vowel or the
maan-vowel. This relative attention to the properties of the sound has
been tested in speech perception experiments in laboratory settings
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and can also be tested at home. If you lengthen the word man, the
vowel keeps the vowel quality of the man-vowel but gets the duration
of the maan-vowel. Most native speakers of Dutch recognize such a
lengthened man as the word man and do not think that the length-
ening of the vowel changes the word to maan. This simple at-homeTry this at home:

Lengthen the word
man. Do you hear

man or maan?

experiment illustrates that Dutch listeners find vowel quality more
important than vowel duration to determine whether they hear the
man-vowel or the maan-vowel. This at-home experiment also high-
lights a second learning task for babies. They do not only need to
learn which sound differences are important in their language but
also which properties of the sounds are most important.

How do babies learn which sound differences are important in their
language and how do they learn which properties of these sounds
are most important? Babies cannot solve this learning task on the ba-
sis of word pairs such as man and maan, because they hardly know
any words that only differ in one sound. Babies are endowed with a
learning mechanism that can learn about sounds without any word
knowledge. In combination with the properties of the sounds that ba-
bies hear, this learning mechanism explains that babies learn about
the sounds of their native language very early in life. In my disser-
tation I have tested and found support for this idea in three closely
integrated parts:

1. What are the sound properties of the man-vowel and the maan-
vowel if Dutch mothers pronounce them to their baby?

2. Do Dutch babies hear the difference between the man-vowel and
the maan-vowel and which sound properties do they use to hear
it?

3. Can a computer baby with the learning mechanism that real
babies are supposed to have learn about the man-vowel and the
maan-vowel from the speech of real Dutch mothers and then
hear the difference between the man-vowel and the maan-vowel
in the same way as real Dutch babies do?

In the remainder of this summary, I will describe the research into
these three research questions of my dissertation. When all three parts
have been described, we know how Dutch infants learn that they need
to hear the difference between the man-vowel and the maan-vowel.

Part I: What are the sound properties of the man-vowel

and the maan-vowel if Dutch mothers pronounce them

to their baby?

Even though I have been speaking of the man-vowel and the maan-
vowel as some kind of constant entities, they actually sound differ-
ent every time we hear them. To some extent, speakers can choose
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how they pronounce sounds. It has often been claimed that mothers
choose to pronounce sounds very clearly to their baby, to highlight
which sound differences are important in the language and help their
baby’s acquisition of language-specific sound perception.

To test whether Dutch mothers highlight the difference between the
man-vowel and the maan-vowel when they talk to their baby, I invited
eighteen mothers to the Taallab in the Bungehuis.1 The mothers were
asked to first play with their infant and then talk to an adult experi-
menter. The results of this study are reported in Chapter 2. Interest-
ingly, these Dutch mothers did not pronounce speech sounds, such
as the man-vowel and the maan-vowel, more clearly to their infant. On
the contrary, they spoke more clearly to the adult experimenter! Fine Try this at home: it

is difficult to smile
and clearly
articulate at the
same time

analyses of the speech sounds showed that Dutch mothers smile a lot
to their baby and when you are constantly smiling, it becomes diffi-
cult to articulate clearly. Dutch mothers adapt their speech to their
baby in many ways, but they do not seem to help their baby to dis-
cover that the difference between the man-vowel and the maan-vowel
is important in Dutch. Try this at home:

look at the dots in
the right figure and
find the man-cloud
and the maan-cloudman−cloud, maan−cloud

vowel quality

d
u
ra

ti
o
n

dark open

s
h
o
rt

lo
n
g

=man
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Figure A. The sound properties of the man-vowel and the maan-vowel
as Dutch mothers pronounce them to their baby.

Or do they? In Chapter 3, I investigated the man-vowels and the
maan-vowels of the mothers in some more detail to understand how
infants might nevertheless learn something about these vowels. Of the
over 700 man-vowels and maan-vowels that the 18 mothers together
spoke to their baby, no two were identical. Of course, there are slight
differences between speakers. On top of that it is impossible for a
speaker to say exactly the same sound twice. All these man-vowels

1 For the sake of comparability with previous research, only mothers were included
in the present study. This choice does not imply that only mothers would provide
valuable speech input to their baby.
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and maan-vowels together are shown in figure A. In the left of these
two figures, there is one cloud of man-vowels, which all have a rela-
tively dark vowel quality and a relatively short duration. The second
cloud in this figure is of the maan-vowels, which all have a relatively
open vowel quality and a relatively long duration. Even in the figure
on the right, which does not tell you which dots are man-vowels and
which dots are maan-vowels, it is possible to squint your eyes and still
see two clouds, a man-cloud and a maan-cloud.

