David Weenink

Speaker-adaptive
vowel 1dentification

Speaker-adaptive vowel identification

Academisch proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. mr. P.F. van der Heijden
ten overstaan van
een door het college voor promoties ingestelde commissie,

in het openbaar te verdedigen in de Aula der Universiteit

op dinsdag 14 november 2006, te 12.00 uur
door
David Joseph Maria Weenink

geboren te Lichtenvoorde

Promotiecommissie:

Promotor: Prof. dr. ir. L.C.W. Pols

Overige leden: Prof. dr. PP.G. Boersma
Prof. dr. ir. E.C.A. Groen
Prof. dr. ir. R.J.H. Scha
Prof. dr. V.J.J.P. van Heuven (RUL)
Prof. dr. T.M. Nearey (University of Alberta, Canada)

Faculteit der Geesteswetenschappen

Published by

SpeechMinded

Sloterweg 1229-B

1066 CH Amsterdam

The Netherlands

http: //www.speechminded.com

ISBN-10: 90-9021207-8
ISBN-13: 978-90-9021207-4

NUR: 616

Typeset by the author with the TEX Documentation System
Printed in The Netherlands by ACI Offsetdrukkerij b.v. - Amsterdam
Copyright © 2006 by David Weenink. All rights reserved.

Acknowledgements

Writing is no hobby of mine. I enjoy only the writing of software code. That is the
reason why this thesis took many years to finish and the reason why I will be brief
here. My heartfelt thanks go to my professors Louis Pols and Paul Boersma, my
past and present colleagues at IFA, my colleagues around the world, my relatives, my
friends and my family Thomas, Louise and Jenny.

Contents

Introduction

The identification of vowel stimuli from men, women, and children

2.1 Introduction e e
2.2 Speechmaterial
2.3 Further processing of the speech material
2.4 Preparation of stimulustapes
2.5 Subjects . o.o. .o
2.6 ListeningconditionS. oo
2.7 Stimuli for the experiments
2.8 Resultsand discussion

Principal component analysis and discriminant analysis
3.1 Introduction
3.2 Principal component analysis L. oL
3.3 Discriminant analysis Lo
3.4 The generalized singular value decomposition
3.5 Discriminant analysis in the PRAAT program
35.1 Introduction.
3.5.2 How to perform a discriminant analysis
3.5.3 Measuring the correlation between the variables
3.5.4 Projecting data on the discriminant space
3.5.5 Drawing concentrationellipses
35.6 Classifyingthedata.
3.6 Conclusion

Aspects of neural nets

4.1 Introduction
4.1.1 Contextandoutline
4.1.2 Terminology
413 Topology o v i i e e e

10
12
13
13
15
17

23
24
24
28
30
32
32
34
34
36
37
38
39

viii Contents
4.2 Capabilitiesof onenode, 44
4.3 Capabilities of one-layernets 45
4.4 Capabilities of two-layernets 47
4.4.1 Introduction 47
4.4.2 Number of cells formed by a two-layernet 47
4.4.3 Permissible logical combinations of two-layer nets 49
4.4.4 Decision regions of two-layernets 53
4.5 Three-layernets o .o e e e e 56
4.6 Other aspects of neuralnets 58
4.6.1 Thenonlinearity 58
4.6.2 Levelcoding, 62
4.63 Traininganeuralnet 63
47 Discussion.o 64
4.7.1 Possible decision regions and topology 64
472 Codingtheinputs Lo 64
473 Codingtheoutputs 65
474 Whyneuralnets? 65
48 Conclusions 66
5 Comparison of cost functions 69
5.1 Introduction e 70
5.2 The relation between cost function and weights 71
5.3 The cost function by Juang & Katagiri 74
5.3.1 Testswithactualdata 75
54 Thecostfunctionby Hrycej 77
54.1 Testswithactualdata 78
5.5 Discussion on cost functions 79
6 Speaker normalization and bias adaption 81
6.1 Introduction 82
6.2 Themodel 82
6.3 Geometrical interpretation 83
6.4 Thetestdatasets 85
6.5 The number of parameters 86
6.6 Frequencyscales 87
6.7 Test of the adaptationmodel, 89
6.8 Discussion. 93
7 Canonical correlation analysis 95
7.1 Introduction 96
7.2 Mathematical background o Lo 97
7.2.1 Derivation of the canonical correlation analysis equations 97
7.2.2 Solution of the canonical correlation analysis equations 98
7.2.2.1 Solution from covariance matrices 99
7.2.2.2 Solution from data matrices 100

Contents ix

9

7.2.2.3 Solution summary 101

7.3 A canonical correlation analysis example 101
7.3.1 Finding correlations between formant frequencies and levels . 102

7.3.2 Using the correlations for prediction 105

7.4 Principal components and auto-associative neural nets 107
74.1 Introduction. 107

7.4.2 The auto-associative neuralnet 107

7.43 Datapreprocessing ov e i i e e e e 108

7.4.4 Training the neuralnet 110

745 Thecomparison. 110

7.4.6 Procrustes transform 0oL L. 114

747 Summary 116

7.5 DISCUSSION . . . v v v vt e e e e e e e e e e e 116
Accessing the TIMIT speech corpus 117
8.1 Introduction 118
82 Fileformats 121
8.2.1 Audiofiles 121

822 Labelfiles. 121

8.3 Accessibility of the material 122
8.3.1 Aphonemedatabase 123

8.3.2 Obtaining stress information 124

8.4 Phoneme statistics 127
8.5 Characteristics of the vowel material 129
8.5.1 Analysisofthevowels 131
8.5.1.1 Fundamental frequency analysis 131

8.5.1.2 Filter bank analysis 136

8.6 Selection of the vowel material 137
87 Conclusion e 142
Normalizations on bandfilter data from TIMIT 143
9.1 Introduction i e 144
9.2 Datasetnomenclature oL 145
9.3 Characteristics of the vowel material 146
9.3.1 Classifying a spectrum as male or female 152

9.3.2 Relation between bandfilter values and fundamental frequency 154

9.3.3 Procrustes normalization 154

9.4 Biasadaptation o e 156
9.4.1 Introduction. 156

9.4.2 Datareduction 156

9.4.3 Neural net parameters 158

944 Testprocedure 159

945 Results L 160

9.5 Discussion e e 162

Contents

10 categoryART 163
10.1 Introduction o e 164
10.2 Basic features of ARTsystems 166
10.3 FuzzyART algorithm 170

10.3.1 Preprocessing v v i it e e e 170
10.3.2 Categorychoice 171
1033 Learning 172
10.4 categoryART algorithm 172
10.5 Simulation: Learning to tell two spirals apart 173
10.6 Areal-worldtest 176
10.7 ConcClusions i it e e 179

11 Adaptive speaker normalization 183
11.1 Introduction L 184
11.2 An adaptive speaker normalization procedure 184
11.3 Test with formantdata 186

11.3.1 Introduction. 186
11.3.2 Blocked versus mixed speaker condition 186
11.3.3 Visualisation of the dynamics 190
11.3.4 Mixing male and femaledata. 190
11.3.5 Comparison with Procrustes transform 192
11.4 Test with bandfilterdata. 192
11.4.1 Stressedvowels 194
11.42 Dynamicspectra v v v v v 196
11.5 Discussion v v v v vt e e e e e 197
11.6 Conclusion i 200

12 Discussion and future research 201
12.1 Introduction 202
12.2 Human vowel identification 203
12.3 Machine recognition of vowel segments 203

12.3.1 Principal component analysis 203

12.3.2 Procrustes transform oL, 204

12.3.3 Discriminant analysis 204

12.3.4 Feedforward neuralnets 205

12.3.5 Canonical correlation analysis 205

12.3.6 Cate@OryART o v v it e e 205

12.3.7 Adaptive vowel normalization 206

12.3.8 Comparison of vowel classification scores with the literature . 206

12.4 Tool development motivation 213
Summary 215
Samenvatting 217

Curriculum Vitae 219

Contents

X1

A Formant frequencies from 10 men, 10 women and 10 children
Bibliography

Index

221

225

235

Xii Contents

Chapter

Introduction

Abstract

This thesis is about speaker-adaptive vowel identification by humans and by machines.
In this first chapter we introduce the research topics and our approaches. We start with
a short description of the vowel material that we have used. This is followed by an
overview of various learning models used to model speaker adaptive behaviour.

Chapter 1. Introduction

This thesis is about speaker-adaptive vowel identification by humans and by ma-
chines. The vowel sets that we have studied are Dutch and American-English vowels.
Several sources of vowel data have been used in this study. The first Dutch vowel
database originates from our own recordings of sentences “V van pVt” (,

). In these sentences V is one of the twelve Dutch monophthongal vowels /u,
2,0,4,a,Y, 8,9, 1,1, e, € as they occur in the Dutch “words” poet, pot, poot, pat,
paat, put, peut, puut, piet, pit, peet and pet, respectively. To have variability in speaker
context, we made recordings of ten men, ten women and ten children. This resulted in
a database with 360 sentences (30 speakers x 12 vowels). This material will be more
extensively described in chapter 2. Two other sources of Dutch vowel data that we
have used are those from () and those from

(). We used their data on the first three formant frequencies and
levels from 50 males and 25 females, respectively.

The acoustic properties of Dutch vowels have been described very well in the
literature, and besides the already mentioned data above, many other studies exist.

() measured formant frequencies of four speakers in
eight different speech conditions. () published besides the formant
frequencies of ten men and ten women, the formant frequencies of ten children be-
cause data about Dutch children were not yet available.

() measured Dutch vowel characteristics produced by immigrants.

() measured formant frequencies of Dutch vowels in a text, read at nor-
mal and fast rates. Recently, in a Dutch-Flemish co-operation, a large database with
recorded speech from 160 teachers of standard Dutch was set up and the first three for-
mant frequencies and durations of a subset, 20 males and 20 females, were measured
(s ; s). The speech material in Adank’s
study consisted of read monosyllabic utterances in a neutral consonantal /sV's/ con-
text.

Besides the descriptions of Dutch vowels in terms of formant frequencies, descrip-
tions in terms of bandfilter values have been given too. Both () and

() present vowel spectra in terms of 18 one-third octave filter levels
for the data sets with the 50 males and the 25 females, respectively.! They showed that
in the plane formed by the first two principal components of these bandfilter values,
the relative positions of the vowels are very similar to their orientations in the plane
formed by the logarithms of the first two formant frequencies.

The other important non-Dutch source of vowels in our study is TIMIT, an acoustic-
phonetic American-English speech corpus (,). This cor-
pus consists of recordings from 630 speakers, 438 males and 192 females, each of
whom pronounced exactly ten sentences. We have used this database because it pro-
vides easy access to all realizations of the vowels since all these sentences have been
hand-labelled at the word level and at the phoneme level. This corpus is often used in
the literature as a standard. In chapter 8 we discuss extensively how we have made the
audio files and the label files in this database accessible to ourselves and to the general
public. To give an indication of its size: it contains 241,225 hand-labelled segments.

I Their actual analysis was with 21 filters. To cope with fundamental frequency variations they sum the
energies in the first three filters, and the energies in filters four and five.

As was said before, the theme of this thesis is speaker-adaptive vowel identifi-
cation. The perceptual aspects of speaker-adaptive behaviour with respect to vowel
identification will be described in the next chapter, where we show results of listen-
ing experiments that we performed in the nineteen eighties (,). These
experiments were about identification of short vowel segments in mixed and blocked
speaker contexts. In a blocked speaker context the listener knows that the stimulus he
will hear next is from the same speaker as the previous stimulus. In a mixed speaker
context the stimulus he will hear next, will most probably not be from the same speaker
as the stimulus he just heard and no stable guess about speaker characteristics can be
made. The results of these experiments were in line with results obtained by others
at that time and showed that listeners are better able to identify vowels in a blocked
speaker context than in a mixed speaker context (see () for an overview).
Although this speaker context effect is not a large effect, at most a few percent better
identification, it is always present. At that time we could only present this mixed-
blocked effect as such without being able to present a proper model for description
that could be implemented on a computer. We could only, as many others, offer the
following explanation: in the blocked speaker context the listener has ample time to
adjust to the idiosyncrasies of a speaker and therefore is able to identify these stimuli
somewhat better.

We have decided to include our data about these experiments in this thesis, despite
their antiquity, because of two reasons.The first reason is that not all results of these
experiments have been published before. The second reason is that in the penulti-
mate chapter of this thesis we introduce a simple speaker-adaptive vowel classification
model that is able to reproduce, at least qualitatively, the different classification results
for these blocked and mixed speaker context experiments. In this way the thesis will
present an overview of our “march” from these first experiments to the final model
that simulates an adaptive listener. During this march several excursions have been
made into different machine learning models in which we tried to incorporate some of
the adaptive behaviour of subjects in the listening experiments.

One of these excursions concerns the development of the computer program PRAAT
(s) in which Weenink has tried to incorporate all these learn-
ing models in a user-friendly way.

We will, for now, use the terms “learning model”, “classification model” and ““clas-
sifier” indistinguishably. We may look at a classifier as a machine that has inputs and
outputs. In the statistical literature the input and output variables are often referred to
as either independent and dependent variables, or as predictors and responses, respec-
tively. We will use these sets of terms interchangeably. When a data item is presented
at the input, it is processed by this machine and, after processing, an output appears.
The output is then an indication of the class to which the input most probably belongs.

Before a classifier can do any classification at all, it has to learn the association
between inputs and outputs. Depending on whether we refer from the inside or the
outside of the model, we speak of learning or training, respectively. Only after the
model has learned the regularities from the data, i.e. the relation between its inputs
and outputs, may it be able to classify data. Sometimes training and classification
are two separate phases in a model and either phase has to be activated explicitly; we

Chapter 1. Introduction

then speak of supervised learning because some external knowledge has to be used to
switch phases. For the training phase a combination of three items is needed: the input
data, the corresponding output data and the classifier to connect these two data sources
by means of a particular learning algorithm, i.e. a procedure that tells the classifier how
to connect inputs and outputs. In the classification phase only two items are needed,
the classifier and the input data, and the third item, the output data, will be generated
by the classifier. In unsupervised learning the two phases cannot be distinguished: the
model is permanently being trained, i.e learning while classifying.

The various learning models that we describe in this thesis and have incorporated
in PRAAT are:

* Discriminant analysis and principal component analysis. Principal component
analysis (PCA) learns from unlabelled multivariate data how to represent these
data in a very efficient way. Discriminant analysis (DA) learns from labelled
multivariate data. It can be used both as a data reduction tool and as a data clas-
sification tool. As a method for data reduction it is comparable to PCA as it tries
to find a “rotated” co-ordinate system that more optimally describes the data.
The criteria to find the new co-ordinate systems has to differ for DA and PCA.
DA finds directions where classification is a maximum, whereas PCA, having
no access to classes, finds directions where the variance is a maximum. The
measure used for classification is the quotient of variance-between-classes and
variance-within-classes, hence the requirement for labelled data. The success in
data reduction for both methods depends on the distribution of the eigenvalues
of (subsets of) the data matrices.

For the training and the classification stages of the DA we do not need to ex-
plicitely calculate the rotated co-ordinate system as the classification can be
solely based on the Mahalanobis distance metric which only makes use of co-
variance matrices and class means. In the training phase, the class means and
covariances are extracted from labelled data, therefore we can categorize DA as
a supervised learning model. In Linear Discriminant Analysis (LDA) we use
pooled class-specific covariance matrices in the distance calculation, i.e. only
one covariance matrix is involved in the distance calculation and this matrix is
the same for all the classes. In Quadratic Discriminant Analysis (QDA), the
class-specific covariance matrices themselves are used in the distance calcula-
tion. The result is that now the boundaries between the classes, when projected
on any two-dimensional space, are quadratic curve segments, while they are
straight line segments for LDA. A data point on the boundary between two
classes has an equal probability of belonging to both.

QDA has as a side effect that “distance” is no longer symmetric: the distance
from cluster A to cluster B need not be equal to the distance from cluster B
to cluster A because these distances depend on possibly different covariance
matrices. As with many classical tools, DA gives best results if data is normally
distributed. In chapter 3 we discuss the models and their implementations in the
PRAAT program with some examples. Since the LDA model is so fundamental,
all other learning and classification models will be tested against it.

» Feedforward neural networks. In feedforward neural networks we model parts
of the brain with algoritms that, in a very rudimentary way, mimic the interac-
tion of neurons. Contrary to DA, these neural net models do not make any as-
sumptions on the distribution of the data, i.e. the data do not have to be normally
distributed. Just as DA, feedforward neural networks have separate training and
classification phases and therefore belong to the class of supervised models. In
the training phase, stimuli are presented one by one and the network adapts
to the individual stimulus. This contrasts with discriminant learning which is
batch-oriented, i.e. a statistic like the mean is derived from all data taken to-
gether. A theoretical introduction to these networks can be found in chapter 4.
In chapter 5 we describe aspects of the training of a neural net, with particular
emphasis on the cost functions being used. Two further chapters, 6 and 9, are
dedicated to a supervised model of speaker adaptation with feedforward neural
nets. In these models speaker adaptation is simulated by varying only the biases
of the hidden layer or the output layer in an already trained neural net.

» Canonical correlation analysis (CCA). In CCA correlations between two groups
of multivariate data are determined. Most people do not think about CCA as a
learning model although it can be used as such: if we correlate vowel data
with vowel categories we have a learning model similar to LDA. The model is
also batch-oriented and performs best when the data are normally distributed.
Chapter 7 extensively discusses this model and gives some examples of its use.

¢ Adaptive Resonance Theory networks (ART). These neural network models
are based on the perception theories of Grossberg. An overview of his ART
theory can be found in (). ART is based on unsupervised real-
time learning, i.e. learning to structure data without having a teacher around
that has already pre-labelled the input. The important problem to be solved in
this context is the stability-plasticity dilemma: how can we learn new things
without gradually forgetting old things. In chapter 10 we will discuss our own
algorithmic variant of one of these ART models that, although supervised, is
based on a combination of two unsupervised modules.

