
ICPhS XVII Regular Session Hong Kong, 17-21 August 2011 
 

2114 

 

A FUNCTION SIMULATOR AS A TOOL FOR EDUCATING DIGITAL 

SOUND BASICS 

David Weenink 

University of Amsterdam, the Netherlands 
david.weenink@uva.nl

ABSTRACT 

We describe a computer application that offers 

students and teachers, especially those with no real 

mathematical background, the possibility to learn 

the relation between, for example, elementary 

sounds and their mathematical formulation as sine 

functions with frequency, amplitude and phase 

parameters. The sampling of analog signals and the 

relation between the sampling frequency and a 

faithful representation of the sound can easily be 

demonstrated. Aliasing can be made audible and 

visible in several ways. 

Keywords: interactive phonetic education, pure 

tone, spectrum, sine, sampling 

1. INTRODUCTION 

In teaching students of linguistics the elements of 

speech signal processing, a little bit of 

mathematics is unavoidable. The sine and cosine 

functions are indispensable here. However, at the 

same time, mathematical functions like sines and 

cosines are not the bread and butter of students of 

linguistics. Many of these students don't feel 

comfortable when they see formulas. Nevertheless, 

if we want to talk about pure tones, for example, it 

is difficult to avoid sine functions. The function 

occurs over and over again.  

In order to help students to get a grip on these 

functions and to have them experience the relation 

between a formula and the corresponding sound 

we have developed an application that may help 

these students. The application is based on the 

demo facilities in the freely available, widely 

known, general purpose speech processing 

program Praat [1]. The application is a single 

separate script that can simply be run by the user 

and will be made freely available. The application 

offers, among others, a display of the parametrized 

function of time; direct manipulation of the para-

meters of the function as well as playing the 

function as a sound; a spectrum of the function and 

visualization of the function as a sampled 

waveform. 

2. THE FUNCTION SIMULATOR 

The function simulator is an application to help 

students master the relation between elementary 

functions like sines and cosines and the sounds that 

can be generated according to these functions. 

Because the application is explorative by nature it 

is difficult to describe with words only. Therefore 

we will describe how a particular session might 

develop.  

2.1. Basic simulator layout and functionality 

As an example let us start with a function of time 

that models a pure tone: y(t)=A sin(2·ft+ ). If we 

start the function simulator with this function the 

following window appears: 

Figure 1: The function simulator for a pure tone. 

 

The top of the window shows the function in a 

symbolic notation as it is was given above and as it 

is written in many text books. This function has 

three parameters:  amplitude (A), frequency (f) 

and phase (). At the line below the symbolic 

representation, the actual representation appears 

where the current numerical values of the 

parameters are shown. The current parameters in 

Fig. 1 are A=1, f=200 and =0. The middle part of 

the window is dominated by the graph of the 

function on the time interval from 0 to 0.1 s. It 



ICPhS XVII Regular Session Hong Kong, 17-21 August 2011 
 

2115 

 

shows exactly twenty periods of a sine with an 

amplitude of 1. The two boxes on the left of the 

graph increase or decrease the vertical scale by a 

factor of 2 if clicked. The two boxes just below the 

graph expand or shrink the time domain of the 

graph. Given this graph you might want to explain 

how this graph was constructed. 

Figure 2: How the function graph is calculated. 

 

By clicking with the mouse pointer near the 

time axis, at the bottom of the graph, a number of 

things happen. Fig. 2 gives an impression. First of 

all, the corresponding time at the mouse position is 

displayed in red colour below the time axis. A red 

dotted line is drawn vertically from this time point 

to the corresponding function value in the graph 

and from the function value a horizontal dotted 

line is drawn to the right-hand side of the graph 

where the function value is displayed at the right of 

its endpoint. Next, in the symbolic display of the 

function the time variable is marked with a red 

colour too, and, most importantly, the value of the 

time variable is substituted in the actual 

representation of the function and its outcome is 

displayed as well. As Fig. 2 shows, we clicked at 

the axis near time t=0.02. By clicking in 

succession on a number of different time values, 

and seeing the actual calculation enrolled, helps in 

demystifying what is going on behind the scenes.  