Babies in laboratory experiments can learn from the clouds: They can
listen to speech sounds that are all slightly different and discover
how these can be grouped into clouds. Babies that have learned from
the clouds ignore differences between speech sounds that belong to
the same cloud and are extra sensitive to differences between speech
sounds that belong to two different clouds. If infants indeed learn
from the clouds in practice, they can discover the man-vowel and the
maan-vowel by just listening to their smiling Dutch mother.

Part II: Do Dutch babies hear the difference between

the man-vowel and the maan-vowel and which sound prop-
erties do they use to hear it?

Now that we know that Dutch infants could learn about the difference
between the man-vowel and the maan-vowel by learning from the clouds
of their mother, it is important to know what Dutch infants actually
know about the difference between these two vowels.Try this at home: say

man very slowly and
maan very fast to

make the sounds of
the experiment

experiment sounds
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‘shortened’
man

maanman
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Figure B. The sound properties of the stimuli used in the experiments.
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To test this in speech perception experiments with infants, four
vowel sounds were created. These vowel sounds can be seen in fig-
ure B, where they can be compared to the man-vowels and the maan-
vowels that the mothers produced. The first vowel sound was a typ-
ical man-vowel, with a dark vowel quality and a short duration. The
second was a typical maan-vowel, with an open vowel quality and
a long duration. The third was an in-between vowel, with the dark
vowel quality of the man-vowel and the long duration of the maan-
vowel (the sound you get when you lengthen the word man). The
fourth was the opposite in-between vowel, with the open vowel qual-
ity of the maan-vowel and the short duration of the man-vowel (the
sound you get when you say maan with the shortest possible vowel). Try this at home: do

you hear the
difference between a
typical maan and a
shortened version of
it? And between a
typical maan and a
lengthened version
of man?

Figure C. The explanation of the first listening task. The baby
sits in front of a screen. She sees a checkerboard pattern and
hears series of sounds. In some series the same sound is repeated
(man. . . man. . . man. . . ) and other sound series are an alternation be-
tween two different sounds (man. . . maan. . . man. . . maan. . . ). Babies en-
joy change. Therefore, if they perceive the difference between man and
maan, they look longer to the checkerboard during this series of sounds
than during the series of repeated sounds. If they do not perceive the
difference between man and maan, they look just as long to the checker-
board for the alternating sound series as for the repeated series. In or-
der to find out whether babies perceive differences in vowel duration,
they are played series of sounds in which only the vowel duration is
changed (man. . . lengthened-man. . . man. . . lengthened-man). To find out
whether babies perceive differences in vowel quality, I play them series
of sounds in which only the vowel quality is changed (man. . . shortened-
maan. . . man. . . shortened-maan). The results of this experiment showed
that babies were interested in the alternation between typical man and
maan, but not really in the sound series that alternated only one sound
property. The conclusion from this result is that Dutch babies know that
man and maan need to differ in two sound properties, vowel quality and
duration.

In the first listening experiment, which is described in Chapter 3, I
asked Dutch babies whether they heard the difference between one of
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the typical vowel sounds (the typical man-vowel or the typical maan-
vowel) and the three other vowel sounds. Simply asking did not work,
so I made use of a test to find out which sound differences the babies
did and did not hear. This test is described in figure C.

The Dutch babies found it easy to hear the difference between the
typical man-vowel and the typical maan-vowel. The babies did not re-
ally know what to do with the atypical vowel sounds (the lengthened
man-vowel and the shortened maan-vowel). They seemed to think that
these atypical vowel sounds could just as well belong to the man-
cloud as to the maan-cloud. The babies did not seem to favour vowel
quality or duration when listening to the man-vowel and the maan-
vowel. When we look back at the specific values with which Dutch
mothers say man-vowels and maan-vowels to their baby, we must
conclude that the babies are completely right: The atypical vowel
sounds from the experiment could belong to either cloud. The way
in which Dutch babies hear the difference between the man-vowel
and the maan-vowel is thus completely in agreement with the clouds
of man-vowels and maan-vowels that Dutch mothers produce.Try this at home

(because adults are
able to do this task!)

Shorten the vowel in
the word maan. Do
you hear man or do

you hear maan?