The inputs for all these learning models will consist of either scaled formant fre-
quency values when they are provided in the literature, or bandfilter values if the audio
is available. Formant frequency values were available from (),

() and (). For TIMIT we have performed a bandfilter
analysis because this can be performed objectively, without operator intervention. For-
mant frequency analysis always involves subjectivity. For example, ()
state that in a number of cases a priori knowledge of where the formant should be
located played a significant role in their decision on formant frequency values for 50
male speakers. When the fundamental frequency increases, the problems aggregate.
For the 25 female speakers, () had difficulties in determining
formant frequencies in 40% of the cases if no a priori knowledge was used. One
could argue that these interventions are solely based on their measurement procedure,
i.e. spectral interpolation. However, recently, also () had to man-
ually alter 20-25% of their automatically determined formant contours. Of course,

Chapter 1. Introduction

with bandfilter analysis we also get our share of analysis troubles: the levels of the
low-frequency filters can vary considerably with fundamental frequency. This effect
has to be considered when we compare bandfilter measurements at different funda-
mental frequencies. () and () sum the first three
filter outputs and the next two in their one-third octave bandpass filter bank, while

() interpolates filter values, to compensate for these filter-level variations
due to varying fundamental frequency. In our own processing of bandfilter values we
never mix male and female data but we separate data by speaker gender to avoid this
complication.

The learning models incorporated in this thesis do not have any explicit notion
of time. Hidden Markov models or, for example, recurrent neural nets will not be
discussed. The learning models that we describe function very well with vowel data,
although they do not explicitly model vowel dynamics. Dynamics in these models
can be simulated by grouping several analysis frames into one data item, as can be
seen for example in figure 8.9. This proved to be sufficient for the scope of this study
since most vowels do not behave in a highly dynamic fashion. And as the title of this
thesis indicates: we were not interested in modelling the dynamic aspects of vowels
per se, but in modelling the adaptive behaviour that tries to cope with variations in
these vowels due to different speaker contexts. In the final chapter 12 we will come
back to this theme and explore some of the results.

Chapter

The 1dentification of vowel
stimuli from men, women, and

children*

Abstract

In this chapter we present a series of listening experiments in which short vowel-like
stimuli were manipulated in terms of speaker context, consonantal context, duration,
and fundamental frequency. The results indicate that isolated vowels are not by their
nature impoverished stimuli as some authors tended to believe. When the duration of
the stimuli is limited to 50 ms, the number of confusions increases with respect to full
duration vowels, especially the number of confusions between long and short vowels.
Using resynthesized stimuli, in which fundamental frequency and spectral character-
istics of speaker categories (men, women and children) were crossed, showed that
the number of confusions increases with the difference between the fundamental fre-
quency of the resynthesized and the original signal. Two factors were responsible for
this increase: (1) the spectral ambiguity increases when the fundamental frequency
increases and (2) the perceived misfit between the fundamental frequency and the
spectral envelope. All experiments showed more confusion errors for the mixed than
for the blocked speaker condition. In the following chapters we introduce several
models that try to simulate this blocked/mixed effect. Finally, in chapter 11 we will
show an adaptive model that simulates this blocked/mixed behaviour.

*This chapter is an extended version of ().

8

Chapter 2. The identification of vowel stimuli from men, women, and children

2.1 Introduction

In this chapter we present results of a series of listening experiments on speaker nor-
malization. These experiments were performed in the mid 1980’s and were in line
with experiments by other authors at that time who also tried to investigate aspects of
speaker normalization by means of manipulating vowels, vowel context and speaker
context. Overviews of these kinds of experiments have been given by ()
and (). Despite the antiquity, we present our data here because they were
never published completely, and because they were the starting point for the ideas that
finally culminated in a model for speaker-adaptive vowel identification that will be
described in chapter 11.

Of all the possible aspects of normalization in the present chapter we would like to
consider especially the perceptual aspects which concern speaker variation. In a series
of eight listening experiments we have investigated how well listeners can recognize
vowels from different speakers when these vowels are presented in a mixed and in a
blocked condition. In the mixed condition the listeners, on each vowel, encounter a
voice that is unfamiliar and unpredictable, while in the blocked condition the listener
hears a series of vowels produced by the same speaker. In this latter condition there
is ample opportunity to become familiar with the voice because the speaker is fully
predictable from one vowel to the next.

In order to gain better insight in this speaker variation, the vowel stimuli we used
were manipulated in terms of duration, consonantal context, and fundamental fre-
quency. Several authors have directed their attention to the speaker’s context effect
in the recognition of vowels a.o. (),

(1976), (1980), and

(). The experimental scheme is generally such that vowel stim-
uli are presented in two conditions, mixed and blocked, to subjects who are asked to
identify the vowel. Although there are great differences in the absolute error rates in
these experiments, they all reach the same conclusion: uncertainty about a speaker
as is the case of the mixed condition, leads to more confusion errors than when the
speaker is ‘known’, or at least does not change, as in the blocked condition. This effect
is persistent even if the vowels are gated to a duration of 100 ms.

The influence of consonantal context on the perception of vowels is still under de-
bate (see () and ()). Some experimenters (

(); (); () re-
port significantly fewer confusion errors made by listeners for vowels presented in a
CVC context than for vowels in isolation. According to them the consonantal context
aids vowel identification. Other investigators, like () and
(), do not endorse this hypothesis. On the contrary, they state that consonant coar-
ticulation is not a necessary condition for accurate identification of naturally produced
vowels, and that the consonantal advantage found by the other groups is not a gen-
uine perceptual effect but a mere methodological artifact.

(), using speech synthesis, did not find superior performance of listeners on
CVC stimuli either. At first sight one could think that because the formant trajecto-
ries of consonant-bounded vowels often fail to reach the frequencies characteristic of

2.2. Speech material

vowels produced in isolation (s ; s ;

,), consonant-bounded vowels would appear to be acoustically less
distinctive than isolated vowels. Experimental evidence shows that vowels in CVC
context are recognized just as well as vowels in isolation, which means that dynamic
spectral features must compensate for the loss in static distinction.

There is additional evidence that the human auditory system can predict spectral
targets on the basis of the transitional information (,). This means that,
when we gate short segments out of the cental parts of vowels produced in isolation
and in /p-t/ context, there will be a difference in listeners’ performance because the
vowel segments taken from the CVC context are acoustically less distinctive: they
lack the transitional information.

As for our final point, the influence of fundamental frequency and timbre on the
quality of vowels, we can say that vowel quality is largely independent of naturally
varying fundamental frequency because the spectral envelope is determined by the
shape and length of the vocal tract rather than by the vocal cords. This envelope does
not shift when a vowel is produced at a different fundamental frequency.

() studied what effect changing the fundamental frequency and/or
the formants has upon vowel quality. He showed that the perceptual distance between
two vowels whose fundamental frequencies differ by an octave, could be minimized
by raising the formants of the vowel with the highest pitch by approximately 10%.
Because higher formants as compared to lower ones show smaller variations from
vowel to vowel (e.g. (, table 1)), () tested
whether a normalization process could be based on higher formant frequencies. They
showed that neither fundamental frequency nor higher formants by themselves are
sufficient for perceptual normalization but that both are necessary in any succesful
normalization theory. (), in his study on vowels in /p-t/ context,
reports that it is the joint effect of acoustic context, pitch, and timbre that is important
in the normalization process, in such a way that pitch and timbre determine speaker
category (men, women and children); after this precategorization the reference set of
each category can be used for further classification.

The global design for all eight experiments we will describe, was alike: the record-
ings of the speech material and its further processing were done once and served as
a basis for all experiments. The preparation procedure of the stimulus tapes, the lis-
tening conditions and the subjects were the same; only the stimuli differed for each
experiment. In the following sections we will give a description of these parts.

2.2 Speech material

Recordings were made from ten male, ten female and ten children’s voices. All were
native speakers of Dutch and they were carefully selected on their ability to speak
the standard Dutch language without dialect influences. The recordings were made in
an anechoic room with a Sennheiser MD421N microphone and a Revox A77 tapere-
corder. The recordings consisted of series of sentences “V van pVt” (V from pVt),
where V is one of the twelve Dutch vowels /u, o, 0, a, a, v, @, ¥, 1, 1, e, €/. These

10 Chapter 2. The identification of vowel stimuli from men, women, and children

R
10
0 Time(s) 0.7983

—
HE

Figure 2.1. The positions of marks in the sentence “a van pat”.

sentences were read from paper with normal intonation; each sentence was repeated
at least twice. For Dutch the orthography is unambiguous and causes no confusions
in pronunciation, at least not in closed monosyllabic words. During the recordings of
the children’s voices a person familiar to the child was always present in the anechoic
room for reassurance. The sentences on paper were repeated until they were correctly
spoken, but in general the children made few mistakes and hardly any repetitions were
necessary.

2.3 Further processing of the speech material

The sentences on tape were digitized with a sampling frequency of 10 kHz and a
precision of 12 bits/sample.! For each of the twelve vowels the best recording of each
sentence from every speaker was stored on disk and used for further processing. After
selection and digitization our speech database consisted of 360 utterances of the type
“V van pVt” (30 speakers x 12 vowels) on disk. With the help of a speech editing
program (,), sentences were marked in a way shown by figure 2.1. Marks
1 and 3 isolate the first vowel, while marks 4 and 6 isolate the vowel produced in a
/p-t/ context. Mark 2, which is always within a stable part within the first 100 ms of
the vowel, functions as a starting point for subsequent physical analysis, resynthesis
and selection. Mark 5 has this function for the vowel in /p-t/ context and is placed
somewhat more toward the middle of this vowel, at a position where the amplitude is
most stable. Marks 2 and 5 were set “by eye”. Table 2.1 on the facing page displays
the mean durations in milliseconds of the intermark durations 3 — 1 and 2 — 1, for the
vowel produced in isolation, and 6—4 and 5—4, for the vowel produced in /p-t/ context.

Nowadays, of course, we would have used a better precision and a higher sampling frequency.

2.3. Further processing of the speech material 11

Table 2.1. Intermark durations in ms. See figure 2.1 for the positions of marks.
(N = 30 per data point)

3-1 2—-1 6—4 5-4
Vowel Mean o6 Mean o Mean o Mean o

238 73 52 15 218 37 75 31
225 55 58 21 218 33 71 28
245 70 58 14 215 43 68 31
234 66 53 14 199 43 60 23
186 49 60 16 134 31 57 26
174 48 47 14 133 32 54 34
165 45 52 17 131 36 55 31
162 45 44 18 131 23 50 19
166 48 53 17 130 29 53 21
167 34 50 17 130 23 53 18
175 46 48 12 126 32 48 27
164 46 48 16 125 33 47 21

- MK Q0 e 009 ® O

The table shows that the duration of the vowel in /p-t/ context, column 6 —4, is always
less than the duration of the vowel produced in isolation, column 3 — 1. The table also
shows very clearly the differences in duration between the four ‘long’ vowels /o/, /a/,
/@/, le/ and the other eight vowels. Formant frequencies were measured in a 25.6 ms
segment around mark 2 of all the vowels from our 30 speakers by means of a special
interactive computer program (,). The measuring procedure used an
interactive linear predictive coding analysis with varying number of coefficients to get
the best formant frequency estimates. Details of the analysis can be found in

(). These frequencies are listed in tables A.1, A.2 and A.3 in appendix A and are
also available as a standard table in the PRAAT program.” Mean values are displayed
in figure 2.2.

In the following experiments we wanted to use all the vowels of a speaker twice in
two listening conditions, mixed and blocked. Using all the speakers of our database,
the total amount of stimuli would have been 1440 (30 speakers x 12 vowels x 2 condi-
tions x 2 repetitions), far too many for any practical listening experiment. We decided
to select five male, five female and five children speakers out of the 30 speakers. This
selection was made on the basis of a bandfilter analysis and the results of a pilot listen-
ing experiment with resynthesized vowels from all 30 speakers. From the categories
man, woman and child we selected some ‘extreme’ and some ‘mean’ speakers and
these 15 selected speakers were used in all the experiments we decribe in this chapter.

2This formant table can be found under the Tables option in the New menu as Create formant table
(Weenink 1985).

12 Chapter 2. The identification of vowel stimuli from men, women, and children

3200

2800+

24001 /
2000 /
16004 7

J oy

400 r T T r
200 400 600 800 1000 1200
F| (Hz)

F, (Hz)

Figure 2.2. Relative positions of the twelve Dutch vowels from male, female
and child speakers. Each symbol is the average of the formant frequencies from
the production of the vowel in isolation by ten males (smallest size), ten females
(intermediate), and ten children (largest).

2.4 Preparation of stimulus tapes

For each of the eight experiments we describe, five audiotapes were prepared and each
tape contained a different random order of the stimuli. Each tape consisted of two
parts: the first part with the stimuli recorded in the mixed condition and the second
part with the stimuli recorded in the blocked condition. The randomization procedure
we used was as follows: in the mixed condition 360 stimuli (15 x speakers x 12
vowels x 2 repetitions) were quasi-randomized under the constraint that maximally
two adjacent stimuli came from the same speaker. The last 20 stimuli of this series

2.5. Subjects 13

of 360 were also put at the beginning of the tape and served as dummies to let the
subjects get accustomed to this kind of stimuli. In the mixed condition we thus have
a total of 380 stimuli. In the blocked condition the 15 speakers were randomized first,
then for each speaker 24 stimuli (12 vowels x 2 repetitions) were randomized under
the constraint that no two adjacent vowels were the same; the last six stimuli of this
series were repeated at the beginning, summing to 30 stimuli for each speaker and 450
in this condition (15 speakers x 30 stimuli). Both in the mixed and in the blocked
conditions we used a 2.5 s interstimulus interval. Between every ten stimuli a double
beep was played as a separation marker with the same 2.5 s time interval. Addionally,
in the blocked condition after every 30 stimuli a triple beep tone was played to separate
different speakers.

2.5 Subjects

The listeners were ten male and ten female, phonetically untrained, paid volunteers.
Most of them were students at the Faculty of Arts of the University of Amsterdam. All
were native speakers of Dutch, with no hearing deficiencies and ranging in age from
20 to 30 years.

2.6 Listening conditions

The identification tests were run in a special acoustically isolated studio room at the
Language Department (ITT) of the Faculty of Arts of the University of Amsterdam.
In each session four subjects at a time could be handled, so there were five sessions
in every experiment. Test tapes were presented via a Revox A77 tape recorder, Sansui
AU-22 amplifier, and a set of Sennheiser HD22 headphones at a comfortable listening
level. Subjects were seated in front of a specially developed response unit which
consisted of a monitor and a standard QWERTY keyboard, and they responded by
pushing a key on the keyboard (see figure 2.3).

Twelve keys on the keyboard were marked with stickers, that showed the ortho-
graphic symbols ‘pVt’; a thirteenth was labelled ‘FOUT’ (error). The remaining keys
of the keyboard were covered with a special protection plate. The layout is shown in
figure 2.4.

Although we did not expect as much orthographic interference as in English, vow-
els that were expected to get confused orthographically such as /y/ and /v/ (pUUt and
pUt) were placed as closely as possible to each other, in order to attract special atten-
tion of the subject when responding: long vowels were placed on the top row and the
corresponding short vowel was placed just underneath it on the next row. A subject’s
response was immediately displayed on his monitor, together with the response num-
ber. In case of a typing error or an incorrect response, subjects were able to correct
their last given response by using the “FOUT” button and then give their intended re-
sponse. This corrected response was displayed with the same response number as the
previous one. The response units of the four subjects were connected to a central Ap-
ple Ile computer (,). The responses of the four subjects were

14 Chapter 2. The identification of vowel stimuli from men, women, and children

)
-
______________ interface
response
unit

g e

Figure 2.3. Listening configuration. Four response units are connected to a
central unit (Apple Ile). A Revox A77 taperecorder and Sansui AU-22 amplifier
provide the audio signals to the earphones.

displayed on the Apple Ile’s monitor together with the stimulus number and type. In
this way the experimenter had full control over the experiment and could intervene
if necessary. The experimenter would stop the audio tape when a subject either for-
got to respond or gave a double response to a stimulus; the experimenter would then
ask the subject who was in error to perform the necessary corrections. The double
beep between a series of ten successive stimuli served as a timer. Subjects made few
mistakes: approximately once in every session the experimenter had to stop the tape
to make a correction. Before a session started the subjects were instructed that the
experiment was on vowels and that different vowels of different speakers were mixed
in the first part of the experiment. After the 380 stimuli in the mixed condition had
passed, the stimulus tape was stopped and the subject was granted a short break. Then
subjects were told that in the next part they would hear the stimuli blocked for each
speaker and that every new speaker would be announced by a triple beep. In general a
full session, which consisted of stimuli presented in mixed and in blocked condition,
took about 50 minutes. The responses of all four subjects were stored on the floppy
disk of the Apple Ile computer and served as input for further data processing such as
cumulative results and confusion matrices.

2.7. Stimuli for the experiments 15

pEUL| pUUt| pEEt| plEt | pAAt| pOOt) pOEL| |FOUT
pUt | pEt | pit | pAt | pOt

Figure 2.4. Layout of the keybord part of the response unit.

2.7 Stimuli for the experiments

In this section a description of the stimuli is given for each of the eight experiments.

Experiment 1

The vowels as produced in isolation were selected with their original length (in figure
2.1 this is the part of the sentence between marks 1 and 3). This experiment is a repli-
cation of the experiments performed for American-English vowels by a.o.

(), () and () and investigates how well
natural, isolated, Dutch vowels are recognized when they are presented in mixed and
blocked conditions to listeners. We expect listeners to make few mistakes, in accor-
dance with the experiments of Assman et al. and Macchi.

Experiment 2

Stimuli were 50-ms segments around mark 2 of the vowel produced in isolation were
selected. The initial half of a cosine window was used to smooth the onset of the
first 5-ms portion of the selected signal; this was followed by 40 ms at the original
amplitude; the last 5 ms of the signal was smoothed by the second half of the cosine
window. We chose this 50-ms length to have a duration which comes close to the dura-
tion of short vowels in conversational speech. A second reason was that we wanted to
increase the number of confusions. Because all segments are equalized in duration we
introduce extra confusions between vowels where duration is the main cue for separat-
ing them, namely between the pairs (/é~Y/), (fo~d/), (/le~1/) and (Ja~a/) (,

; s ; s). We name confusions

16 Chapter 2. The identification of vowel stimuli from men, women, and children

of this type ‘long/short confusions’. () find a mixed/blocked effect
in their experiment with vowel durations gated to 100 ms; we too expect this effect
to happen despite our shorter duration of 50 ms because if speaker information is still
present in the vowel, listeners can take advantage of this fact when the vowels are
presented in a blocked condition.