At the bottom of the graph the three rows of 

boxes show buttons that enable you to change the 

parameters. The parameter name is in the left box 

of the row. Clicking with the mouse pointer on it 

merely makes this parameter box active, and all 

occurrences of this parameter in the window.  In 

Fig. 2 the frequency box was activated and it 

shows a deep blue colour, as do the frequency 

parameter symbol and its numerical value in the 

symbolic and actual representations of the function 

at the top of the window. The next three boxes in 

the same row allow changing the parameter by 

clicking on them and the result of the change is 

displayed in the last box. Of course, the display of 

the function immediately adapts to the new 

situation. The first of the three change boxes 

inverts the parameter while the second and third 

increase or decrease the parameter with the number 

indicated on the box. For example, given the 

default values of the parameters in Fig. 1, clicking 

once on the amplitude step down by 0.1 box will 

decrease the amplitude to the value of 0.90. The 

last box in this row will now show =0.90, the 

actual representation will show the value 0.90 for 

the amplitude parameter and the graph's amplitude 

has shrunken too. Of course the step sizes and the 

multiplier can be changed at will. 

Figure 3: Changing a parameter and compare. 

 

Many times you only want to see what happens 

if you change a parameter. However, sometimes 

you want to display a change with respect to a 

previous configuration of the parameters. This is 

possible and is visualized in Fig. 3 where an actual 

function with A=0.4 is displayed in blue and a 

previous version with A=0.9 is displayed in grey 

colour in the background. The situation of Fig. 3  

was achieved by first making the amplitude 0.9, 

then clicking on the box at the top left which was 

labeled empty(x) but after the click toggles to 

fixed(x). The parameter values will be remembered 

and the corresponding curve will be displayed in 

grey. Changing a parameter will now display the 

actual parameter curve in blue. 

2.2. Listening to the tone functions 

In the previous section we were only concerned 

with the appearance of the sine function. Now we 

want to relate the appearance to actual sound. In 



ICPhS XVII Regular Session Hong Kong, 17-21 August 2011 
 

2116 

 

other words we want to make sounds whose 

amplitudes change according to the formula 

described above. These sounds are called pure 

tones. This can be arranged by clicking on the 

options box at the bottom left and from the form 

that pops up you choose the Playable as Sound 

option. Three new buttons will appear in the 

window as Fig. 4 shows. 

Figure 4: Playing a clipped function. The 

representation of the sound is shown in the 

background with grey colour while the realized 

audible sound is shown by the blue curve. 

 

First of all, the button labeled Play at the right 

of the parameter buttons, next a fade-in button at 

the bottom left of the graph labeled “/ 0.005” and a 

fade-out button labeled “0.005 \” at the bottom-

right of the graph.  The number on the fade-in 

button indicates a 5 ms fade-in time. We are now 

able to demonstrate: 

 how the sound that is associated with the 

function sounds. You will hear that the tone is 

higher when you increase its frequency. You 

will hear that the sound becomes softer when 

you decrease the amplitude. You will hear that 

the sound becomes louder when you increase 

the amplitude. You will hear and see that 

increasing the amplitude above a certain level 

will distort the sound. This phenomenon is 

called clipping. In Fig. 4 we show an example 

of clipping. The sound drawn in grey is the 

sound as specified by the parameter values 

while the sound drawn in blue is the sound 

they will actually hear. The maximum sound 

amplitude equals one and this also happens to 

be the maximum amplitude for sounds to play 

without distortion in the Praat program. If the 

sound amplitude is larger than one, the digital 

sound representation cannot be faithfully 

reproduced as audio sound and distortion 

happens. This is indicated by the red lines at 

the top and bottom parts of the sound curve 

and they show the parts that have been clipped. 