Figure D. The explanation of the second listening task. The baby
sits in front of a screen. She sees two boxes moving horizontally apart
from each other and hears a series of three sounds: man. . . man. . . man
or maan. . . maan. . . maan. After the third sound, something fun appears.
The fun happens on the left after man and on the right after maan. In
this way, the baby can learn to look left in reaction to man and right for
maan. If the baby has learned the side–sound combinations, her reaction
to the atypical sounds is interesting. A baby that pays attention to vowel
quality will expect something on the man side after lengthened man and
something on the maan after shortened maan. A baby that pays more
attention to vowel duration will look to the maan side after lengthened
man and to the man side after shortened maan. Because the babies did
not follow the correct box for the typical sounds, man and maan, it is
impossible to draw conclusions about their use of the sound properties.
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In the second experiment, which is described in Chapter 4, I tried
to ask Dutch infants to tell me more explicitly whether they think
that the lengthened man-vowel and the shortened maan-vowel belong
to the man-cloud or to the maan-cloud. The task I used to ask them
this question is described in figure D. That task was too difficult for
them. But infants were very engaged in the task, so we could measure
their general interest in the four vowel sounds. The older infants in
the experiment, who were all around 15 months old, were especially
interested in one of the atypical vowel sounds, the lengthened man-
vowel. When we look back again at man-cloud and the maan-cloud in
the speech of the Dutch mothers we must conclude that the babies
are completely right again: Mothers almost never say sounds like the
lengthened man-vowel, so it is no wonder that infants are surprised
when they hear it. The fact that only the babies of 15 months old and Try this at home:

does a lengthened
man or a shortened
maan sound more
familiar?

not the 9-month-olds reacted surprised to the lengthened man-vowel
shows that it takes infants quite some time to discover what happens
at the boundaries of the clouds. At 15 months, Dutch babies have
clearly learned a great deal about the specific shape of the man-cloud
and the maan-cloud in the speech of their Dutch mothers.

Part III: Can a computer baby with the distributional-
learning mechanism that real babies are supposed to

have learn about the man-vowel and the maan-vowel from

the speech of real Dutch mothers and then hear the

difference between the man-vowel and the maan-vowel

in the same way as real Dutch babies do?

As real Dutch babies learn from their real Dutch mothers about man-
vowel and the maan-vowel, what are computer babies doing here? To
motivate the third part of my dissertation, I need to convince you
that the mechanism learning from the clouds not only answers ques-
tions about how infants could learn the difference between sounds,
but also opens the way for many, many new questions. How exactly
do infants observe the clouds? They cannot look at a picture of 700

sounds, but hear the sounds one by one. And how exactly do infants
store the clouds in their memory? It would be inefficient for them to
just remember all 700 words in the clouds, but that implies they do
not store the clouds at all! Questions such as these, especially when
they contain the word ‘exactly’, can be answered with the use of com-
puter babies.
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Try this at home: do
you see the two

curves in Gaussian
brains and do you
see the two stable

reactions in the
neural network

brains?

Figure E. The explanation of the computer babies. Half of the com-
puter babies were given Gaussian brains (on the left). Babies with Gaus-
sian brains represent a vowel as a function that indicates for each pos-
sible value of the sound property how probable it is that the vowel has
that specific value. Two such vowels in a Gaussian brain are the two
curves in the figure. The other half of the computer babies were given
neural network brains (on the right). Babies with neural network brains
hear on the bottom row of network nodes the values of a sound prop-
erty and react to those values with a pattern on the top row of nodes.
The vowels are the stable reactions in the top row across slightly dif-
ferent values in the bottom row. Two such vowels in a neural network
brain are the two top-row patterns in the figure. In this figure, the baby
brains connect each vowel to only one sound property. To successfully
learn the man-vowel and the maan-vowel, the baby brains had to connect
each vowel to two sound properties, that is, to both vowel quality and
duration.

Computer babies, by the virtue of having computer brains, can only
learn from the clouds if they receive very exact instructions regarding
the workings of this learning mechanism. In Chapter 5, two different
types of computer babies were built, representing two ideas of how in-
fants might actually go about learning from the clouds. Figure E shows
an example of the two types of computer babies. Both types of com-
puter babies were able to learn the man-vowel and the maan-vowel
from the 700-or-so vowel sounds as spoken by the real Dutch moth-
ers. And both types of computer babies reacted to the test soundsTry this at home:

can your computer
learn Dutch when

you start speaking to
it with a smile?

in largely the same way as the real Dutch infants did. These results
from the exact computer babies confirm the idea that learning from
the clouds helps babies to learn about the differences between speech
sounds, such as the man-vowel and the maan-vowel. At the same time,
we have gained a much more precise understanding of the idea learn-
ing from the clouds, as we have access to no fewer than two possible
descriptions of this learning mechanism.
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Conclusion and implications

In this dissertation, I have shown that Dutch infants can learn about
the man-vowel and the maan-vowel by just listening to the vowel
sounds that their mothers say. Dutch mothers do not pronounce the
man-vowel and the maan-vowel very clearly for their language-learning
baby, because they are too busy playing and smiling. And that is not
a problem. The learning mechanism of the babies is sufficiently pow-
erful that they do not need to be taught about the man-vowel and the
maan-vowel. Babies take care of it themselves.