Experiment 3

Stimuli were 50-ms segments around mark 5 of the vowel produced in /p-t/ context
were selected and smoothed as described above. The importance of dynamic spec-
tral information has been reported for vowel perception. In continuous speech, when
vowels can be coarticulated with consonants, the spectral pattern of the speech signal
varies in such a way that the acoustic targets found in isolated vowels may not be

attained (s ; ,). This phenomenon
is referred to as target undershoot and it is determined by speaking rate, sentence and
word stress and individual style of speech (,). Because of this possible

undershoot we expect our vowels taken out of their /p-t/ context, to be acoustically
less distinctive than their counterparts that were produced in isolation when both are
gated to a fixed short duration and are presented in isolation.

Experiment 4

Stimuli were 50-ms segments, each of which was resynthesized as a stationary signal
from the linear prediction analysis of order 12 that was done on a 25.6-ms segment
around mark 2 of the vowel produced in isolation. The pitch in these 50-ms resynthe-
sized segments was constant and was taken equal to the mean pitch of the correspond-
ing analyzed segment. From pilot studies we got the impression that listeners made a
precategorization of stimuli, mainly on the basis of pitch, into male-like, female-like
and/or child-like. In order to manipulate the fundamental frequency in a well-defined
way we had to use resynthesis. Because of the inherent smoothing performed by any
analysis-resynthesis system we expect more confusion errors in this experiment than
in the preceding ones. Although the spectral envelope of the resynthesized signal is
smoothed we still expect enough speaker-specific information to be present in this
signal to be of help in the blocked condition, which means that there should be a
difference in the listeners’ performance in the mixed and blocked conditions.

Experiment 5

Stimuli were 50-ms segments, resynthesized with a fundamental frequency of 135 Hz
from linear prediction coefficients. Resynthesis was performed using the 12th order
linear prediction coefficients from experiment 4. The chosen frequency is approxi-
mately the mean male fundamental frequency as it was measured from the voices of
our ten male speakers. In resynthesizing all the analysed vowels of our five male, five
female and five children speakers with the same ‘male-like’ fundamental frequency of
135 Hz we present to the listener partly conflicting vowel information: on the one hand

2.8. Results and discussion 17

a spectral envelope belonging to a certain speaker category and on the other hand a
fundamental frequency that did not ‘fit’ (in this experiment this was the case for chil-
dren and female voices). On the basis of investigations by

() and () we know that there is an interaction between fundamen-
tal frequency and spectral envelope. Therefore our expectation is that especially in the
categories women and children the amount of confusion will rise.

Experiment 6

This experiment contained 50-ms segments, resynthesized with a fundamental fre-
quency of 235 Hz from linear prediction coefficients. The prediction coefficients from
experiment 4 were used. 235 Hz is approximately the mean female fundamental fre-
quency as was measured from our ten female voices. Again, as in experiment 5,
conflicting information is present in the resynthesized vowels, but this time it should
interact mainly with the vowels from the male and the children speakers.

Experiment 7

Stimuli were 50-ms segments, resynthesized with a fundamental frequency of 335 Hz
from linear prediction coefficients. This frequency is approximately the mean chil-
dren’s fundamental frequency as was measured from our children’s voices. The same
prediction coefficients were used as in experiments 4, 5 and 6. This time we expect the
male and female vowels to show the largest effects because their vowels are resynthe-
sized with the greatest shift in fundamental frequency with respect to their ‘normal’
fundamental frequency.

Experiment 8

In this experiment we presented 50-ms segments, resynthesized with a white noise
source as the glottal signal from the linear prediction coefficients. The same prediction
coefficients were used as in all the above resynthesis experiments. Because of the fact
that a very important indication of speaker category, the fundamental frequency, is
absent we expect more confusion errors in this experiment than in experiment 4 where
the vowels are resynthesized with their ‘own’ fundamental frequency. If, on the other
hand, the information about speaker category is still present in the spectral envelope
in another way, listeners’ performance should be comparable.

2.8 Results and discussion

In table 2.2 on the next page results of the eight listening experiments are presented.
This table contains the mean error percentages for each experiment, in the mixed and
the blocked condition averaged over all subjects and vowels, both for all speakers as
well as for the separate speaker categories of men, women and children. Table 2.3
on the following page presents the data corrected for long/short confusions. This
correction implies that a short vowel response given to its long counterpart stimulus

18 Chapter 2. The identification of vowel stimuli from men, women, and children

Table 2.2. Error percentages for each experiment, averaged over subjects (20),
vowels (12) and speakers (15). The speakers have also been split up into the
categories Men, Women and Children for both the Mixed (M) and the Blocked
(B) condition. See section 2.7 for a further specification of the experiments.

Exp. Description Averaged Men Women Children

M B M B M B M B
1 vowel V 109 44 99 42 115 40 114 50
2 50 ms from V 356 312 307 264 340 300 420 368
3 50 ms frompVt 40.6 33.6 392 30.1 385 340 440 36.6
4 50 ms, mean F, 44.6 403 403 363 418 362 527 485
5 S0ms, Fy =135 499 428 440 353 429 389 628 54.0
6 50ms, Fy =235 495 433 501 43.0 418 381 566 489
7 50ms, Fy =335 599 570 703 68.0 554 527 539 505
8 50 ms, noise 46.7 392 451 337 395 36.1 555 477

Table 2.3. Same data as table 2.2 but all data have been corrected for long/short

confusions.
Exp. Description Averaged Men Women Children
M B M B M B M B
vowel V 9.6 3.8 8.5 3.8 106 3.6 9.8 4.0

50 ms from V 187 151 129 11.1 161 127 271 21.6
50 ms frompVt 242 181 220 151 21.0 177 296 215
50 ms, mean F, 29.0 258 226 20.8 249 20.7 393 359
50ms, Fpb =135 367 282 250 173 28.0 233 57.0 44.0
50ms, Fp =235 367 290 363 280 261 220 479 370
50ms, Fp =335 492 458 628 593 425 404 424 378
50 ms, noise 345 260 305 196 253 212 478 374

0NN R W

is considered to be a correct response. The reverse, a long vowel responded to its
short counterpart stimulus, is considered an error response. In figure 2.5, and parts
(a) and (b) of figure 2.6 the data from these tables have been visualized with his-
tograms. From experiment 1 we can conclude that vowels produced in isolation and
presented in a mixed condition, can be recognized rather well by listeners: only 10.9%
errors. This result is even significantly better in the blocked condition: only 4.4% er-
rors. These percentages are close to the percentages that () and

() report. See table 2.4 for an overview. We want to emphasize that the
differences in error percentages between the mixed and the blocked condition were
statistically significant (p < 0.01) in all eight experiments. Reducing the duration of
the stimuli to 50 ms (experiment 2) has considerably increased the number of incor-
rect responses: 35.6 and 31.2%, respectively, for the mixed and blocked conditions.

2.8. Results and discussion 19

100

5Of o

% Error

1 2 3 4 5 6 7 8
Experiment number

Figure 2.5. Error percentages averaged over subjects (20) and vowels (12) for
experiments one to eight (see text). Each column contains the error percentages
in the mixed (open) and in the blocked condition (shaded). In each pair of
columns the left column contains the uncorrected data while in the right column
these data have been corrected for long/short confusions.

When we correct our data for long/short confusions, results become much better: 18.7
and 15.1% confusion errors for mixed and blocked condition, respectively. These
error scores are somewhat higher than the percentages that Assman et al. report for
their experiment on gated vowels, probably because the duration of our gated vow-
els is half the duration of theirs. The number of confusion errors in experiment 3
(segments from vowels produced in /p-t/ context) has increased as compared to exper-
iment 2 (segments from vowels produced in isolation). This difference in percentage
confusion errors proved to be statistically significant, which confirms the hypothesis
that the centre part of vowels in /p-t/ context is acoustically less clearly defined than
without that /p-t/ context present. The only difference between the stimuli of exper-
iments from four through eight is the fundamental frequency of the source used for
the resynthesis. Because of the fact that the error percentages in figure 2.5 are not the
same for all these experiments, we can conclude that indeed there is an interaction
between the source and spectral envelopes. This effect is strongest in experiment 7
where we resynthesized with a fundamental frequency of 335 Hz. This impression
of the interaction becomes even stronger if we look at figures 2.6a and 2.6b, where
the speakers were split up into the separate categories men, women and children. We
see that the error percentages in these experiments differ considerably for these cate-

20 Chapter 2. The identification of vowel stimuli from men, women, and children

Table 2.4. Comparison of error percentages in the mixed and blocked condition
for different experiments reported in the literature.

Author(s) speakers #V Length Type Mixed(%) Blocked (%)
() 5,5,5 9 full pVp 17.0 9.5

() 5,5,5 9 full pVp 17.0 9.0

5,5,5 9 full v 42.6 31.2

4,44 9 full CVC 23.0 22.0

() 555 11 full \% 7.8 1.5

555 11 full tVt 8.6 2.0

() 55~ 10 full A% 54 4.1

55~ 10 100 A% 13.8 9.5

Weenink, this study 555 12 full \'% 9.6 3.8
555 12 50 A% 18.7 15.1

555 12 50 pVt 24.2 18.1

gories. In general one could say that the error percentages are lowest when a category
is resynthesized with its ‘proper’ fundamental frequency (in experiment 5: men; in
experiment 6: women; in experiment 7: children).

We further note that the children’s stimuli, according to the performances of the
listeners, are not as well defined as the stimuli of the men and women. This is already
clear in experiment 2 where we see that the 50-ms male and female vowel stimuli
are recognized much better than the children’s stimuli. Because we use the analysis
of the vowel segments for further processing, this effect percolates to the resynthesis
experiments. There are several explanations why the children’s segments are not as

clearly defined:

e the limitation of the bandwidth to 5000 Hz can have a greater degrading effect
on the children’s vowels. Spectral analysis indicates that the high frequency
components of the children’s voices seem to be stronger than the corresponding
components of the female and male voices.

¢ in the children’s vowels there are more amplitude variations than in the vow-
els of the men and women, probably because children have less control over
their voices. These amplitude variations can, in the subsequent linear prediction

analysis, be the cause of some more spectral smoothing.

* the high fundamental frequency of the children’s vowels makes their spectral
envelope less clearly defined. This also has a degrading effect on the linear
prediction analysis because the ‘effective’ time interval for the analysis becomes

shorter.

2.8. Results and discussion 21

(a)
100
5
g
8a)
R
1 2 3 4 5 6 7 8
Experiment number
(b)
100
g
=
82
R

1 2 3 4 5 6 7 8
Experiment number

Figure 2.6. (a) Error percentages averaged over subjects (20) and vowels (12)
for experiments 1 to 8, split up into the speaker categories Men (left column),
Women (middle column) and Children (right column). Each column contains
the error percentages in the mixed (open) and in the blocked condition (shaded).
(b) Same as figure (a) with all data corrected for long/short confusions.

Further we note the especially good identification of the stimuli when resynthesized
with noise: the error percentages in experiment 8, where the vowels were resynthe-
sized with noise, are approximately the same as the percentages in experiment 4,
where the stimuli were resynthesized with their original fundamental frequencies. Be-
cause of the fact that no direct fundamental frequency information is present in the
stimuli from experiment 8, a major cue for speaker precategorization is not present.
This means that besides pitch there must be spectral cues in the signal from which the
listener can extract relevant normalization information.

In some of the next chapters physical analysis and data representation methods

22 Chapter 2. The identification of vowel stimuli from men, women, and children

are presented that try to shed some light on this matter and give us better insight in
the perceptual and physical process of normalization. Finally, in chapter 11 we will
present a model that simulates the classification behaviour of subjects in the mixed
and blocked speaker contexts.

Chapter

Accurate algorithms

for performing

principal component analysis
and discriminant analysis*

Abstract

We discuss two algorithms for performing principal component analysis and discrim-
inant analysis. These algorithms will be used extensively in subsequent chapters to
perform data reduction, visualization and classification on multidimensional vowel
data. Both algorithms are based on singular value decomposition (SVD). We calculate
principal components and discriminants directly from the data matrix without forming
the intermediate covariance matrices. In this way we do not lose numerical accuracy.
The methods described here have been implemented in the speech analysis program
PRAAT to obtain maximum flexibility in the analysis. Examples are presented for
formant data from 50 male Dutch speakers as reported by ().

*This chapter is a modified version of ().

24 Chapter 3. Principal component analysis and discriminant analysis

3.1 Introduction

Principal component analysis (PCA) and discriminant analysis (DA) belong to the
basic repertoire of multivariate data analysis. From a mathematical standpoint both
methods try to construct an optimal orthogonal basis for multidimensional data. They
only differ in the choice of the optimality criterion.

For principal component analysis the data are not labelled and one tries to find
orthogonal directions in which the variance is maximal. These directions are called
the principal directions and are unique up to a reflection.! One says that the first
principal direction explains most of the variance. This means that when one projects
the multidimensional data onto the first principal direction, the variance along this
direction is a maximum, i.e. from all the possible directions in the multidimensional
space no other direction shows this much variance for projected data. In mathematical
terms: solve the eigensystem

2x—Ax =0 3.1

for the eigenvectors x and eigenvalues A. The matrix X is the data covariance matrix,
which is a symmetrical matrix.

For discriminant analysis one has labelled data, i.e. each row belongs to a certain
group or category, and one tries to find orthogonal directions among which discrimina-
tion between the different groups is optimal. In other words, one looks for directions in
space where the ratio of the between-group variance B and the within-group variance
W forms a maximum. This translates to the following eigensystem:

Bx - AWx =0 (3.2)

In this chapter we will try to explain the origin of these equations and how we
can solve them in an efficient and numerically stable way, without presenting too
many mathematical details. As was explained in chapter 1, the terms Linear (LDA)
and Quadratic Discriminant Analysis (QDA) refer to the classification stage: LDA
calculates all distances with the same length measures, i.e. only one covariance matrix
is used in all the distance calculations, while QDA uses a class-specific covariance
matrix in the distance calculations. For now, we use the general term discriminant
analysis for both types.

3.2 Principal component analysis

In figure 3.1 we have drawn 200 points in the xy-plane following a binormal distribu-
tion. These points were generated as follows.

¢ Both columns, x and y, of a data matrix A with 200 rows are filled with Gaus-
sian random deviates, centered at the origin, with 6, = 1.0 and 6, = 0.2. The

'However, when the data are isotropically distributed in a subspace then there will be no preferred
direction in that subspace.

3.2. Principal component analysis 25

w

2
J

-3

Figure 3.1. Bivariate normally distributed random data centered at (0.5, 0.3)
in the xy-plane with principal direction at an angle of 60 degrees with respect
to the horizontal x-axis. The ellipses are the 16 and 2o ellipses that include
approximately 39.3% and 86.5% of the data, respectively.

variances of the x and y columns will then aproximately be 1.0 (= 0')%) and 0.04
(= 03), respectively. The x column contains 96% (= 1.0/1.04) of the total
variance and the y column the remaining 4% of the total variance.

* The points are rotated counterclockwise with an angle a of 60 degrees.
* The points are translated along the vector (0.5, 0.3).

When we calculate the new variances in the x and y columns of A they will approxi-
mately be 0.28 (= 02 cos” a + o2 sin” @) and 0.76 (= o2 sin” @ + 62 cos® @), i.e., the x
column now only contains 26.9% (= (0.28/1.04)100%) of the total variance and the
y column contains the remaining 73.1%.

As can be seen from the figure, the direction with maximum variance no longer
lies along the x axis, but now lies along a vector that makes an angle of approximately
60 degrees with the horizontal x-axis. If we created a new variable by projecting
the two-dimensional points onto this direction then the new one-dimensional variable

26 Chapter 3. Principal component analysis and discriminant analysis

would explain approximately 96% of the total variance, just as the original x column
did.

This offers a possibility for data reduction. If we were satisfied with a description
that explains 96% of the variance then we would only need one variable, the first
principal component, instead of the two variabless x and y. A PCA-algorithm finds
the orthogonal directions that have maximum variance.