 You will hear that if you change the phase and 

the sounds don't start at zero amplitudes 

anymore, a click will be audible too and that in 

order to avoid this click you need to apply 

fade-in. The same applies at the end of the 

sound where you will need a fade-out to 

correct for abrupt amplitude changes. You will 

hear that if fade-in and fade-out are applied, 

the phase of the sound is not important 

anymore. In Fig. 5 we show the sound function 

with fade-in and fade-out applied. It will play 

without audible distortion while the sound 

function without the fade-in and fade-out as 

shown with the grey lines at the start and end 

parts will play with two very disturbing click 

sounds. To present visual feedback, the sound 

parts where the fade was applied will have a 

green colour in the graph and the buttons will 

also show the same green colour if active. 

 Figure 5: Fade-in and fade-out. 

 

2.3. The digital representation of a sound 

In the previous sections the representation of the 

sound functions were smooth curves. To show that 

the underlying representation of a sound in the 

computer is an array of numbers we need to 

explain where these numbers come from, how 

many of these numbers we need and how precise 

these numbers need to be. In other words we need 

to explain the sampling of an analog signal. 

In Fig. 6 we show sampling. The option to 

show the sampling of a sound makes several things 

happen. First of all, instead of showing the sound 

function as a curve we now show the sample points 

as the endpoint of the vertical lines going from 



ICPhS XVII Regular Session Hong Kong, 17-21 August 2011 
 

2117 

 

zero to the sample value. The lines are positioned 

in the middle of a sampling period as each sample 

value is the average value of the analog signal 

during that small period of time. The sampling 

period T is the inverse of the sampling frequency. 

The first sample therefore is at time T/2, the 

second at time T/2+T, etc. The sample values 

therefore “represent” the numbers an Analog to 

Digital Converter would deliver. The blue curve in 

Fig. 6 shows the signal as reconstructed from the 

sample values. As can be seen, the reconstruction 

at the start and the end of the sound is not as well 

as in the middle because in these regions we have 

less samples available for interpolation. The 

reconstruction can be interpreted as the sound that 

we would hear if the samples were send to a 

Digital to Analog Converter, low-pass filtered and 

made audible by a loudspeaker. In Fig. 6 the 

reconstructed signal shows approximately two and 

a half periods in the 0.1 s duration interval. The 

original sound, shown in the background with grey 

colour is according to the specifications a 200 Hz 

signal. The figure thus clearly shows an example 

of aliasing. A phenomenon that occurs if the 

sampling frequency and the sound's bandwidth are 

not in concordance. As you might have noticed in 

Fig. 6, a new row of buttons has appeared, above 

the three rows we already had.  These buttons 

change the sampling period by factors of two. The 

default sampling period is 1/44100 and to produce 

Fig. 6 we have increased this number by several 

factors of two, resulting in a sampling period of 

approximately 0.006 s, corresponding to a 

sampling frequency of 172 Hz. By changing the 

sampling period students can investigate the 

relation between sampling frequency and signal 

frequency and experience where the faithful 

representation of a sound breaks down. 

Figure 6: Sampling and aliasing. 

 

2.4. And more... 

Besides these simple sines, all numerical functions 

in Praat are in principle available for simulation. 

As an example we present Fig. 7. It shows the 

formant function as a damped sine function on the 

left and its spectrum on the right. We have not 

shown spectra in previous figures because they 

would clutter the figures too much. Needless to say 

that changing a parameter setting also may change 

the spectrum. By manipulating the damping 

parameter in the formant function the increase of 

the bandwidth in the spectrum visualizes the 

relation between damping and formant bandwidth. 

Figure 7: A formant function and its spectrum. 

 

3. CONCLUSION 

We have shown an application to let students 

interactively get familiar with a number of aspects 

in the digital representation of sounds. 

4. REFERENCES 

[1] Boersma, P., Weenink, D. 2011. Praat: Doing phonetics 

by computer [Computer program]. Version 5.2.24, 

retrieved 11 May 2011 from http://www.praat.org/.