S A M E N VAT T I N G I N H E T N E D E R L A N D S : D E M A N
E N D E M A A N I N D E W O L K E N ?

Veel ouders merken voor het eerst dat hun baby begonnen is met
taalleren wanneer de baby haar eerste woordje zegt. Maar in de maan-
den die aan dat eerste woordje voorafgingen was de baby allang bezig
met het leren van de taal. Eén van de vaardigheden die de baby zich
in die tijd eigen maakt is de taalspecifieke klankwaarneming. Ou-
ders weten vaak niet dat taalspecifieke klankwaarneming bestaat, laat
staan dat ze weten hoe het aangeleerd zou moeten worden. Gelukkig
zijn ouders ook zonder deze kennis uitstekende leraren. Zolang ze
maar voldoende met hun baby kletsen, krijgt de baby voldoende infor-
matie om de taalspecifieke eigenschappen van de taal te leren. In dit
proefschrift heb ik onderzocht hoe baby’s taalspecifieke klankwaar-
neming leren op basis van de spraak die ze van hun ouders te horen
krijgen.

Leren over de man en de maan

Wat is nu taalspecifieke klankwaarneming? Moedertaalsprekers van
het Nederlands vinden het gemakkelijk om het verschil te horen
tussen de woorden man en maan. Dat komt doordat deze woorden
verschillen in betekenis. Nu zou je kunnen protesteren dat de beteke-
nis van de woorden er niets mee te maken heeft. Horen we het ver-
schil tussen man en maan niet gewoon omdat de klinkers in te woor-
den anders klinken? Echter, precies datzelfde klankverschil kunnen
moedertaalsprekers van het Spaans niet goed horen, want het Spaans
gebruikt het klankverschil tussen de man-klinker en de maan-klinker
niet om betekenisverschillen aan te geven. Tijdens de verwerving van
taalspecifieke klankwaarneming leren baby’s welke klankverschillen
belangrijk zijn in hun taal (de man- en maan-klinker voor een Ne-
derlandse baby) en welke klankverschillen ze net zo goed kunnen
negeren (datzelfde verschil voor een Spaanse baby).

De klinkers in de woorden man en maan worden in het Neder-
landse schrijfonderwijs nog wel eens aangeduid als de ‘korte a’ (de
man-klinker) en de ‘lange a’ (de maan-klinker). Een tweede verschil Doe het zelf: Zeg de

man-klinker en de
maan-klinker voor
de spiegel. Zie je het
verschil in je
mondvorm? Dat
verschil bepaalt het
verschil in
klankkleur.

tussen deze klinkers is de klankkleur: De man-klinker heeft een wat
donkerder klankkleur en de maan-klinker klinkt wat opener. Als moe-
dertaalsprekers van het Nederlands luisteren naar klinkers met klank-
eigenschappen die tussen de typische man-klinker en maan-klinker in
liggen, letten ze vooral op de klankkleur van de klinkers en minder
op de duur. Dit kan heel goed thuis getest worden. Als je het woord
man uitspreekt met een wat langer aangehouden klinker, krijg je een

185
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klinker met de klankkleur van de typische man-klinker en de duur
van de typische maan-klinker. De meeste moedertaalsprekers van het
Nederlands herkennen hierin nog steeds het woord man en vinden
niet dat het woord door de verlenging van de klinker opeens in maan
verandert. Zo’n doe-het-zelf experiment laat zien dat volwassen Ne-Doe het zelf: Verleng

de klinker in het
woord man. Hoor je

man of maan?

derlandse luisteraars de klankkleur belangrijker vinden dan de duur
om te bepalen of ze de man-klinker of de maan-klinker horen. Ne-
derlandse babyluisteraars hebben dus niet alleen de taak om te ont-
dekken dat het verschil tussen de man-klinker en de maan-klinker
belangrijk is in het Nederlands, maar ook om te leren dat klankkleur
ietsje belangrijker is dan de klinkerduur.

Hoe leren baby’s welke klankverschillen belangrijk zijn in hun moe-
dertaal? Baby’s kunnen dit niet leren aan de hand van woordparen
zoals man en maan, want ze kennen geen woorden die alleen maar
in één klank verschillen. Gelukkig beschikken baby’s over een leer-
mechanisme dat over klanken kan leren zonder woorden te kennen.
In combinatie met de eigenschappen van de klanken die baby’s te
horen krijgen kan dit leermechanisme verklaren dat baby’s al heel
vroeg leren over de klanken van hun moedertaal. In mijn proefschrift
heb ik dit idee verder getoetst en onderbouwd door middel van een
driedelig onderzoek. De volgende vragen lagen aan dit onderzoek
ten grondslag:

1. Wat zijn de klankeigenschappen van de man- en de maan-klinkers
die Nederlandse moeders tegen hun baby uitspreken?

2. Horen Nederlandse baby’s het verschil tussen de man-klinker
en de maan-klinker en op welke klankeigenschappen letten ze
dan?