Equation (3.1) can be derived as follows: we start with a general m x n data
matrix A, where the m rows are the n-dimensional data points. Let the first principal
component X be the direction that maximizes the variance between the rows. The
dimensionality of x equals #n, the number of columns in A. We project our data onto
this direction and get a new vector y of projected data points y = Ax. The number of
elements in y now equals m, the number of rows in A. The variance (squared length)
of this vector y should be the maximum of all lengths possible, i.e.

y/y = (AX)/(AX) =xA’Ax = X'Tx (33)

should be a maximum, where A’ means the transpose of A. In order to obtain mean-
ingful solutions we have to constrain the length of the vector x we are looking for. If
no constraints were imposed on X, any x of infinite length would satisfy. One normally
adds the constraint that x be a unit vector, x'x = 1. With the help of the Lagrange mul-
tiplier A this constraint can be included and the equation to maximize can be written
as follows:

XZx—A(x'x —1). (3.4)

Taking the derivative with respect to x and setting this derivative equal to zero we end
up with:
2x—Ax =0 3.5)

which is the desired equation (3.1). There are many ways to solve eigensystems of
this type where the matrix X is symmetrical. We can use a method due to Jacobi or
we might first reduce X to tridiagonal form with a Householder reduction and then
solve the resulting system with QR-transformations (, ;

s). However, when we have the original data
matrix A at our disposal, explicitly forming the product matrix, A’A = X is inadvis-
able because of a potential loss of information in finite precision arithmetic (

,). We can see this as follows: when we define the condition number ¢
of a matrix A as the ratio of the largest eigenvalue to the smallest eigenvalue, then the
condition number of the matrix product A’A will be ¢>. When 1/c? is smaller than
the machine precision e, the corresponding eigenvalue will be lost. This is where the
singular value decomposition (SVD) enters. The SVD of an m x n matrix A has the
form

A =UDV/, (3.6)

where U and V are orthonormal matrices of order m and n, respectively, and D is an
m x n nonnegative diagonal matrix. (For convenience we consider m > n, i.e. more
pieces of data than dimensions. We also assume that our matrices are real. See

() for more details.) The diagonal elements d; of D are called the

3.3. Discriminant analysis 27

singular values of A and by convention are ordered so that d; > d, > --- > d, >
0. The columns of U and V are orthonormal eigenvectors of AA’ and A’'A(= %),
respectively. We now use the SVD of A to calculate X:

¥ = A’A = (UDV')(UDV') = VDU'UDV' = VD*V". (3.7

This is a familiar result; it shows that any real symmetric matrix £ can brought
into diagonal form by a rotation. Now D? is a matrix whose diagonal values are diz,
the squares of the singular values of A. When we substitute the result from equation
(3.7) into equation (3.1) we obtain

VD’V'x—ix =0, (3.8)
now multiplying with V' and using orthonormality of V results in
D*V'x—AV'x = 0. (3.9)

The solution of equation (3.9) is now obvious. The vectors x that satisfy equation
(3.1) are the column vectors of V. The corresponding eigenvalues are the squares of
the singular values in the diagonal matrix D. This result shows that by taking the SVD
of A we can easily obtain the eigenvalues and eigenvectors of the matrix £ = A’A.
Algorithms for determining the SVD of a rectangular matrix can be found in

() and (). We do not lose any numerical precision
by taking the SVD of A. Every rectangular matrix can be decomposed according to
equation (3.6). The advantage of the SVD-algorithm is its numerical stability. An
additional advantage of the SVD algorithms is that they are robust against A not being
of maximum rank, or, which is the same, robust against X being singular. The singular
values d; show how well-behaved the matrix is. When the matrix is not of full rank
the quotient of the largest and the smallest singular values will be very large.

The complete procedure for performing a PCA analysis, starting from the m x n
data matrix A is now the following:

* Centralize the data in A. For each element a;; in A subtract the column mean
a; = Y a;/m. This gives a new centralized data matrix C with elements
C,‘j = a,-j - a_j.

¢ Calculate the singular value decomposition C = UDV'. Sort the singular values
d; and corresponding columns of V. Now d; will be the largest singular value
and d, the smallest. Save only those singular values d; that satisfy d;/d; >
max(m, n)e, where € ~ 2.2x107!¢ is the machine precision for double precision
floating point arithmetic.

 Store the eigenvalues, d?, with their corresponding eigenvector, €;. The most
important direction will be the first eigenvector e;. The projection of the data
matrix on e; equals y = Ae;, and is called the first principal component.

28 Chapter 3. Principal component analysis and discriminant analysis

w

2
(o]

-3

Figure 3.2. Two bivariate normally distributed random data sets in the xy-
plane. Each of the sets has its principal direction at an angle of approximately
60 degrees with respect to the horizontal x-axis. The data labelled “1” are
centered at (—0.5, 0.5) while the data labelled “2” are centered at (0.2, —0.5).
Both sets have o1 = 1 along the first principal axis and o, = 0.2 along the
second principal axis. The two small ellipses are the individual 1o ellipses
of the two data sets that cover approximately 39.3% of the data. The larger
ellipse is the 1o ellipse computed from the two data sets combined. The solid
line bottom-left-to-top-right that approximately parallels the long axes of the
ellipses corresponds to the direction of maximum variance. The dashed line is
the direction along which discrimination is maximal.

3.3 Discriminant analysis

As PCA, discriminant analysis starts with an m x n data matrix A. Now, however, each
row in the matrix is labelled as belonging to a certain group. There are g different
groups, each of which has n; elements. Clearly Z}g:] n; = m. When we plot each
row of A, after centralization, as a point in a space of dimension » and label the point
with its corresponding label, we will see points spread around the origin. Normally
points belonging to the same group lie in each others neighborhood. The purpose of

3.3. Discriminant analysis 29

discriminant analysis is to find orthogonal directions in space such that along these
directions the separation of the groups is optimal. In general, directions of maximum
variance and directions of maximal separation need not have anything in common. To
illustrate this we have drawn 200 points in figure 3.2 that were generated according
to two different distributions. These points are labelled “1” or “2”, depending on
the distribution they belong to. Both distributions consist of 100 points that were
generated as bivariate normally distributed around the origin with 6, = 1 and o, = 0.2
and subsequently rotated 60 degrees counterclockwise, in analogy with the data from
figure 3.1. Next the points labelled “1” were translated along the vector (—0.5, 0.5) and
the points labelled “2” were translated along the vector (0.2, —0.5). The 1o ellipses for
the points labelled “1” and “2” have also been drawn as well as the 1o ellipse for the
combined data set. The direction of maximum variance is the solid line that goes from
the lower left to the upper right, along the long axis of the ellipse of the combined
data. It is obvious that in this figure the direction in which the best separation of
the points labelled “1” and “2” is achieved, is along the dashed line, which is almost
perpendicular to the previous line.

The quantification of best separation is the following. Suppose that the n-dimen-
sional vector X is the direction that gives maximum separation. When we project the
data onto this vector x all points now lie on a line. The points that belong to the
same group hopefully cluster and lie close to each other. Good separation between
the groups has been achieved when the clusters lie as far apart from each other as
possible and the spread within each cluster is minimal. This amounts to saying that
we want the variance of the group means along this direction to be as large as possible
and at the same time the variances within the groups to be as small as possible. It is
mathematically more tractable if we express this as: find the maximum value for the
F-ratio, i.e. the ratio of the variance of the group means and the variance within the
groups.

In the language of matrices: we first calculate from A the g group means and sub-
sequently centralize A. Call C the m x n matrix that results when we subtract from
each row vector in A its corresponding group mean. When we plot these points all
clusters will be centered at the origin and separate cluster would be hardly noticeable,
unless the variances along the axes are very different.(For the data in figure 3.2 cen-
tralization would mean that all data then lie in one elliptic region.) Now project these
data onto any vector x and form the m-dimensional vector y as y = Cx. The variance
of y is a measure for the spread:

y’y = (Cx)'CX =xC'Cx = xXWx. (3.10)

W is the matrix with the so called within-group sums of squares and cross products
(SSCP). We now form the g x n matrix M with group means. The projection of the
group means on X leads to a new vector z defined as z = Mx. The variance of z is a
measure for how far the groups lie from each other:

7'z = (Mx)Mx = xXM'Mx = x'Bx. 3.11)

B is the matrix with the between-group sums of squares and cross products. Now we

30 Chapter 3. Principal component analysis and discriminant analysis

have to find the vector x that maximizes the ratio ¢(x) defined as’

x'Bx
x'Wx

o(x) = (3.12)
However, to obtain meaningful solutions, we first put in the constraint X'x = 1 to

obtain: ,

x'Bx
() =5
The x that maximizes this equation can be found by differentiation of ¢(x) with respect
to x and putting the result equal to zero. We then find the following generalized
eigenproblem:

—A(x'x —1) (3.13)

Bx - AWx =0 (3.14)

To solve for the eigenvalues and eigenvectors of this equation in a numerically
stable way is not a trivial matter, because either the B or the W matrix might be
singular. () discuss methods for solving this type of equation.
In general the eigenvectors of this equation are not orthogonal and we have to perform
a subsequent orthogonalization step.

When W is not singular we can multiply by its inverse and obtain

W IBx - ix = 0. (3.15)

Although this equation has the same form as equation (3.1) there is also an important
difference. In general, the product W~'B of two symmetric matrices, does not result in
a symmetric matrix and, therefore, the methods used before to solve equation (3.1) for
the eigenvalues and eigenvectors are not valid here (apart from the fact that it would
be numerically very unwise to explicitly form W='B).

In equation (3.14) both matrices B and W are symmetric and it can be written as

M'Mx—AC'Cx = 0. (3.16)

An elegant solution is possible without forming explicitly the matrix products M'M
and C’'C that could ruin numerical precision. This solution is the generalization of
the method we used with PCA analysis and is called the generalized singular value
decomposition (GSVD).

3.4 The generalized singular value decomposition

The GSVD decomposes two matrices at the same time into a common row basis. In
the following we borrow the notation from (). The GSVD of an
m x n matrix A and a p x n matrix B is given by

A=UZ,RQ and B=V,RQ, (3.17)

2Many problems in multivariate data analysis can be formulated in the way of equation (3.12): find x
where the ratio ¢(x) = X'Ex/x'Fx is optimal. The square matrices E and F are specific summaries of the
data.

3.4. The generalized singular value decomposition 31

where R is an n x n upper triangular and nonsingular matrix, the U, V and Q are
orthonormal matrices, and

= & D, , (3.18)

p—n+l 02
)= &k D, . 3.19)
n—l—k I,

The [x I matrix I; and the (n — [— k) x (n — [— k) matrix I, are identity matrices.
The (m — 1 — k) x (n — I — k) matrix O, and the (p — n + 1) x [matrix O, are zero
matrices. Dy = diag(a;41, -, a14x) and Dy = diag(f41, - , fi+x) are diagonal
matrices, where

I>ap 2 2a >0, 0<fy<---<Pru<l, af+p7=1(320)

The GSVD is a generalization of the SVD in the sense that if B is the identity
matrix then the GSVD reduces to the SVD of A. The pairs (a;, ;) are called the
singular value pairs. The quotient A; = «;/f; is called a generalized singular value.
If §; = O then the generalized singular value «;/f; is infinite. If B is square and
nonsingular, then the GSVD of A and B reduces to the SVD of AB~!:

AB™'= (UZ;RQ)(VE,RQ)'= UE, T, HV'. (3.21)

Now we will show that the eigenvalues and eigenvectors of A’A—AB’B can be
expressed in terms of the GSVD. We define X as

X =QR L (3.22)
Then using equation (3.17) we find that
X'A'AX =3%/Z; and X'B'BX =3,'%,. (3.23)

Therefore the columns of X are the eigenvectors of A’A — AB'B, and the nontrivial
eigenvalues are the squares of the generalized singular values. The matrix X is not an
orthogonal matrix anymore. The columns of Q form the orthonormal set of eigenvec-
tors.

The GSVD of two matrices A and B can be calculated with the help of the LA-
PACK routines dtgsja and dggsvp (,). Routine dtgsja calcu-
lates the GSVD from two upper-triangle matrices A and B into the form of equation
(3.17). The program dggsvp preprocesses two matrices A and B and brings them in
upper-triangle form.

The complete procedure for performing a linear discriminant analysis, starting
from the m x n data matrix A with g different groups is now the following:

32 Chapter 3. Principal component analysis and discriminant analysis

* Centralize the data in A per group. This results in a new centralized matrix C
with elements: ¢;; = a;; — a_kj , where a(‘j. is the average value of the elements in
column j that belong to group k.

k
-J

L]

Collect the averages a”, in a k x n matrix M.

Calculate the generalized singular value decomposition of matrices C and M.

- Use dggsvp to bring C and M into upper-triangular form.’

— Use the output of dggsvp as input for dtgsja to calculate C = UZ;RQ’
and M = VX,RQ'.

* Calculate the eigenvalues Af from the @;’s and f;’s of equation (3.20).

This procedure results in the class centroids as well as the decomposition of the n-
dimensional space into directions that are optimal with respect to classification.

3.5 Discriminant analysis in the PRAAT program

3.5.1 Introduction

In this section we will demonstrate how one performs a discriminant analysis in the
PRAAT program by (). This section is also available as a tu-
torial on discriminant analysis within the PRAAT program itself (under “Help/Tutori-
als”).

We will use the multivariate data set from () with the first three for-
mant frequency values in Hertz and levels in dB of the 12 Dutch monophthong vowels
as spoken in /h_t/ context by 50 male speakers. This data set has been incorporated
into the PRAAT program and can be called into play with the Create TableOfReal (Pols
1973)... command that can be found in the “New / Tables” menu. In the list of ob-
jects a new TableOfReal object will appear, named pols_50males. After pressing the
Info button, the “Info window” will show that this table has 6 columns and 600 rows
(50 speakers x 12 vowels). The first three columns contain the formant frequencies in
Hz. The last three columns contain the levels of the first three formants given in deci-
bels below the overall sound pressure level of the measured vowel segment, i.e. these
numbers are all positive and the larger a number is the lower the corresponding for-
mant level was. Each row is labelled with a vowel label. Pols et al. use logarithms of

3In the PRAAT program we have used CLAPACK, the version of LAPACK for the C programming
languangue. This version was automatically translated from the original FORTRAN sources into the C
language and is supplied by the LAPACK team. Using these C-versions requires some precautions because
the CLAPACK routines internally still use the FORTRAN column-wise storage of matrices while the C
language uses row-wise storage. Other small nuisances are the differences in calling conventions, where C
uses call-by-value while FORTRAN uses call-by-reference, and the indexing of arrays which starts at 1 in
FORTRAN and at 0 in C.

3.5. Discriminant analysis in the PRAAT program 33

Fq
200 400 600 800 1000

2800
2400

2000

r1600

|Og F2
Q
4

1200

-800

N
N}

31
log F4q

Figure 3.3. First formant frequency versus second formant frequency of the
Pols et al. data set on a logarithmic scale.

formant frequency values; we will do the same.* Script 3.1 summarizes our achieve-
ments up till now.” To get an indication of what these data look like, we make a scatter

Create TableOfReal (Pols 1973)... yes
Formula... if col < 4 then logl0 (self) else self endif

Script 3.1. Logarithmic scaling of the formant frequency values.

plot of the first log-formant-frequency against the second log-formant-frequency.

With the next script fragment 3.2 on the next page, one can reproduce part of figure
3.3. This plot equals the data points in figure 3 in the Pols et al. study.

4The measurement units in the first three columns and in the last three columns differ. For a discrimi-
nant analysis it is not necessary to standardize the columns, for a PCA one would normally standardize all
columns first.

SIn this script and the following ones, the essential PRAAT commands are displayed in another
type family.

34 Chapter 3. Principal component analysis and discriminant analysis

Select outer viewport... 0505 > Drawing area
select TableOfReal pols_bOmales

Draw scatter plot... 1 20 0 2.2 3.1 2.8 3.5 12 + yes

One logarithmic mark top... 200 y y n

#...other logarithmic marks at top

One logarithmic mark right... 800 y y n

#...other logarithmic marks at right>

Script 3.2. Draw formant scatter plot.

select TableOfReal pols_bOmales

To Discriminant

Script 3.3. Discriminant analysis.

3.5.2 How to perform a discriminant analysis

To perform a discriminant analysis we select the TableOfReal object from the list of
objects and choose from the dynamic menu the option To Discriminant. This com-
mand is available in the “Multivariate statistics —” submenu in the dynamic menu.
The resulting Discriminant object will bear the same name as the TableOfReal object.
Script 3.3 summarizes. Text that starts with a > symbol is a comment and not part of
the script language. Note that these scripts only summarize the most important parts
of the analyses.’

3.5.3 Measuring the correlation between the variables

To measure the correlation between the variables, we select the TableOfReal object
and choose To Correlation.” When we now choose Draw as numbers. .., the numbers
in the Picture window reproduce the numbers shown in the lower-left part of table 111
in the Pols et al. study; they are reproduced here as table 3.1. To calculate the numbers
in the upper-right part of their table III, we first have to get the vowel centroids. Be-
cause the row labels of the Table0fReal Object are vowel labels, we select this object
and choose the action To TableOfReal (means by row labels)... no.® This results in
a TableOfReal Object in which each row represents the group centroid indicated by the
row label. We then generate the correlation matrix based on these centroids in the
same way as was depicted above. The following script 3.4 summarizes the procedure
to obtain table 3.1. The correlation matrix shows that high correlations exist between

5Complete scripts that reproduce all analyses, drawings and tables in this thesis, can be obtained from
the author’s website http://www.fon.hum.uva.nl/david/.

7Correlations between the columns of a TableOfReal object are calculated. Internally this happens
as a two-step process: in the first step an SSCP object is produced that contains the sums of squares and
cross-products of the column data in the TableOfReal object. In the second step we scale the SSCP object to
obtain the correlation matrix.

81f only the overall centroid were needed, i.e. the average value in each column, we could perform
the following steps: make an SSCP object from the TableOfReal object followed by the command Extract

group centroid.

http://www.fon.hum.uva.nl/david/

3.5. Discriminant analysis in the PRAAT program 35

select TableOfReal pols_bOmales

To Correlation

Draw as numbers if... 1 0 free 3 col < row > Draw lower-left part.
select TableOfReal pols_bOmales

To TableOfReal (means by row labels)... no

To Correlation

Draw as numbers if... 1 0 free 3 row < col > Draw upper—right part.

Script 3.4. Correlations.

Table 3.1. Correlation matrix of the six formant variables from 50 male speak-
ers. The part above the diagonal gives the correlation coefficients of the vowel
centroids, the part below the diagonal the correlation coefficients of all the data.
The correlations in the table have been measured by the PRAAT program and

this table exactly reproduces table III from the () study. For
better visual separability the diagonal values, which are all 1, have been left
out.
IOg F] IOg F2 IOg F3 L] L2 L3
log F| —0.359 0.275 0.840 —0.806 0.032
log F, —0.302 0.063 —-0.278 0.796 —-0.927
log F3 0.195 0.120 0.392 -0.241 -0.161
L 0.370 —0.900 0.116 —-0.692 0.057
L, -0.533 0.512 -0.044 —-0.042 —0.547

Ly -0.021 -0.605 0.017 0.085 0.127

some formant frequencies and some levels. According to the source-filter model of
speech production vowel spectra have approximately a declination of —6 dB/octave
which indicates that a strong negative linear correlation between the logarithm of the
formant frequency and the formant level in decibel should exist. This is most clearly
reflected by the correlations for the vowel centroids in the upper triangular part of the
table. The correlation between the log F; and L; is 0.840 which means that when
log F) increases L; increases too. Because a higher value for L; means a lower level,
the positive value for the correlation in the table actually shows that the formant level
decreases if log F; increases. The same reasoning can be used for 0.796 correlation
value between log F, and L,. The —0.806 correlation between log F; and L, shows
that if the first formant frequency increases, the level of the second formant increases
too.

Table 3.2 gives similar results for formant data of 25 Dutch female speakers in the

°In the data file that Van Nierop et al. used to calculate their table IV, a typing error was present: they
reported F3 = 300 Hz for the /a/ from female speaker 2. We have noticed this error and have changed the
incorrect value to the correct value F3 = 3000 Hz. Because of this single wrong value, the correlations of
the other variables with log F3 all turned out to be wrong in the table they published. In the present table
3.2, the correct values for all the correlations can be found.

36 Chapter 3. Principal component analysis and discriminant analysis

Table 3.2. Correlation matrix of the six formant variables from 25 female
speakers. The part above the diagonal gives the correlation coefficients of the
vowel centroids, the part below the diagonal the correlation coefficients of all
the data. The correlations in the table have been measured by the PRAAT pro-
gram and reproduce table IV from the () study except for
the correlations with log F3.’

log F} log F, log F; Ly Ly Ls

log F} —-0.230 0.103 0973 —-0.670 —-0.286
logF, —0.196 0.208 -0.304 0.841 -0.828
log F;3 0.055 0.158 0.119 0.038 —0.082
L, 0.593 -0.207 0.091 -0.741 -0.197

L, -0.511 0.656 0.076 —0.386 —0.449

Ly -0.227 -0.576 0.116 -0.061 0.019

study of ().

In section 7.3.1 we elaborate more on correlations, as we will discuss not only
correlations between columns in the data matrix, as were presented here, but also
correlations between linear combinations of columns.

3.5.4 Projecting data on the discriminant space

To project the data on the discriminant space we select from the list of objects the
TableOfReal object and the Discriminant object together and choose: To Configur-
ation.... The axes in the Configuration object are the eigenvectors from the Discri-
minant object. Figure 3.4 on the next page shows the data when projected onto the
plane spanned by the first two dimensions of the Configuration object. The plot on the
left looks very similar to the log(F)) vs. log(F,) plot of figure 3.3 on page 33. The
eigenvectors, on the right hand side, show that indeed the log(F;) and the log(F,) vari-
ables have the largest weight because the first eigenvector is dominated by log(F;) and
the second eigenvector is dominated by log(F;). Script 3.5 summarizes the procedure.

select TableOfReal pols_bOmales

plus Discriminant pols_bOmales

To Configuration... 0
Viewport... 0505
Draw... 12 -1.1 -0.3 -3.6 -2.8 yes

Script 3.5. Draw LDA space.

In case one is only interested in the projection, there also is a shortcut in the “Multi-
variate statistics — submenu that deletes the intermediate Discriminant object:

3.5. Discriminant analysis in the PRAAT program 37

eigenvector 1

eigenvector 2

eigenvector 2

—3.6 T T T T T T T
-1.1 -0.3

eigenvector 1

Figure 3.4. Projection of the six-dimensional Pols et al. data set on the plane
spanned by the first two eigenvectors from the discriminant analysis.

select TableOfReal pols_bOmales
To Configuration (lda)... 2

Script 3.6. Draw LDA space (shortcut).

3.5.5 Drawing concentration ellipses

In order to draw concentration ellipses for the different groups, we select from the
list of objects the Discriminant object and choose Draw sigma ellipses.... In the
form one can fill out the desired coverage of the ellipse by way of the parameter
numberOfSigmas. One can also select the projection plane. Figure 3.5 shows the 1o
concentration ellipses in the standardized log F; versus log F, plane. If the data are
multinormally distributed and projected onto a plane, an ellipse whose axes have a
length of 2 - numberOfSigmas covers approximately (1 — g—numberOfSigmas’/ 2y - 100%
of the data, being 39.4% for ¢ = 1. It should of course be no surprise that the corre-
sponding long/short vowel pairs /e, 1/, /@, Y/ and /o, o/ strongly overlap, since duration
is not represented here. Apparently the formants of /a/ and /a/ are rather different.
Script 3.7 summarizes.

select Discriminant pols_50males

Draw sigma ellipses... 1.0 no 1 2 2.3 3.0 2.8 3.5 yes

Script 3.7. Draw sigma ellipses

38 Chapter 3. Principal component analysis and discriminant analysis

Fy
200 400 600 800 1000

g
J

2800

2400

D
_ @ 2000
_ @ @ r1600

()| "
| L1200

log F»

_ 800

N 0
w
W

log Fy

Figure 3.5. Concentration ellipses of the Pols et al. data set in the plane spanned
by the first and second formant frequency on a logarithmic scale.

3.5.6 Classifying the data
Script 3.8 summarizes how to classify these and other data.

select Discriminant pols_50males
plus TableOfReal pols_5Omales

To ClassificationTable... no yes
To Confusion

Get percentage correct

Script 3.8. Classification and confusion matrix.

First we select both the classifier, the Discriminant object, and the data to be clas-
sified, the TableOfReal Object, as is shown by the first two lines in the script. In this ex-
ample, the test data set equals the training data set.'” Next we make a Classification-

10The data set to test the classifier may be any data set whose data format conforms to the data set that

3.6. Conclusion 39

Table object that will contain the posterior probabilities of group membership p ;. The
p; are defined as:

exp <—d12.(x)/2>

pj=pr0lx)= : (3.24)
! ¢ exp(—d2(x)/2)
where diz(x) is the generalized squared “distance” function
d}(x) = (x—p;) E7 (x—p)+ In |Z;] = 2 In(apriori,). (3.25)

The first term in this “distance” function is the Mahalanobis distance; it is based on
the individual covariance matrix %;. The following two terms are the logarithm of
the determinant of %;, which may be negative, and the a priori probability apriori;
of x belonging to group i, respectively. For each input vector x (each row in A)
we can calculate the p;. In equation (3.25) as its stands, we use a group-specific
covariance matrix in the distance calculation. This analysis is often called Quadratic
Discriminant Analysis because the boundaries between the groups, when projected
on the two-dimensional space, are quadratic curve segments. A data point on the
boundary between two groups has equal probabilities of belonging to both. In QDA
“distance” is not symmetric between different groups; it might even turn out to be
negative. A simpler analysis, called Linear Discriminant Analysis, results if we use
the same covariance matrix for all groups in the distance calculation. The distance
function in this case is

d?(x) = (x—;) 7' (x—p;)+ In |Z| — 2 In(apriori,), (3.26)
where X is the pooled covariance matrix that can be obtained as

Zf:l niSi
Y=, (3.27)
g
i=1"!
where n; is the number of elements in group i. LDA has the advantage above QDA
that we need less data for training because we only have to learn one covariance matrix
instead of g matrices.

Performing a QDA classification yields a percentage correct of 79.2%. This is
0.3% less than the 79.5% that can be found in table IV of the () study.
This minor difference, which accounts for 2 extra items being misclassified in our
study, may be the result of variations in the implementation of the discriminant clas-
sifiers and differences in numerical precision.

3.6 Conclusion

We have described recent algorithms for performing principal components analysis
and discriminant analysis. Both algorithms are based on singular value decomposition

was used to train the discriminant classifier, i.e. it must contain the same variables in the same columns.

40 Chapter 3. Principal component analysis and discriminant analysis

of the data matrix. There is no need for covariance matrices to be formed first. It was
shown that leaving out this operation has numerical advantages. Both algorithms were
implemented in the computer program PRAAT and from an example it was shown how
the latter algorithm can be used effectively. The algorithms are designed for data sets
that fit into the memory of the computer and are relatively fast on modern computers.
Say, on a year 2006 computer with 1 GB of memory approximately 320 MB can be
used for the data matrix (we can not use all the memory because we first have to make
a copy of the data matrix and subsequently transform the copy). We can then handle
a data matrix with forty million cells with double precision numbers. This could for
example be a matrix with 2000 000 rows and 20 columns. By temporarily saving the
original matrix we could even double the available storage space. Nevertheless there
will always be data sets too large to handle in this way and then we have to fall back on
other techniques like the one displayed in equation (3.2) where we explicitly calculate
the between-group variance and the within-group variance matrices B and W.

To learn the association between the labels and the data, a discriminant classifier
needs all the data at once in order to calculate its parameters. In the next chapter we
will first explore a feedforward neural net classifier that does not need to process all
the data at once but can learn the associations between labels and data by presenting
the data successively, one item at a time. In the last chapters we will then return to the
techniques described in this chapter.

Chapter

Aspects of neural nets*

Abstract

In this chapter we investigate the relation between the topology of linear supervised
feedforward neural nets and their classification capabilities. Starting with the clas-
sification capabilities of one single node (the building block of neural nets) we will
describe the effect of adding nodes and layers of nodes. It will be shown that the clas-
sification capabilities of one-layer nets are restricted to a problem space that is linearly
separable. Two-layer nets can combine the hyperplanes formed by the first layer to
form cells in the input space. However, not all possible combinations of cells can be
selected by a two-layer net. Only nets with three or more layers can make all possible
combinations of cells in the input space. Criteria are given in order to optimize the
topology of neural nets for specific tasks because the training of a neural net is a very
computationally intensive task. However, the recognition performance of a neural net
is always very fast. Some aspects of the effects of varying weights on the decision
regions will also be discussed. The application of feedforward neural nets to vowel
classification is presented in chapter 5.

*This chapter is a modified version of ().

42 Chapter 4. Aspects of neural nets

4.1 Introduction

4.1.1 Context and outline

In recent years there has been much interest in the use of neural nets in speech re-
search. Neural nets have been used a.o. for vowel-classification tasks (
s ; s), speaker-dependent classification of consonants (
s), isolated-word recognition (

,) and speech analysis (,). In the studies cited above
no explicit motivations were given concerning the topology of the neural nets used.
Topology in this context refers to the architecture of the net in terms of number of
layers and number of nodes in each layer. Most of the time, topologies were deter-
mined by ‘trial and error’. In the present study, one of the main topics will be to give
some theoretical background on the link between the topology of a neural net and its
‘classification capabilities’. One of the questions we want to answer is the following:
Given a certain classification problem, what are the minimum bounds on the number
of layers and the number of nodes in each layer, in order to be able to perform this
task? When a neural net is used for classification it has to specify to which of M
classes a given input belongs. We will concentrate on the classification capabilities of
supervised auto- and hetero-associative neural nets with analog inputs, i.e. the inputs
are real-valued (for a definition see section 4.1.2).

The general outline of this chapter will be as follows. After a brief introduction,
explaining some of the terminology used in the field, we will start by examining the
classification capabilities of a single node, the building block of a neural net. Next we
will investigate the capabilities of one layer of these building blocks: one-layer nets.
We will show that when we add another layer and make a two-layer net, the classifica-
tion possibilities increase significantly. Adding yet another layer gives us three-layer
nets. It will be shown that a three-layer net can meet all ‘possible’ classification tasks.
The last section will cope with some other aspects of neural nets such as the function
of the nonlinearity. Discussion and conclusions end the chapter. The application of
feedforward neural nets for vowel classification will be discussed in chapter 5.

4.1.2 Terminology

In the literature, several other names for neural nets are commonly used: connectionist
models, parallel distributed processing models (PDP), artificial neural nets (ANN),
multi-layer perceptrons (MLP) and Boltzmann machines. We prefer the term neural
net. In a neural net, the basic building block is called a node. Other denominations
are processing element, processing unit and sometimes McCulloch-Pitts unit. In a
neural net many of these nonlinear nodes are connected and work in parallel. The
architecture resembles the patterns that neurons make in the nervous system, hence
the name neural net. The nodes are usually organized into a sequence of layers and
connected to each other with connections of variable strength. These connections
contain the ‘knowledge’ or the ‘memory’ of the net. In general, it is not possible to

4.1. Introduction 43

decide which specific connection is responsible for what classification decision: the
‘knowledge’ is distributed over the net. In the operation of a neural net two phases can
be distinguished: the learning or training phase and the regeneration or recall phase.
During the regeneration phase the net has to show what it has learned, it processes a
given input to generate an output. During the learning phase a node has the ability to
modify its connection strengths, i.e. its weights, depending on the input signals which
it receives and the associated teacher signals or error signals; this is called supervised
learning. A neural net is called hetero-associative when teacher signal and input signal
are different, and auto-associative when they are the same. The teacher or error signal
is not provided in some cases where a node modifies its weights depending only on its
state and input signal. This is the case of unsupervised learning, and such a learning
scheme is sometimes called self-organization. For further details on these types of
learning, we refer to the papers of (), () and

(1991).

4.1.3 Topology

First some remarks concerning notation. We will write down the topology of a net-
work, the number of layers and the number of nodes per layer, in the following way:

(Xyseoor Xy ovos X)) 4.1)

where X is a representation of the information at a particular layer. X is either the
symbol A or B, meaning that the representation is analog or binary, respectively. n
is the number of inputs, n is the number of outputs and #; is the number of nodes in
hidden layer j —1 (for j > 1). Hidden units are units that are neither input nor output.
We do not count the inputs as a separate layer, so the number of layers of a neural net
is always one less than the number of elements between parentheses, i.e. k — 1. The
term ‘inputs’ can refer to two things: the input for the net or the input for a particular
node. It will be obvious from the context which input is meant. Examples of some
topologies:

(A,, By) one-layer net with two analog inputs followed by a layer with four binary
outputs.

(A,, Ay, B3) two-layer net with two analog inputs followed by a layer with two hid-
den analog nodes and a layer with three binary outputs.

(B4, By, B3, By) three-layer net with four binary inputs, followed by a layer with two
binary hidden nodes, followed by a layer with three binary hidden nodes and a
layer with four binary outputs.

This notation is only suitable for feedforward nets. In a feedforward net there are no
feedback connections; information travels in one direction. Only during the learning
phase does information flow from the output of the net to the input. In this chapter we
will restrict ourselves to feedforward neural nets since these nets are the most popular
nowadays and mathematically the simplest to start with.

44 Chapter 4. Aspects of neural nets

4.2 Capabilities of one node

The basic building block of a neural net is the node. A node is an element that receives
a number of inputs, weighs them and then calculates an output. This output, y, is

defined by:
N
y =f<2w;x;—0) (4.2)
i=1

Here,the x; (i =1, ..., N) denote the N input values, the w; (i = 1,..., N) are real
numbers that weigh each input x;, the @ is the threshold or bias term and f is an arbi-
trary function. In equation (4.2), the inputs are linearly weighed. The argument of the
function f is a linear combination of the inputs x;. When the argument is equated to
a constant, e.g., zero, it forms the equation of a hyperplane in a N-dimensional space.
This hyperplane separates the input space into two regions, one on each side of the
hyperplane. Essential of f is that it can be chosen nonlinear in such a way that differ-
ent values on either side of the hyperplane result. Two popular forms of this function
are the sigmoid function or logistic function, and the hard limiting nonlinearity, the
Heaviside function. In the sequel, unless explicitly mentioned, we limit the discussion
to a nonlinearity f of the Heaviside form. This means that the value of the function f
attains distinct values on both sides of the hyperplane, e.g., 1 whenever its argument
is greater than zero, and O whenever its argument is less than or equal to zero. Some-
times, a node with the Heaviside nonlinearity is called a McCulloch-Pitts unit. We
will give an example of the two-dimensional case with topology (A,, Bj).

O,1) (1,1)

/ output ol 0
2
Wy B

00 X —= 1.0

(a) (b)

Figure 4.1. (a) Example of a net with topology (A,, B;). (b) The dotted line
separates the input space into two regions A and B.

In figure 4.1a the full topology is drawn and in figure 4.1b, the output of the (bi-
nary) node as a function of both inputs. The equation for the hyperplane dividing the
space follows from the argument of equation (4.2) and boils down to the equation of
a line in the two-dimensional case:

wix| +woxp, — 6 = 0. 4.3)

4.3. Capabilities of one-layer nets 45

This line divides the plane in two parts A and B. The exact partitioning depends
on the values of the weights w1, w, and the bias 8. We can see that in the example w
must be negative, w, must be positive, and § must be positive.

4.3 Capabilities of one-layer nets

In this section we will discuss the classification capabilities of one-layer neural nets.
The one-layer neural net represents the most simple neural net. Its topology is (An, B,),
N analog inputs and p binary outputs, each input being connected to p outputs. We
consider the N-dimensional input space divided into p subspaces by p hyperplanes.
Classifying in this context means that whenever the input is in subspace k, the output
of node k should give a 1 and the output of the other nodes should give a 0. A single
node, as we have seen in the previous paragraph, separates the input space into two re-
gions by means of a hyperplane. Each node in the layer can classify according to one
distinct hyperplane. Consequently, the classifying capabilities of a one-layer net are
restricted to problems which are linearly separable. A set .S, with N elements A;, is
linearly separable if for all A; there exists a hyperplane that separates A; from .S — A;.

As an example, consider a set .S with three elements A, B and C. Linear separa-
bility means that A can be separated from B U C (the union of B and C), B can be
separated from AUC and C can be separated from AU B. In figure 4.2 some examples
are given of sets in a two-dimensional space that are linearly separable (a and b) and
some sets that are not (c and d).

A question related to linearly separable sets is the following: Given a set .S of p
points uniformly distributed in N-dimensional space. What is the probability that .S
is linearly separable? First we note that when p < N + 1 the set is in general linearly
separable. This question can be solved in a recursive manner: the probability that p
points are linearly separable is equal to the probability that p — 1 points are linearly
separable times the probability that the p-th point is situated such that it is linearly
separable from the other p — 1 points. What is the probability that, given a set .S’
of p — 1 points that is linearly separable, the p-th point, randomly chosen from a
uniform distribution, is linearly separable? We will try to make it plausible that when
p/N — oo the probability that the set S is linearly separable tends to zero.