3. Kan een computerbaby met hetzelfde leermechanisme als echte
baby’s het verschil tussen de man-klinker en de maan-klinker
leren op basis van de spraak van echte Nederlandse moeders
en daarna het verschil tussen de man-klinker en de maan-klinker
op dezelfde manier horen als echte Nederlandse baby’s?

In deze samenvatting beschrijf ik het onderzoek naar deze drie on-
derzoeksvragen van mijn proefschrift. Als die beschrijving achter de
rug is, weten we hoe Nederlandse baby’s leren dat het verschil tussen
de man-klinker en de maan-klinker belangrijk is in hun moedertaal.

Deel I: Wat zijn de klankeigenschappen van de man- en

de maan-klinkers die Nederlandse moeders tegen hun

baby uitspreken?

Ook al heb ik het tot nu toe gehad over de man-klinker en de maan-
klinker alsof het bijna tastbare dingen zijn, toch klinkt elke nieuwe
man-klinker of maan-klinker die we horen weer net een beetje anders
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dan al z’n voorgangers. Tot op zekere hoogte kunnen sprekers kiezen
hoe ze elke klank uitspreken. Er is vaak gezegd dat moeders ervoor
kiezen om klanken heel duidelijk uit te spreken als ze tegen hun baby
praten. Zo zouden ze de belangrijke klankverschillen benadrukken en
hun baby helpen bij het leren van de taalspecifieke klankwaarneming.

Om uit te zoeken of Nederlandse moeders het verschil tussen de
man-klinker en de maan-klinker benadrukken als ze met hun baby
praten, heb ik achttien Nederlandse moeders uitgenodigd om naar
het Taallab van het Bungehuis te komen.2 De moeders speelden eerst
met hun baby en spraken daarna met mij, een volwassene. De resul-
taten van dit onderzoek staan beschreven in Hoofdstuk 2. Ze lieten
zien dat de moeders de spraakklanken, zoals de man-klinker en de
maan-klinker, helemaal niet duidelijker uitspraken tegen hun baby. In-
tegendeel, ze spraken duidelijker tegen de volwassene! Gedetailleerde Doe het zelf: Het is

moeilijk om te
glimlachen en
tegelijkertijd
duidelijk te
articuleren

analyses lieten zien dat de klanken in de spraak tegen de baby’s alle
kenmerken hadden van geglimlachte klanken. En als je glimlacht,
wordt articuleren moeilijker. Nederlandse moeders praten dus liefde-
vol tegen hun baby, maar helpen hun baby niet om te ontdekken dat
het verschil tussen de man-klinker en de maan-klinker belangrijk is. Doe het zelf: Kijk

naar de punten in
het rechterplaatje en
vind de man-wolk en
de maan-wolkman−wolk en maan−wolk
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Plaatje A. De klankeigenschappen van de man-klinker en de maan-
klinker zoals Nederlandse moeders ze tegen hun baby’s uitspreken.

Of toch? In Hoofdstuk 3 heb ik de man-klinkers en de maan-klinkers
van de moeders nog wat preciezer bekeken, om erachter te komen
hoe Nederlandse baby’s zouden kunnen leren dat het verschil tussen
deze klinkers belangrijk is. De moeders hadden 700 man-klinkers en
maan-klinkers uitgesproken en geen twee daarvan waren hetzelfde.
Natuurlijk zijn er verschillen tussen sprekers, maar het blijkt ook on-
mogelijk te zijn om exact hetzelfde geluid twee keer uit te spreken.

2 Ook veel vaders zijn langsgekomen. Ik heb me in eerste instantie op de moeders
gericht om aan te sluiten bij eerder onderzoek. Dat betekent uiteraard niet dat alleen
moeders goed met hun baby kunnen praten.
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Al deze man-klinkers en maan-klinkers zijn samen weergegeven in
plaatje A. In het linkerplaatje zie je twee klankwolken: Een klankwolk
van donkere, korte man-klinkers en een klankwolk van open, lange
maan-klinkers. In het rechterplaatje wordt niet meer aangegeven welk
stipje door de moeders als man-klinker of als maan-klinker bedoeld
was. Toch kun je, door je wimpers kijkend, de klankwolken ontdekken.