In the one-dimensional case it is obvious that when p > 2, .S is not linearly sepa-
rable. In a two-dimensional space spanned by [0, 1] x [0, 1], three randomly chosen
points in this space are linearly separable with probability 1. What is the probabil-
ity that a fourth, randomly chosen, point is linearly separable? In figure 4.2e we have
drawn three points A, B and C. We can see from this figure that when a fourth point £
is situated in the shaded region, the set of four points is not linearly separable. When
four points A, B, C and E are not linearly separable in two-dimensional space, one
can always draw a triangle with corners on three of the four points such that the point
not used to form the triangle lies in its interior (in the figure the triangle A E B encloses
point C). The probability that the four points form a linearly separable set is equal to
the ratio of the nonshaded area to the total area. It will be approximately 0.5 in figure
4.2e. The situation for p = 5 in two dimensions is depicted in figure 4.2f. The prob-

46 Chapter 4. Aspects of neural nets

A ok

linearly separable O
z
3

B C
NOT linearly separable O O O

(e) ®

Figure 4.2. Linear separability in two dimensions. The elements in panels (a)
and (b) are linearly separable with a one-layer net, the elements in panels (c)
and (d) are not. In (e) and (f) the elements (A, B,C) and (A, B, C, D) are
linearly separable. Adding a new element E, in the shaded area, renders the
new element not linearly separable from the others.

ability for linear separability in two dimensions of a set with p = 5 is the product of
the probabilities for the sets with p = 3 and p = 4. Every time we add a new point
this probability decreases. This argument makes it plausible that the probability that a
set of p randomly chosen points is linearly separable goes to zero when p /N goes to
infinity.

We will show in the next section that whenever a set .S is not linearly separable, at
least one additional layer is needed in order to be able to classify its elements.

4.4. Capabilities of two-layer nets 47

4.4 Capabilities of two-layer nets

4.4.1 Introduction

In the preceding sections we have seen that each node in the first layer is capable of
separating the input space into two regions by means of a hyperplane. Addition of a
second layer turns out to enrich the classifying potential enormously. The first layer
forms hyperplanes in the input space. The second layer makes logical combinations
with these hyperplanes from the first layer. A logical combination of hyperplanes
boils down to forming so-called cells in the input space. A cell is the smallest region
in the input space that is bounded by one or more hyperplanes. Before going into
the classification capabilities of two-layer neural nets, which is a question about the
possible combinations of cells in the input space that can be selected by a node in the
second layer, we first want to answer another question. How many nodes in the first
hidden layer do we need to be able to classify M cells in the input space?

4.4.2 Number of cells formed by a two-layer net

The question stated above can be translated into the following problem: Given an
N-dimensional space S, how many hyperplanes, of dimension N — 1, do we need
to divide space .S into M subspaces? () and
() have found the answer to a related question:

What is the maximum number of subspaces in which p hyperplanes can divide an
N-dimensional space? Let C(p, N) be the number of cells, formed by p hyperplanes
in N-dimensional space. In general the following recursive relation holds (,

):

Cp,N)XClpp—-1,N)+C(p—-1,N—-1), 4.4)

with equality if the hyperplanes are in a general position, i.e. no more than N planes
intersect at the same point and no hyperplanes are parallel to each other. Starting with
initial conditions:

CO,N)=1 and Cp.0)=1 4.5

it follows that:

N
cp.N=Y <’:) (4.6)

i=0
Whenever p < N, equation (4.6) simplifies to:

C(p,N) =2%. “4.7

Equation (4.6) gives the theoretical upper bound on the number of cells that can be
formed by p hyperplanes in N-dimensional space. The number of cells grows expo-
nentially whenever the number of hyperplanes, p, does not exceed the dimension of
the space, N. If p > N the exponential growth changes into polynomial growth; how-
ever, the degree of the polynomial increases with the dimension N. Table 4.1 shows
C(p. N) for a number of values for p and N. For example, C(3,2) = (})+ () +(3) =
1+3+3=17.

48

Chapter 4. Aspects of neural nets

Table 4.1. Values of C(p, N), the maximum number of cells in a N-
dimensional space formed by p hyperplanes of dimension N — 1 in general po-
sition. The upper row shows the dimension N, while the first column shows the
number of hyperplanes p. The relation C(p, N) = C(p—1, N)+C(p—1, N-1),
is illustrated for p = 4 and N = 3 (bold font).

PN 1 2 3 4 5 6 7 8 9 10
12 2 2 2 2 2 2 2 2 2
2 3 4 4 4 4 4 4 4 4 4
34 7 8 8 8 8 8 8 8 8
4 5 11 15 16 16 16 16 16 16 16
5 6 16 26 31 32 32 32 2 32 32
6 7 2 42 57 63 64 64 64 64 64
78 29 64 99 120 127 128 128 128 128
8 9 37 93 163 219 247 255 256 256 256
9 10 46 130 256 382 466 502 511 512 512

10 11 56 176 386 638 848 968 1013 1023 1024

15 16 121 576 1941 4944 9949 16384 22819 27825 30827
20 21 211 1351 6196 21700 60460 137980 263950 431910 616666
50 51 1276 20876 251176 2.4-10° 1.8-107 12-10% 6.5.108 3.2.10° 1.3.10°
100 101 5051 166751 4.1-10° 7.9-107 1.3-10° 1.7-10'° 2.0.10'"" 2.1-10'2 1.9-10"
1000 1001 500610 1.7-10% 4.2-10'° 83.10'2 1.4-10 2.0-10'7 24-10" 2.7-10* 2.7-10%

C(p, N) may serve as an indication to find the minimum number of binary nodes

in the first layer that is necessary to classify M sets in N-dimensional input space. We
consider two cases:

1. M <2V

The minimum number of nodes, p, is given by:
p=[*logM]. (4.8)

where the brackets mean rounding to the nearest higher integer. For example if
M =3 and N =2 we have p = 2, because 1 < 2log3 < 2.

. M >2N

The problem is to find for given M a minimal p such that for a given dimension
N:

N
Cp.N) =Y, (’? > > M. (4.9)
i=0 \!

Equation (4.9) is polynomial in p of order N and hard to solve. Generally it
may be impossible to find an analytical solution for N > 5. For small p and N
a table lookup gives us the answer we need. However, if p > N we can make
the following estimation for the polynomial C(p, N):

P (p—N+1DV
C(p.N) > (N) > N (4.10)

which yields:
p>VYMN!'+N-1. (4.11)

4.4. Capabilities of two-layer nets 49

In practice, we have to be careful what number to take for N, the dimension of
the input space. When the inputs are mutually ‘orthogonal’, the dimension of the
input space is simply equal to the number of inputs. However, in many occasions the
‘effective’ dimension of the input space can be substantially smaller than the number
of input units. This occurs when the inputs are correlated. An indication of the actual
dimension of the input space can then be given for example by a principal component
analysis. A concrete example: We want to classify the twelve Dutch vowels and each
vowel is specified by sixteen bandfilter values. The minimum two-layer net topology
that could perform this task is (A6, By, B12), sixteen analog inputs, twelve binary
outputs and 4 hidden binary nodes, where 4 depends on the real dimensionality of the
vowel space. From table 4.1 we observe that, in order to make twelve cells, we need
h = 4 when the dimension of the input space is greater than two. Should the real
dimension of the problem be N = 2, we look up: & = 5. This example (and in general
the table) shows that to separate the same number of classes we need more nodes if
the dimensionality is low. This can also be deduced from the table, which shows that
with the same number of nodes, we can create more cells if the dimensionality is high.

4.4.3 Permissible logical combinations of two-layer nets

Let us consider two-layer nets with topology (A;, B;, By): i analog inputs, j binary
hidden nodes, and k binary outputs. Each of the k outputs can form logical combina-
tions with its inputs, i.e. the output of the hidden nodes j that form hyperplanes in the
input space. Potentially each output k can form 2/ distinct logical combinations with
the outputs of j hidden nodes. A logical combination of hyperplanes forms cells in
the input space. The question that presents itself now is: which cells, or, which com-
bination of cells, can be selected by a particular node in the second layer, the output?
Such a combination of cells will be called a decision region. Before we can answer
this question we first of all have to know what logical combinations of hyperplanes are
permissible with a two-layer net. In this paragraph we will prove that of all possible
logical combinations only certain subsets of a restricted form are permissible with a
two-layer net.

All possible logical combinations can be formed with the operators A (AND), V
(OR), = (NOT) and @ (XOR: eXclusive OR). Table 4.2 shows the outputs of these
operators on two binary inputs z; and z,. We can interpret this table graphically by
representing z; and z; in the two-dimensional plane. In figure 4.3a we notice that one
line separates the point (1, 1) from the three points (0, 0), (0, 1) and (1, 0). This line
functions as the decision boundary for the Boolean AND. Likewise the line in figure
4.3b functions as the decision boundary for the Boolean OR. However, there exists
no single line that could function as the decision boundary for the Boolean XOR,
i.e. there is no line that could separate the points (0, 1) and (1, 0) from the two other
points. Therefore, a two-layer neural net cannot have decision regions selected by an
XOR. On the basis of this conclusion (and at that time, the lack of a suitable training
algorithm) it was once suggested that neural nets were not very interesting objects to
investigate (,). The only logical operators that can be used in
forming logical expressions, learnable with a two-layer net, therefore are: A (AND),

50 Chapter 4. Aspects of neural nets

V (OR) and = (NOT). We will prove that the only permissible logical combinations of
anode with N binary inputs are of the following two forms:

IV VZ)IN@Zpr1 AN Zpyr) for p k>0 and p+k< N (4.12)

(Z1V...VZ)V(Zpr1t Ao . ANZpyr) for p k>0 and p+k<N. (413)

Table 4.2. Truth table of the Boolean operators = (NOT), A (AND), v (OR),
en @ (XOR)

21 22 "1 Nz iV 21822

0 0 1 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 1 0 1 1 0

In these logical expressions the z; are either 0, ‘FALSE’ or ‘off’, or 1, ‘TRUE’ or
‘on’. We implicitly assume that each z;, is used only once in the particular expression.
We will prove these formulas by constructing an explicit decision function for each
one of them. A general decision function of a node, with N inputs z;, has the form:

a1Z21 +azr+...aNIN > C, (414)

where the a; are the weights and ¢ is the bias. If coefficients a; and bias ¢ can be
found for expressions (4.12) and (4.13) then these forms are learnable. We first note
that, without loss of generality, we can choose the decision function for these logical
expressions in such a way that only two different coefficients a; are needed:

I-(zi+...+zp)+a- - (Zpp+ ...+ 2p4k) > c. 4.15)

The logical expression (4.12) imposes the following four conditions on the deci-
sion function (4.15):

1. If at least one of the z; (i < p) is on, and all the z;(j > p) are on, then (4.15)
holds.

2. All the z;(i < p) may be on, but, whenever one of the z;(j > p) is off, (4.15)
does not hold.

3. If all k nodes z;(j > p) are on but none of the z;(i < p), (4.15) does not hold.

4. If none of the z;(i < p) and none of the z;(j > p) are on, (4.15) does not hold.

4.4. Capabilities of two-layer nets 51
(0,1) (1,1) O,1) (1,1
O (O O
O O O O
(0,0) (1,0) (0,0) (1,0)
(a) (b)
z 1 1 Z)
1
Bl
2 DETD Zy
X9 X2
() (d)
Figure 4.3. Graphical representation of boolean functions AND (a) and OR (b)
of a neural net (c) with topology (A,, B,, B;). The XOR function cannot be
made: there is no single straight line that separates both (0, 1) and (1, 0) from
the other two points. In (d) the XOR-decision region in the input space is shown
shaded.
These conditions can be mathematically stated as:
l+ak>c k>1 (4.16)
ptak—-1)<c p>1
ak <c
0<ec.
From the first and the third expression in (4.16) it follows that
ak <c<ak+1, “4.17)
while all three combined give:
c—1 . c—p ¢
< a < min 1 %) 4.18)

52 Chapter 4. Aspects of neural nets

which gives rise to the following condition:

-1 _
¢ <min<%,5>. (4.19)

k

This gives rise to two possibilities for c:

c > k(p-D+1
c > kp.

The first equation includes the second one if k£ > 1. Equation 4.17 limits the range of
¢ to an interval of size smaller than 1 and this allows us to write:

c=k(p-D+1+¢ for O<e<l. (4.20)

The value for a can be taken halfway between the values on the right-hand and left-
hand side of equation (4.18) and it becomes:

ek —-1)

S I
=Pt k=D

for O<ex<l. “4.21)
Equations (4.20) and (4.21) show that values for the bias and the weights can be found
that satisfy decision function (4.12). In an analogous manner the conditions imposed
by logical expression (4.13) on the decision function (4.15) are the following:

> ¢
0 < ¢
ak > ¢
alk—1) < c.
From these four equations we deduce:
0 <cx1 (4.22)
_ cQk=1)
= kG-

These expressions for the weights a and the bias ¢ show that decision function (4.13)
can be satisfied. We now have shown that it is possible to form decision functions for
the logical expressions (4.12) and (4.13). To show that these expressions are the only
ones permissible we further have to show that no decision function can be constructed
for any other possible expressions. Exactly two other ‘basic’ expressions exist that
have a form analogous to (4.12) or (4.13): the and-of-ors (4.23) and the or-of-ands
(4.24). These forms are given by:

(ZIV. .. VZ)IN@Zpr1 V... V) for pk>2 and p+k< N (4.23)

(I A ANZY)V(Zprt A ANZpyr) for pk>2 and p+k<N. (424)

4.4. Capabilities of two-layer nets 53

In these expressions the minimum values of p and k are 2 since smaller values would
reduce them to one of the forms (4.12) or (4.13). The following conditions can be
imposed by the logical and-of-ors expression on the decision function (4.15):

l1+a > ¢
2 < ¢
20 < c.

Combining the last two expressions in (4.25) and dividing by 2 results in
l+a<c. (4.25)

This expression contradicts the first expression of (4.16). This proves that expression
(4.23) is not a permissible one in our context. The following conditions on p and «
lead to a contradiction for expression (4.24):

p > c

ka > ¢

p—-1 < ¢
p—1+k-Da < c.

We have now proved that expressions (4.12) and (4.13) are valid expressions and
(4.23) and (4.24) are not. To complete the proof that (4.12) and (4.13) are the only
valid expressions we still have to show that all expressions that have (4.23) or (4.24)
as a subexpression are not permissible. This proof is trivial. We can summarize the
permissible logical expressions of a node in the following way: all permissible logical
expressions are composed of either a series of simple ANDs combined with possibly
one series of simple ORs, or a series of simple ORs combined with possibly one series
of simple ANDs.

4.4.4 Decision regions of two-layer nets

In section 4.4.2 we discussed the number of cells formed in the input space by a
logical combination of the hyperplanes of the hidden layer and in the previous section
the permissible logical combinations that a two-layer net can make. Now we are ready
to tackle the classifying capabilities of two-layer neural nets. The decision regions of
an output node in a two-layer net with topology (An, B,, By), i.e. N analog inputs,
p hidden binary nodes and 1 binary output, constitute those combinations of cells
in the input space that are permissible. The number of possible decision regions is
2C(.-N) _ 1, where C(p, N) is the number of cells in the input space. Because of the
form of the permissible expressions (4.12) and (4.13), a combination of maximally p
simple terms which each can have the value O or 1, the output node can maximally
form 27 different combinations. The number of different combinations at the output
layer is in general much smaller than the number of possible decision regions in the
input space.

54 Chapter 4. Aspects of neural nets

In figure 4.3d an example is given of a decision region that could not be formed
with a two-layer net, one that amounts to an XOR. We will show that, despite the fact
that not all possible logical combinations are permissible, very many interesting deci-
sion regions are possible with two-layer neural nets. (, page 16) states
that the decision regions of two-layer neural nets are either bounded or unbounded
convex regions in the input space. We will demonstrate that this statement is not cor-
rect and too conservative. Decision regions do not need to be convex: non-convex and
‘hollow’ regions are possible too. The definition of a convex region is that a straight
line segment between any two points in the region lies totally within the region.

(b)

Figure 4.4. Two possible decision regions for two-layer nets. (a) Most simple
concave decision region of net with topology (A, B4, By). In figure (b) the
most simple hollow decision region of a net, with the topology (A,, B, By) is
shown. That side of the line where the output of the hidden node is 1 is marked.

Figure 4.4a shows four possible decision lines, z;, z2, z3 and z4 from the four
hidden nodes from a net with topology (A;, By, B;). We will show that the output
node can form the non-convex decision region that is shown shaded in this figure,

4.4. Capabilities of two-layer nets 55

by a specific combination of the four decision lines. A 1 denotes that side of the
line where the hidden node generates a 1, the other side of the line gets the 0. It is
not essential which side of the line is chosen. All eleven cells are labelled with the
quadruple (z1, 22, 23, 24), giving the relative location with respect to the four decision
lines. We have to prove that we can find a linear combination of z;, z», z3 and z4 such
that when the value of this linear combination exceeds the bias, precisely the shaded
area, a combination of three cells in the input space is selected. The Boolean function
characterizing the desired decision region is:

(z1Vz2)Az3 A z4 (4.26)

The decision function for this logical expression can easily be found with the help
of the rules we gave in the preceding paragraph. The weights and bias can be chosen
according to formulas (4.20) and (4.21). Because (4.26) is a simple expression we
will deduce the decision function in yet another way. Column B/ in table 4.3 contains
the value of this Boolean expression; it returns a 1 for each cell in the desired region
and a O for all others. The table as well as the figure show that the combinations of
21, 22, 23 and z4 that select the desired decision region all contain at least three 1’s.
Therefore the sum function (column Sum in the table) z; + z» + z3 + 24 with a bias
of 3 almost selects the region. A small modification of the sum function is needed to
weigh z3 and z4 somewhat more than z; and z; to deselect two unwanted regions with
a sum of 3. It appears that the following function, implemented in the output node By,
selects the correct region:

1+ 2+ +e)(z3+z4) >34+ 1.5 4.27)

The exact value of e is not important in this context; it can be any value between zero
and one. We have now shown that the function (4.27) can select the shaded region of
figure 4.4a.

A two-layer neural net is also capable of making ‘hollow’ decision regions as
illustrated in figure 4.4b which shows the simplest ‘hollow’ decision region that can
be constructed in two dimensions. We will prove that the output node of a neural
net with topology (A;, Bg, By) can already generate this decision region. As before,
Z1, ..., Ze are decision lines corresponding to the six hidden nodes. The shaded area
is given by the Boolean expression:

Z1ANZ2 A z3 A (24 A 25 A 26) (4.28)
which can be brought into the standard form (4.12) as:
(24 V225V 2e) AT A2 A 23 (4.29)

Disconnected decision regions are possible too with a two-layer net. We will give
an example in one dimension. Given that a < b and the decision boundaries z; =
x < aand z; = x > b, then z; V z; selects the simplest disconnected decision region
possible.