Er is wel gezegd dat baby’s met een leermechanisme zijn uitgerust
om te leren van de wolken: Ze luisteren naar al die enigszis verschil-
lende klanken en ontdekken hoe die klanken in klankwolken gegroe-
peerd kunnen worden. Baby’s in laboratoriumexperimenten kunnen
leren van de wolken. Na leren van de wolken vinden baby’s het verschil
tussen twee klanken die in dezelfde klankwolk vallen niet meer zo in-
teressant en raken ze extra gespitst op verschillen tussen klanken die
uit twee verschillende klankwolken afkomstig zijn. Als baby’s inder-
daad leren van de wolken tijdens hun taalontwikkeling, zouden Neder-
landse baby’s de man-klinker en de maan-klinker kunnen leren door
gewoon naar hun glimlachende moeder te luisteren.

Deel II: Hoe horen Nederlandse baby’s het verschil tussen

de man-klinker en de maan-klinker?

Nu duidelijk is dat Nederlandse baby’s inderdaad het verschil tussen
de man-klinker en de maan-klinker zouden kunnen leren van de wolken
van hun moeder, moeten we nog uitvinden wat Nederlandse baby’s
echt weten over het verschil tussen de man-klinker en de maan-klinker.Doe het zelf: Zeg

man erg langzaam
en maan erg snel om
de geluiden van het

experiment te maken experimentgeluiden
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typische‘verlengde’

‘verkorte’
man

maanman

maan

Plaatje B. De eigenschappen van de klinkergeluiden in de experi-
menten.
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Om deze vraag te beantwoorden waren luisterexperimenten met
baby’s nodig. In deze luisterexperimenten zijn vier soorten klinkerge-
luiden gebruikt. De eigenschappen van deze klinkergeluiden zijn te
zien in plaatje B, waar ze vergeleken kunnen worden met de man- en
maan-klinkers van de Nederlandse moeders. Het eerste klinkergeluid
was een typische donkere, korte man-klinker. Het tweede klinkergeluid
was een typische open, lange maan-klinker. Het derde klinkergeluid
was een randgeval, met de donkere klankkleur van de man-klinker
en de lange duur van de maan-klinker (het geluid dat je krijgt als je
de man-klinker wat verlengt). Het vierde klinkergeluid was het tegen-
overgestelde randgeval, met de open klankkleur van de maan-klinker
en korte duur van de man-klinker (het geluid dat je krijgt als je de
maan-klinker wat verkort). Doe het zelf: Hoor je

het verschil tussen
een normaal
uitgesproken maan
en een verkorte
versie? En tussen
een normaal
uitgesproken maan
en een verlengde
versie van man?

Plaatje C. De uitleg van het eerste luisterexperiment. De baby zit
voor een scherm. Ze ziet een schaakbordpatroon en hoort geluidreek-
sen. In sommige geluidreeksen wordt steeds hetzelfde geluid herhaald
(man. . . man. . . man. . . ) en in andere geluidreeksen worden twee gelui-
den afgewisseld (man. . . maan. . . man. . . maan. . . ). Baby’s houden van
afwisseling. Daarom kijken ze langer naar het schaakbord tijdens de
afwisselende geluidreeks dan tijdens de eentonige geluidreeks, maar
alleen als ze het verschil tussen man en maan waarnemen. Als ze het
verschil tussen man en maan niet waarnemen, vinden ze de eentonige
en de afwisselende geluidreeks even eentonig en kijken ze even lang
naar het schaakbord tijdens beide klankreeksen. Om erachter te komen
of baby’s letten op verschillen in klinkerduur krijgen ze geluidreeksen
te horen waarin alleen de klinkerduur is afgewisseld (man. . . verlengde-
man. . . man. . . verlengde-man). Om te testen of baby’s letten op ver-
schillen in klankkleur speel ik ook geluidreeksen waarin alleen de
klankkleur wordt afgewisseld (man. . . verkorte-maan. . . man. . . verkorte-
maan). De resultaten van dit experiment lieten zien dat baby’s geïnte-
resseerd waren in de afwisseling tussen de typische man en maan. De
baby’s waren niet bijzonder geïnteresseerd in de geluidreeksen waarin
maar één eigenschap van de klanken werd afgewisseld. Het lijkt er
dus op dat ze weten dat de man-klinker en de maan-klinker in beide
klankeigenschappen verschillen.
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In het eerste luisterexperiment, beschreven in Hoofdstuk 3, vroeg
ik Nederlandse baby’s of ze het verschil hoorden tussen één van
de typische klinkergeluiden (dus de typische man-klinker of de typi-
sche maan-klinker) en elk van de drie andere klinkergeluiden. Omdat
baby’s zo’n vraag niet kunnen beantwoorden heb ik het antwoord
achterhaald met een experiment. Dit experiment staat in plaatje C.

De Nederlandse baby’s vonden het verschil tussen de typische man-
klinker en de typische maan-klinker prima te horen. De baby’s wis-
ten niet goed wat ze aanmoesten met de randgevallen (de verlengde
man-klinker en de verkorte maan-klinker). Als we nog eens goed kij-
ken naar de manieren waarop Nederlandse moeders de man-klinker
en de maan-klinker uitspreken tegen hun baby’s, dan moeten we de
baby’s ook wel gelijk geven: De randgevallen zouden inderdaad net
zo goed bij de man-wolk als bij de maan-wolk kunnen horen. De
manier waarop Nederlandse baby’s naar de man-klinker en de maan-
klinker luisteren is dus geheel in overeenstemming met de wolken
van man- en maan-klinkers waarmee hun moeders ze omringen.Doe het zelf (want

volwassenen kunnen
dit taakje wel!):

Verkort de klinker in
het woord maan.

Hoor je man of hoor
je maan?

Plaatje D. De uitleg van het tweede luisterexperiment. De baby zit
voor een scherm. Ze ziet twee boxjes met strepen die uit elkaar be-
wegen en hoort een reeks van drie geluiden: man. . . man. . . man of
maan. . . maan. . . maan. Aan het eind van de geluidenreeks verschijnt er
aan één kant van het scherm iets leuks. Het leuks komt na man links
tevoorschijn en na maan rechts. Zo leert de baby om in reactie op man
naar links te kijken en na maan naar rechts. Als baby’s de geluid–kant-
combinaties hebben geleerd, is het interessant om na te gaan hoe ze
reageren op de randgevallen. Een baby die vooral op klankkleur let,
verwacht na de verlengde man iets leuks aan de man-kant en na de
verkorte maan iets leuks aan de maan-kant. Een baby die vooral op klin-
kerduur let, verwacht na de verlengde man iets leuks aan de maan-kant
en na de verkorte maan iets leuks aan de man-kant. Omdat de baby’s
voor de typische geluiden, man en maan al niet het juiste boxje konden
volgen, kon ik niet nagaan hoe ze de klankeigenschappen gebruikten.
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In het tweede luisterexperiment, dat staat beschreven in Hoofd-
stuk 4, heb ik Nederlandse baby’s gevraagd om nog wat duidelijker
aan te geven of ze vinden dat de randgevallen net wat meer bij de
man-wolk of net wat meer bij de maan-wolk horen. Het taakje dat ik
gebruikte om ze deze vraag te stellen is beschreven in figuur D, maar
dat taakje was net te moeilijk voor ze. De baby’s deden over het al-
gemeen wel heel goed mee met het experiment en daardoor kon hun
algemene interesse in de klinkers gemeten worden. De oudere baby’s
in het experiment, allemaal baby’s van rond de 15 maanden, waren in
het bijzonder geïnteresseerd in één van de randgevallen, de verlengde
man-klinker. En als we nogmaals goed kijken naar de man-wolk en
de maan-wolk in de spraak van Nederlandse moeders, dan moeten
we de baby’s weer gelijk geven: Nederlandse moeders zeggen bijna
nooit iets dat lijkt op de verlengde man-klinker en het is dus geen
wonder dat Nederlandse baby’s verbaasd zijn als ze zo’n zeldzaam
randgeval opeens te horen krijgen. Omdat alleen baby’s van 15 maan- Doe het zelf: Welke

klinkt je bekender in
de oren, een
verlengde man of
een verkorte maan?

den verbaasd reageerden op de verlengde man-klinker en baby’s van
9 maanden nog niet, laat dit onderzoek zien dat baby’s de tijd nodig
hebben om te leren wat ze met de randgevallen aan de randen van
de wolken aanmoeten. Baby’s van 15 maanden hebben duidelijk al
heel goed in de gaten welke vorm de man-wolk en de maan-wolk in
de spraak van hun moeders hebben.

Deel III: Kan een computerbaby met hetzelfde leerme-
chanisme als echte baby’s het verschil tussen de man-
klinker en de maan-klinker leren op basis van de spraak

van echte Nederlandse moeders en daarna het verschil

tussen de man-klinker en de maan-klinker op dezelfde

manier horen als echte Nederlandse baby’s?