56 Chapter 4. Aspects of neural nets

Table 4.3. Column B/ shows values of the Boolean expression (z;V z2)Az3A 24
for all possible combinations of zi, z2, z3 and z4. Column Sum shows the
value of z; + zo + 23 + z4. Because of the chosen topology not all possible
combinations of z;, z», z3 and z4 are associated with real cells in figure 4.4a.
The combinations that are not present in the figure are associated with virtual
cells and are shown in column Present with a minus sign.

Bl Sum Present

N
'
[
I
)
N
I~

0O 0 o0 o0 O 0 -
0O 0 0 1 0 1 +
0O o 1 0 O 1 +
0 0 1 1 0 2 +
0O 1 0 0 O 1 -
0O 1 0 1 0 2 +
o 1 1 0 O 2 -
0 1 1 1 1 3 +
1 0 0 O O 1 -
1 0 0 1 0 2 -
1 0 1 0 O 2 +
1 0 1 1 1 3 +
1 1 0 0 O 2 +
1 1 0 1 0 3 +
1 1 1 0 O 3 +
1 1 1 1 1 4 +

4.5 Three-layer nets

Three-layer nets are capable of implementing the whole set of Boolean functions,
AND, OR, XOR and NOT. We have seen that the Boolean expressions that a two-
layer net could form were of the restricted forms (4.12) and (4.13). A three-layer net
imposes no restrictions on Boolean expressions. To prove this, we first use the fact
that the Boolean operators A, V and = form a complete set, i.e. every possible Boolean
expression can be constructed with only these operators. It then suffices to show that
with a three-layer net, for every possible combination of these operators, a decision
function can be constructed. Every Boolean expression can be broken down into sim-
ple expressions that can be handled by a two-layer net, combined with A or V. These
notions conclude the ‘proof’. We will just give a simple example how combinations
of expressions can be implemented. The most simple Boolean expression that cannot
be implemented in a two-layer net is the XOR. We can write z; @ z, in two possible
ways either as an or-of-ands or as an and-of-ors:

(mz1 A z2) V(21 A 722) (4.30)

(z1 Az2) V (721 A -z2) (4.31)

4.5. Three-layer nets 57

The two forms above suggest two possible implementations for a net of topology
(B, By, By), i.e. two binary inputs, two hidden binary units and one binary output.
(Beware: the given topology is that of a binary two-layer net and not that of a three-
layer net. However, in general, we are not interested in binary inputs but in analog
inputs because we want to combine hyperplanes in the input space. Therefore the
inputs should be considered as a layer that receives input from a preceding analog
layer.)

Figure 4.5. Implementations of the XOR-function with two different topolo-
gies. In all figures 0 < e < 1.

The first implementation is suggested by (4.30): the two expressions within paren-
theses are implemented in either hidden node and the output combines them with V.
The biases and weights can be calculated with the help of the formulas of section 4.4.3.
The second implementation can be derived in an analogous manner from (4.31). These
two possible implementations of the @ are shown in figure 4.5a and 4.5b. A careful
look at equations (4.30) and (4.31) suggests another topology which also implements
the @: one output node with three input connections, two directly connected to the
inputs and the third to the output of a hidden node which is also connected to these
inputs. The four possible combinations of weights and biases correspond to the four
possible choices for the Boolean function of the one hidden node: each one of the
expressions between brackets in (4.30) and (4.31). Figure 4.5c, e, and f show these
combinations. Note that 4.5c and d are trivially related by a ‘reflection’ of the weights.
Of course, the possible ways to implement the @ are not exhausted yet: with only four
constraints on nine parameters for a net with a topology like the one in figure 4.5a (six
weights and three biases) there is a lot of freedom. Likewise there are seven param-
eters to be calculated for a net with a topology as is shown in fig. 4.5¢ (five weights
and two biases).

58 Chapter 4. Aspects of neural nets

4.6 Other aspects of neural nets

4.6.1 The nonlinearity

The nonlinearity f in equation (4.2) guarantees that the capabilities of multi-layer
neural nets are essentially different from those of one-layer nets. Without the non-
linearity the function of a multi-layer net could be reduced to that of an equivalent
one-layer net. Different nonlinearities have been used in the literature, depending on
the problem. Up till now, in all the derivations of the preceding paragraphs, the non-
linearity was a Heaviside function. Possible outputs of nodes were limited to either 0
or 1. () use locally tuned nonlinearities leading to Connectionist Nor-
malized Linear Spline (CNLS) networks. In what follows, we will take the function
f of equation (4.2) to be a sigmoid function, o, because it is monotonous, continuous
and differentiable. The function ¢ reads:

1

R e

(4.32)
X is a sum of weighted inputs x; to the node (which can be either outputs of the
preceding layer or inputs) minus a bias 0:

X = Z Wixy — 0. (4.33)
k

The sigmoid function (4.32) has domain (—oo, +00) and range (0, 1), which means
that the output of a node can take all possible values between 0 and 1. From (4.32)
we can see that if X is constant, the output of the sigmoid function is constant. The
equation X = constant defines a hyperplane parallel to the hyperplane defined by
X = 0, the decision boundary of the hard limiting threshold function. Contrary to
the latter function, which discontinuously jumps from O to 1, the sigmoid changes
smoothly from O to 1. Both these extremes are approximated when the argument
tends to infinity. As shown in figure 4.6, we can define a transitional area where:

1
5

On the input side this defines a symmetrical region around X = 0. The input range
AX that corresponds with it is:

6<o(X)<1-96 for 0<6<

AX(5)=21In 1 ; S (4.34)

We can interpret AX(6) as that part of the domain of X where no clear decisions
are yet made, a transitional area. ‘Domain’ in this context must be understood as
the actual domain, i.e. the range of values of X in the problem at hand and not the
domain in the mathematical sense which is always (—oo, +o0). The ratio R between
this transitional area and the actual ‘domain’ of X is very important because it gives
us an indication of the relative sharpness of the decision boundary. This ratio is:

AX(5)

O<R= ————
< domain(X)

(4.35)

4.6. Other aspects of neural nets 59

This ratio R is a measure of the resolution we wish, it determines the width of a
decision boundary. If we want sharp boundaries this ratio has to be much smaller than
one. Given a certain decision boundary, the only way in which a node can ‘sharpen’ it
is by enlarging all the weights and the bias with the same factor:

X’=ﬁx=2ﬂwkxk—ﬂ9=Zw;xk—e’, for g >1. (4.36)
k k

05 1=5

3
00 . X® I

0.0

Figure 4.6. The sigmoid function.

From equations (4.33) and (4.36) we deduce that the equations X’ = 0 and X =0
describe the same hyperplane. However, the ratio R which determines the sharpness
of the transition in a node is determined by the on the training data. To separate two
training data items that lie close together in the input space but belong to different
output classes, the sigmoid has to be steeper than when the items lie further apart
in the input space. Therefore we may expect that weights and bias increase if we use
training data that lie close together in the input space and but belong to different classes
i.e. decision regions. This increase corresponds to an increase in f (note that when f
goes to infinity the sigmoid approximates the Heaviside function). This immediately
suggests a possible way to train a net: use data that lie close together in the input
space but belong to different decision regions; if possible, train with data near decision
region boundaries. From a theoretical point of view this may be all right but in practice
it turns out to be nearly impossible with feedforward nets. We will return to this point
in the discussion.

Because the hyperplanes X = constant are parallel to the plane X = O (the hyper-
plane for the hard-limiting threshold function), we conclude that the decision regions
for a neural net with sigmoids as nonlinearities can approximate the decision regions
limited by hyperplanes as closely as necessary, by increasing ff. However, the deci-
sion regions can substantially change when the ratio R changes. In general, when R
decreases, hypersurfaces gradually degenerate to hyperplanes. As a first example of
this matter, we have plotted in figure 4.7 some of the possible decision regions for

60 Chapter 4. Aspects of neural nets

Figure 4.7. Some of the possible decision regions of a net with topology
(A;, Ay, Ay). The decision regions are given by the formula: o(f,(c(10(x —
0.5)) — 0.5) + B2(6(10(y — 0.5)) — 0.5)). The values of the weights f; and
p> that were used, are indicated underneath each figure as the pair (f;, f2).
Black=1 and white=0.

the output of a net with topology (A, Ay, A;). For simplicity, we have taken the two
decision regions of the two nodes in the first layer to be the right half and the upper
half of the plane. The decision regions of the output were determined by the formula:

c(B1(c(10(x — 0.5)) — 0.5) + f2(c(10(y — 0.5)) — 0.5)), (4.37)

where the values of the weights f#; and f, have been taken from the set {1, 10, 100}.
For each of the nine possible combinations of #; and f,, the output of this equation
was calculated with the input in the domain [0, 1] x [0, 1]. Grey levels were used to
represent the output. Underneath each figure the particular values of f; and g, are
indicated as (f1, /7). Only positive values of f; and fi; were considered here because
different signs merely rotate the forms in the figures in multiples of 90 degrees. We
note that all decision regions are unbounded, i.e. all decision regions start and end
at the borders. No bounded decision regions are possible with the chosen topology.
The figure clearly shows that if the values of | or ff; increase then the transitional
area decreases. This makes the transitional area approach the hard-limiting threshold
function.

In figure 4.8 we give an example of what happens to the form of a decision region
when the only variation is in the scale factor . We consider a two-layer net with
topology (A;, A4, Ay). The two inputs, x; and x,, are confined to the interval [0, 1].
With four decision lines, z;, z2, 23 and z4, we can construct a non-convex decision

4.6. Other aspects of neural nets 61

region such as in figure 4.4a. The parametrizations chosen are:

z1 ¢ o(fi(x1—-0.5)) (4.38)
22 ¢ o(fa(x1 —x2—0.1))

zz3 o(f3(—=0.3x; +x, —0.1))

24 o(Pa(—1.14x1 — x5 + 1.34))

The decision region of the output node, a function of x; and x,, can be calculated with
the help of equation (4.27) in which e = 0.5 was chosen:

zs o(fs(zy +z2+1.5z3 + 1.524 —3.75))

The f’s can help us to influence the steepness of the sigmoids because the equations
of the lines in functions (4.38) are invariant under multiplication with a scale factor.
All B;’s were all chosen equal, i.e. f; = g fori =1,..., 5. In figures 4.8a, b,c
and d we have represented (4.39) as a function of the two input variables x; and x,
for § =1, 10, 100 and 1000, respectively. They clearly show that the decision region

!
(a) B=1 (b) B=10 &0
)) -
(e)
(c) B=100 (d) £=1000

Figure 4.8. The output of net (e), with topology (A,, A4, A1) as a function of
the steepness of its sigmoids: (a) § = 1, (b) § = 10, (c) f = 100, (d) # = 1000.
Black=1 and white=0. Further explanation is given in the text.

possesses sharp decision boundaries only if the f’s are sufficiently large. For moderate
values of f, e.g., § = 10, the transition area of the sigmoid plays an important role
and the decision boundary diverges from the one intended. For f = 1 the decision
region is nowhere near the intended one. The figures 4.8a, b, c, and d illustrate that by
varying the weights and the biases, the decision regions of the sigmoid function can
be made very diverse and that these decision regions are not limited to those that are
bounded by hyperplanes, as was the case for the hard-limiting threshold function, but
by hypersurfaces. The corners of the cell can become rounded.

62 Chapter 4. Aspects of neural nets

Table 4.4. Inputs and outputs for a multiplexer neural net with two inputs and
4 outputs.

Input Output

00 1000
01 0100
10 0010
11 0001

4.6.2 Level coding

The output of the sigmoid function can take all values between zero and one. This
means that, in principle, more information than just ‘on’ and ‘off’ can be coded.
Whenever this is the case we speak of level coding.

An example of level coding is the following problem. We want to solve the input-
output relations of table 4.4 with a multiplexer network of topology (B,, A1, A, By),
where x should be the smallest value possible. To solve the input-output relations of
this table, the net first has to represent the four possible input values as four different
output values of the first hidden node. It makes the problem a one-dimensional one:
find a separation of four classes in one dimension. This problem is not linearly sepa-
rable which means that after the first hidden node we need one extra level of hidden
nodes. (, their figure 8) give an example with
x = 4. We have found a solution to this multiplexer problem with x = 2. The decision
regions of this net are displayed in figure 4.9. The inputs are taken as analog nodes
for drawing purposes. The figure demonstrates that the desired function of the net,
multiplexing, is performed correctly: each decision region encloses a separate corner
of the square. We note that for two possible input combinations, (0, 0) and (1, 1), the
functioning of this multiplexer is sensitive to noise: a small deviation from O or 1 of
the inputs activates the wrong output.

We can go further to show that x = 2 solves any multiplexer problem of topology
(B, Ay, Ay, Byn): n inputs coding 2" possible outputs can be multiplexed over one
hidden node followed by a layer with two hidden nodes. It suffices to show that the
two nodes in the second layer can map the 2" different outputs of the single node in
the first layer to a curved line in two dimensions. Any point on a line with curvature
in the same ‘direction’ can be linearly separated from all other points on that curved
line. Let y be the output of the single node in the first layer and z; and z, the outputs
of the two nodes in the second layer. It follows from (4.32) and (4.33) that:

2 o= (L4t (4.39)
(] +e—W2y+92)—l

22

4.6. Other aspects of neural nets 63

(a) (b)

u M (e)
(c) (d)

Figure 4.9. Decision regions for each of the outputs of a multiplexer net with

topology (A,, Ay, Ay, By). Lower left corner of each square is (0, 0), upper
right corner is (1, 1).

Let the weight and bias of the second node be twice those of the first, it follows that:

21 = (1+eH7! (4.40)
(14!

22

Solving for ¢ and expressing z, as a function of z; yields:

211—1
22 =

z% (4.41)

According to (4.41) the value for z; is: 0 < z; < 1 and (4.41) describes a curve.
By arranging the weights and biases in (4.40) the points (z1, z2) can always be posi-
tioned on that part of the curve described by equation (4.41) where the curvature has
the same direction. This concludes the ‘proof’ that the two are sufficient to solve the
multiplexer problem. Probably it will be very difficult to train a multiplexer like this
when the number of inputs is larger than two because ever smaller differences among
the output values of the singleton node must be distinguished.

4.6.3 Training a neural net

The purpose of training is to obtain a set of weights and biases that minimizes a certain
cost function E. Normally during training a desired output is compared with the
actual output of the net. The size of the difference, the error, is an indication for
the amount of change necessary for the weights and biases. During the training of a
neural net, weights and biases are iteratively updated until the error is smaller than
some threshold.

64 Chapter 4. Aspects of neural nets

Training a one-layer net is very simple since the desired output is known and the
only weights are those between the outputs and the inputs. This means that weights
can be gradually updated until the error is sufficiently small. However, this procedure
is not directly applicable to a net with hidden nodes because most of the time one does
not know what the hidden nodes should represent: there is no desired output for the
hidden nodes. Despite this objection, a great many different training procedures for
nets with hidden layers have been developed. The number of methods and types of
cost functions is too extensive to be described here and this will be deferred to the next
chapter.

4.7 Discussion

4.7.1 Possible decision regions and topology

In section 4.5 we have demonstrated that a two-layer neural net could, in principle,
make non-convex decision regions: weights and biases were explicitly given for the
simplest non-convex region bounded by four lines. However, when we tried to teach
this decision region to a net with topology (A,, A4, A1) it turned out that many more
iterations were necessary than when we used the topology (A;, A4, Az, A). Investi-
gating the weights and biases of the latter net showed that it only had to make deci-
sions based on ANDs. This suggests that although non-convex and ‘hollow’ decision
regions can be formed with a two-layer net, adding an extra layer simplifies the de-
cision making. This would indicate that in each particular layer, conclusions should
only be based on a combination of ANDs since this simplifies the decision making
process: all nodes make simple decisions. The benefit of adding nodes could involve
a decrease in training time. This is in accordance with a notion by

() that occurrences of the net getting stuck in local minima always involved net-
works that had just enough connections to perform the task and that adding a few
more connections created extra dimensions in weight space to provide paths around
the barriers that would create local minima in lower-dimensional subspaces.

4.7.2 Coding the inputs

In most cases input consists of real numbers. We note that, theoretically, it makes
no sense to scale the inputs to a certain range if the scaling algorithm is linear. In
principle, the weights and biases of the next layer could perform this scaling. In
practical situations, however, scaling the inputs beforehand to the range (0, 1) does
make sense. Whenever the absolute value of some or most of the inputs is substantially
larger than one, the weighted sum of the inputs, which forms the input to the sigmoid
nonlinearity, can be a relatively large number. As a consequence the training algorithm
starts when the sigmoid functions are at a position where the derivative is extremely
small. As we will see in the next chapter, learning speed depends on the size of this
derivative and if this derivative is very small hardly any training of the neural net will
occur. The derivative of the sigmoid is largest when the input is near zero. In order to
train the net effectively, the input to a sigmoid must not start far off from zero (

4.7. Discussion 65

& Zipser, ; s). With the sigmoid non-linearity
we scale the inputs to the interval [0, 1].

4.7.3 Coding the outputs

Two possible output units exist: analog and binary output units. In the case of an
identity mapping with analog inputs one uses analog output units too, because the
input and output signals are conditioned to be the same. This mapping of a signal onto
itself is obtained through one or more hidden layers. If the net is used for classification
purposes, the outputs make binary decisions: output unit i is trained to give a value
near 1 whenever the input belongs to decision region M;. This presupposes M output
units when M different decision regions need to be classified. More ‘economical’
coding of the outputs (e.g., log, M output units could code M output classes) are not
very efficient because part (or all) of the hidden nodes in the layer just before the
outputs are simply used as a binary encoder network instead of being used for the task
at hand. One further remark must be made concerning output coding: whenever the
outputs need to distinguish between elements of two different input sets at the same
time, sets with K; and K, mutually orthogonal elements respectively, two equivalent
possibilities exist for the number of outputs. First we could have K; + K, output units
of which two units at the same time are active, one from K; and one from K,. In
the second case we have K; x K, outputs and only one of them is active at the same
time. Both codings are equivalent since both have K; x K, different outputs. Let us
illustrate this with an example: classification of twelve vowels while at the same time
membership of one of three speaker categories (Male, Female or Child) should be
given. Possible codings: 12 + 3 = 15 outputs, with always two active, one of twelve
and one of three, or, 12 x 3 = 36 outputs with only one active at the same time. The
number of outputs, M, gives us an indication for the minimum number of units needed
in the preceding hidden layer: log, M. When the number of units in the hidden layer
is below this minimum, some units are forced to level coding. This may be what we
want for some kinds of problems where we are interested in the coding in itself, like
the multiplexer problem. Whenever we want to detect ‘features’ we have to stay above
this limit.