Aangezien Nederlandse baby’s van hun Nederlandse moeders leren
over de man-klinker en de maan-klinker, lijken computerbaby’s in dit
verhaal niet op hun plaats. Om uit te leggen waar het derde deel
van mijn proefschrift goed voor is, moet ik u ervan overtuigen dat
het leermechanisme leren van de wolken niet alleen goed bruikbaar is
om uit te leggen hoe de klinkers van de Nederlandse moeders (deel I)
zich verhouden tot het luistergedrag van de Nederlandse baby’s (deel
II), maar ook heel veel vragen oproept. Hoe precies ontdekken baby’s
dat de klanken in wolken gegroepeerd kunnen worden? De baby’s
kunnen niet naar een plaatje met 700 punten kijken, maar horen de
geluiden één voor één. En hoe precies slaan de baby’s die wolken dan
op in hun geheugen? Omdat het nogal inefficiënt zou zijn als baby’s
alles wat ze horen zomaar zouden opslaan, slaan ze de wolken niet
op zoals we ze in de plaatjes zien. Om antwoord te geven op zulke
vragen, vragen met het woord precies erin, had ik de hulp van de
computerbaby’s nodig.
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Doe het zelf: Zie je
de twee curves in de
Gaussische hersenen

en de twee stabiele
patronen in de

neurale-
netwerkhersenen?

Plaatje E. De uitleg van de computerbaby’s. De helft van de computer-
baby’s kreeg Gaussische hersenen (links). Baby’s met Gaussische herse-
nen geven elke klinker intern weer als een functie die voor elke mogeli-
jke waarde van de klankeigenschap aangeeft hoe waarschijnlijk het is
dat de klinker de specifieke waarde heeft. Twee van zulke klinkers in
Gaussische hersenen horen de waarde van een klankeigenschap op de
onderste rij netwerkknopen en reageren op die waarde met een patroon
op de bovenste rij netwerkknopen. De klinkers zijn de stabiele reacties
in de bovenste rij op een aantal verschillende waarden in de onderste rij.
Voorbeelde van zulke klinker zijn de twee patronen in de bovenste rijen
netwerkknopen in het plaatje. In dit plaatje verbinden de babyhersenen
elke klinker aan maar één klankeigenschap. Om te leren over de man-
klinker en de maan-klinker moesten de babyhersenen elke klinker aan
twee klankeigenschappen verbinden, namelijk aan klankkleur en aan
klinkerduur.

Computerbaby’s hebben computerhersenen en zijn alleen in staat
om te leren van de wolken als hun heel precies uitgelegd wordt hoe dat
leermechanisme in elkaar steekt. In Hoofdstuk 5 zijn twee soorten
computerbaby’s ingeschakeld, die allebei een ander idee vertegen-
woordigen over hoe leren van de wolken precies in z’n werk zou kun-
nen gaan. Illustraties van deze twee soorten computerbaby’s staan
in plaatje E. Beide soorten computerbaby’s konden de man-klinker
en de maan-klinker leren van de iets meer dan 700 klinkergeluiden
die de echte Nederlandse moeders hadden uitgesproken. En beideDoe het zelf: Kan

jouw computer
Nederlands leren als

je er voortaan met
een glimlach tegen

praat?

soorten computerbaby’s leken erg op de echte Nederlandse baby’s
in de luisterexperimenten. De resultaten van de precies geprogram-
meerde computerbaby’s bevestigen het idee dat Nederlandse baby’s
door leren van de wolken de verschillen de man-klinker en de maan-
klinker kunnen leren. Tegelijkertijd zijn we het idee leren van de wolken
veel preciezer gaan begrijpen, omdat we in de vorm van de compu-
terbaby’s de beschikking over twee mogelijke beschrijvingen van dit
leermechanisme.
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Conclusie en implicaties

In dit proefschrift heb ik laten zien dat Nederlandse baby’s over de
man-klinker en de maan-klinker kunnen leren door te luisteren naar
de klinkergeluiden die hun moeder uitspreekt. Nederlandse moeders
spreken de man-klinker en de maan-klinker niet bijzonder duidelijk
uit tegen hun taallerende baby, vermoedelijk omdat ze het te druk
hebben met spelen en glimlachen. En dat is helemaal geen probleem.
Het leermechanisme van de baby’s is zo krachtig dat het geen lesje
over de man-klinker en de maan-klinker nodig heeft. Baby’s kunnen
in dat opzicht prima voor zichzelf zorgen.
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M I J N A N D E R E L E V E N I S M E D E M O G E L I J K
G E M A A K T D O O R · · ·

· · · een bont gezelschap vrienden en zo-goed-als-familie

Sommigen al (bijna) mijn hele leven, anderen verzameld in de loop
der tijd. Wat fijn dat jullie er voor me zijn.

· · · mijn grootouders

Jullie zijn een inspiratiebron.

· · · papa, mama, zus

Zie het allereerste plaatje in dit proefschrift.

· · · mijn liefste

Lieverdste lief, ik heb je lief.
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