4.7.4 Why neural nets?

Using neural nets for classification may have a number of advantages as compared to
‘classical’ statistical methods. Probably the greatest advantage is that there is no need
for assumptions on the underlying distribution of the inputs. In the derivation of the
classification possibilities of neural nets, we never had to make any assumption con-
cerning the distribution of the input data. When input data cannot be described well by
a distribution function, neural net classifiers outperform statistical classifiers (

,). Another pro is that neural nets can be made
adaptive. The net can be in the learning mode permanently and adapt itself to ‘new’
inputs. Since in a neural net the ‘knowledge’ is distributed over many connections,
the classifier can be made very robust. Its performance will not stop but rather de-

66 Chapter 4. Aspects of neural nets

grade only gradually with an increasing number of connections that become disabled.
The net also shows its robustness when the input data are not complete (or noisy);
in many cases, it is able to give the correct output nevertheless. Neural nets can be
implemented on any computer and very good learning algorithms exist. The topology
of the net is only limited by the computing power of the computer. Nowadays, special
parallel hardware exists for the implementation of neural nets.

Unfortunately, neural nets also have some serious drawbacks. It is not yet clear
how we can add explicit ‘knowledge’ to a neural net. The only influence we can exer-
cise is on the topology of the net. We do not know how to modify weights and biases
when only ‘knowledge’ and no algorithm is present, except for some trivial problems
such as the construction of a gaussian classifier with a neural net when means and
variances of the inputs are known (s). Likewise, it can be a tedious
task to extract ‘rules’ or ‘knowledge’ from a neural net (however, see

()). The interpretation of the weights and biases can be difficult, especially
when we are confronted with a large net. In this case it will be expedient to design a
modularized net, with each module having a specific subtask and the output of each
module being integrated afterwards. Although excellent training algorithms exist, they
require a great deal of training data and training time for reasonable accuracy. This
can be a serious problem when not many data are available. Special net topologies
and nonlinearity functions have been developed in order to speed up training time to
reduce the amount of data needed (s). However, once a neural net
has been trained, its response is very fast. Neural nets are indeed very promising but
they are not a panacea for just any problem. In general, when an algorithmic solution
exists, this algorithm constitutes the preferred solution. Some problems that are very
easy to solve with an algorithm, are notably difficult to solve with a neural net. The
outstanding example is the parity problem: the net has to decide whether (a possible
transformation of) the input has even or odd parity. This is a difficult problem for
a neural net because the larger the input numbers, the smaller the relative differences
between succeeding numbers. In order to solve this problem, weights can become pro-
hibitively large. Many other problems, e.g., the validation whether a decision region
is connected or not, can be reduced to the parity problem (,).

4.8 Conclusions

A number of aspects of supervised neural nets have been discussed. Given their simple
topology, the powerful combinatorial possibilities in the decision regions are impres-
sive. In the field of automatic speech recognition (ASR) they potentially rival the suc-
cessful Hidden Markov Models (HMM). () showed that
compared to HMM, neural nets have advantages: a HMM needs more decisions be-
forehand, like the number of states, the distribution functions, the permitted transitions
and the transition rules. Another disadvantage of HMM is their weak discriminating
power. During training the probability of the optimum hypothesis is maximized with-
out minimizing alternative hypotheses. We have seen that during training of a neural
net, in conjunction with optimizing the wanted hypothesis, the incorrect ones are be-

4.8. Conclusions 67

ing minimized. In the next chapter we will continue our investigation of neural nets
and discuss some alternatives that exist for the cost functions that are used during the
training phase.

68

Chapter 4. Aspects of neural nets

Chapter

Vowel classification with neural
nets: a comparison of cost
functions™

Abstract

In this chapter the merits of some special cost functions for feedforward neural nets
are discussed with respect to their classification performance. Both

() and () claim their cost functions, based on minimum classifica-
tion error (MCE), to be superior to the standard cost function, based on a minimum
squared error (MSE) criterion. To falsify their claims we used two test sets, the four-
class iris data set of () with 150 samples of measurements on the iris
flower and the twelve-class data set of () with 300 samples of
formant frequency measurements on Dutch vowels from 25 female speakers. With
these data sets we could not find evidence for superior performance of the MCE cost
functions. On the contrary, in the special condition that a blocked updating scheme
for the weights and biases was used in the training procedure, the MCE-based cost
functions proved to be inferior to MSE.

*This chapter is a modified version of ().

70 Chapter 5. Comparison of cost functions

5.1 Introduction

In the previous chapter we have studied some general classification aspects of feedfor-
ward neural nets; in this chapter we focus on one important aspect of these neural nets,
their cost function. The type of cost function that is used during the training phase of
a neural net determines to a large extent its classification performance and, therefore,
is an essential part of the neural net. Choosing a wrong cost function can have degrad-
ing effects on its performance. In this chapter we want to discuss the merits of cost
functions that are based on a criterion called minimum classification error (MCE) in
relation to a cost function based on minimum squared error (MSE). In the MSE cost
function the classification error is the sum of squares of the differences between the
actual outputs and the desired outputs of the neural net.
Two proposed MCE-based cost functions were developed by () and
(). Especially the latter received considerable attention in the
literature (, ; , ;)
). The discussion here will be focused on these cost functions in relation with
supervised feedforward neural nets.
The search for cost functions is motivated by the following list of shortcomings
of the MSE cost function' with respect to classification (, ;

)):

1. The winning class is not identified during learning and is not used in the learning
rule either. This means that for classification MSE is not necessarily adequate.

2. The inability to consider an arbitrary cost matrix. In MSE classification it is
not possible to consider an individually specified cost for each misclassification
type, i.e. the cost for classifying a member of the i-th class as a member of the
Jj-th class.

3. MSE, in combination with linear output nodes, i.e. nodes that do not contain the
nonlinear function, slows down the convergence of learning by overconstrain-
ing the problem. Generally the desired output of the correct class is given the
value 1 and the other desired outputs the value 0. It may be clear that a value
greater than 1 for the correct output class and a value smaller than O for the
incorrect classes would be harmless. However, MSE penalizes such cases and
it can be expected that these unnecessary constraints slow down the learning
process. (For classification in general it is not necessary that the output nodes
of a neural net contain a nonlinearity. The nonlinear functions that are used
for neural nets, for example the sigmoid function, are always monotonic func-
tions. Monotonic functions preserve rank ordering of their inputs. The output
node with the largest input also produces the largest output. Consequently, no
nonlinearity in the output nodes need be present.)

4. The MSE cost function is not monotonic with respect to classification when the
number of classes, M, exceeds one. In other words, patterns with a ‘low” MSE

For the definition of the MSE see equation (5.10).

5.2. The relation between cost function and weights 71

may be classified wrongly while patterns with a ‘high® MSE may be classified
correctly. E.g. for a correctly classified pattern it is sufficient that the correct
output unit has the value 1 and all other output units have a value only slightly
less than 1.7 This results in a large MSE of approximately (M — 1)/2. On the
other hand, a wrongly classified pattern could have a MSE value as low as 1/2 if
the correct output has a value slightly larger than 0 while the other outputs have
zero values.

Before we discuss the merits of the alternatives we will have a look at how the cost
function influences network parameters.

5.2 The relation between cost function and weights

Before a neural net can be used as a classifier it has to be trained. The purpose of train-
ing is to obtain a set of weights and biases that minimizes a certain cost function E
over the training set. Training a one-layer net is very simple since the desired output is
known and the only weights are those between the outputs and the inputs. This means
that weights can be gradually updated until the error is sufficiently small. However,
this procedure is not directly applicable to a net with hidden nodes because most of the
time one does not know what the hidden nodes should represent: there is no desired
output for the hidden nodes. Despite this problem, successful training procedures for
nets with hidden layers have been developed. The most common learning algorithm
uses a gradient search technique to find the network weights and biases w that mini-
mize the cost function E(w). It is called the back propagation algorithm (
,)-

The weights and biases of the network are updated iteratively according to:

JdE(w)

8w11,‘j

wiij(k + 1) = wypj(k) — , 5.1

where w, ;; is the weight that connects the input of node j on layer / with the output
of node i on layer / — 1, k is a discrete time index, and u is a positive constant, called
the learning rate. Equation (5.1) shows that a new value for a weight can be obtained
by subtracting from its current value an amount that depends on the derivative of the
cost function E(w) and the learning rate. At the minimum of the cost function its
derivative equals zero and the weight will not change anymore. To find this minimum
of the cost function E(w), we derive an expression for the partial derivative of the
error function with respect to each individual weight in the network. Before we can
do so we have to define some terms that will be used in the derivation. For a node j in
layer /, the outputs in relation to their inputs are:

01 = fillj) (5.2)

2This can be seen from the MSE equation (5.10) if we substitute for all the outputs O ; the value 1 and
for all except one desired outputs D; the value 0. One desired output will have the value 1.

72 Chapter 5. Comparison of cost functions

Ni-
I]yj = Z w,yijl_lyk. (53)

k=1
Here O, ; is the output of the node j in the layer /, w;; is the weight that connects
node k in layer / — 1 with the j-th node in layer /, I, ; is the input of the nonlinearity

f1 of the j-th node in layer /, and Nj; the number of nodes at layer /1. We define the
error at node j of layer / as follows:

8= ———. (5.4)

When we use the chain rule on equation (5.4) we get

oE W 0E Ok & g
8. =-— = — LR Sia1, - (5.5)
Yo, Z{ ol oI Z; SRy
The last term in the summation can be simplified as
aII+1,k 0 Nit p) Ni+1)
T,,j = ol 1;1 Wit pkOrk = m p; Witk J1p) = wigr i /). (5.6)
The two equations (5.5) and (5.6) combine to:
N1
61 = fij) Z Wit kj Ol k- (5.7)
k=1

Equation (5.7) expresses the back propagation of errors. The errors 6; at the lower
layer I can be calculated from the errors at the next higher layer / 4+ 1. The derivative
of the cost function with respect to the weights can now simply be written as

0E _ 0E 0l
dwl,,-j - aI[,j aWI,ij

= _5l,j01—1,i~ (58)

The attractiveness of this formulation of the derivative lies in the fact that in equation
(5.8) no explicit notion of the cost function figures any more. Derivative information
at a layer / is expressed in terms of 6; and O;. The specifics of the cost function only
enter at the top layer.

If we substitute (5.8) in equation (5.1) we obtain:

Awpij=wpijk+1)—wp (k) = —uéd; ;01 (5.9

This equation says that the amount of weight change in a node (Deltaw) linearly
depends on the activity at the node’s input (O,_;.

When we minimize the errors between the desired outputs and the actual outputs
of the net in a quadratic sense, it is called the Minimum Squared Error (MSE) criterion
function:

E(w) =

N =

M
(0, - D;(p)). (5.10)
j=1

5.2. The relation between cost function and weights 73

Here O; (p) denotes the output of the j-th output node of the neural net for pattern p
and D;(p) the desired output for this pattern on this node. M denotes the number of
outputs. This cost function is at a minimum if for all patterns for all output nodes the
output of the net is equal to the desired output. For this cost function, the errors at the
top level, which propagate back, can simply be calculated according to equation (5.4)
as

81 = f,IL;(P)(O;(p) — D;(p)). (5.11)

Two schemes for updating the weights and biases exist, incremental and blocked up-
dating. In the incremental updating scheme weights and biases are changed after each
training pattern. This scheme is typically used in adaptive sessions when the total
training set is not available or changes continuously. When the total training set is
fixed a blocked updating of the weights is more favourable. In this case the weights
and biases are updated only after each epoch (an epoch being one full presentation of
the entire training set). Usually this is faster than updating after each training sample.
Moreover, blocked updating has better convergence properties because the cumula-
tive gradient, which is a mean gradient over the training set, converges to zero for the
optimal parameter values.

In the minimization of the cost function we can use gradient information in a spe-
cial way. The standard minimization method, as described by equation (5.1), is the
steepest descent method. In this method weight changes are always in the direction of
the gradient. This method leads to a not very good algorithm of minimization. The
problem with the steepest descent method is that it will perform many small steps
in going down a long, narrow valley, even if the valley has a perfect quadratic form.
Because the new gradient at the minimum point of any line minimization is perpen-
dicular to the direction just traversed, one must always make a right angle turn, which
does not, in general, take one to the minimum. Instead we want a way of proceeding
not down the new gradient, but rather in a direction that is somehow constructed to
be conjugate to the old gradient and previous directions. Conjugate gradient meth-
ods accomplish this and therefore are, under many circumstances, superior to steepest
descent methods. A further introduction to conjugate gradient and other methods of
minimization can be found in (). In our feed forward neural
net simulation in the PRAAT program we have implemented two minimization algo-
rithms. The simplest minimization method implemented is steepest descent with an
(optional) momentum term. The second, more powerful, method is Powell’s conju-
gate gradient method.

A sensible strategy to guarantee that learning will occur is to choose the initial
random weights in such a way that the magnitude of the typical input to a unit is
somewhat less than unity. This can be achieved by initializing the weights in a layer
to a random number in the interval (—1/+/n, 1/4/n), where n is the number of units
which feed forward to this layer. As was discussed in section 4.7.2 we then have to
scale the inputs to the interval (0, 1).

74 Chapter 5. Comparison of cost functions

5.3 The cost function by Juang & Katagiri

The first alternative to MSE that we consider was formulated by

(). It contains an explicit notion of the winning class and therefore addresses
the first point of the list of “shortcomings of MSE” in section 5.1. They define the
cost function for a pattern p to be a sigmoid function of a continuous misclassification
measure dy:

E(p) = o(di(p)) = T+ d® (5.12)
where d, is defined as:
1 i
di(p) = —Ok(p) + lm > O;’(p)] . (5.13)
J#k

Here pattern p is supposed to belong to class k (the correct output class), O (p) is
the output of the correct node of class k resulting from input pattern p, # is a positive
number and there are M classes. In this formula, the correct class appears explicitly,
via Ok (p), and the incorrect classes enter in a weighted sum (the term enclosed by the
square brackets). When # approaches oo, the misclassification measure becomes

di(p) = —Ok(p) + max O:(p), (5.14)

where i is the index of the class with the largest output value other than the correct
class k. It is clear that in this case d; > 0 implies misclassification and d; < 0 means
correct decision. The errors at the linear output nodes, according to equation (5.4),
then become

o0E oE do(dy) ody ody
6p; =— =- = d =—o(d)(1 —o(d ,
L =3 = T30 = adr ") 55 = ~oWdn(1 o) S5
(5.15)
where the argument pattern vector p is implied, L is the index of the output layer, and,
-1 Jj=k
ody,
= = o’ -~/ (5.16)
00L,; T {ﬁ itk Ozi} J#k
which, for # — oo, becomes:
-1 j=k
od
aoLk,,- = 1 j = argmax; O, (5.17)

0 otherwise

We emphasise again that in equations (5.15) — (5.17) it is understood that the
output units are linear, i.e. no sigmoid function is active in these units.

5.3. The cost function by Juang & Katagiri 75

5.3.1 Tests with actual data

In all subsequent comparisons of classification performances between the two cost
functions the training data set and the test data set will be the same. Two data sets
will be used for comparing classification performances: Fisher’s iris data set and Van
Nierop et al.’s female vowel formant data.’

The iris data consist of four measurements made by () on 150 sam-
ples of three species of iris flowers: iris setosa, iris versicolor and iris virginica. The
four measurements are sepal length, sepal width, petal length and petal width. Fifty
tokens are available for each of the three classes. The iris data set was one of the test
sets used by the authors of this MCE-based cost function and is used extensively in the
literature as a reference set (s). However, we must note that it is not a very
interesting data set for classification since standard linear discriminant analysis with
the PRAAT program already gives a classification rate of 98.0% correct with only 3 out
of 150 items being misclassified. This means that the misclassification of 2.2% that

obtain by their equation (5.12) is not impressive (see their table III).
In fact, with our neural net simulation in the PRAAT program we easily reach 0.7%
misclassification with a one-layer neural net of topology (4, 3)*, i.e. four inputs, three
outputs, no hidden units, a sigmoid nonlinearity, and the MSE cost function. This
contrasts heavily with their 12.3% misclassification, which was simulated with a net
of topology (4, 15, 3) and MCE. With MSE, 15 hidden units, and a nonlinear output
layer we also obtained 99.3% correct classification. The iris data set does not show
the superiority of the MCE cost function as argue. On the contrary,
there is a slight superiority for the MSE-based cost function.

The principal weakness of this MCE-based cost function will reveal itself with a
data set that needs considerably more output classes than the iris data set, such as, for
example, the formant frequency measurements of 25 female speakers by

(), which needs twelve output classes. This set consists of the first three
formant frequencies in Hertz of the twelve Dutch vowels /u, 9, 0, a, a, v, 8, y, 1, 1, €,
e/. We have scaled these formant frequency values to the interval (0, 1) according to
the following formula:

F = f(Ft)_f(Fzmm)
! f(Fi,max) - f(Fi,min)

Since all vowel classifications in the paper were performed on
log(F) values, the function f was chosen to perform a logarithmic formant frequency
transformation by taking f(x) = In(x). This transformation is then followed by a
linear scaling. The following values were used for the parameters of this linear scal-
ing: the minimum formant frequency values, F; min, for the first three formants were
chosen to be 200, 500, and 1500 Hz, respectively. The maximum formant frequency
values, F;m.x, were chosen as 1500, 3500, and 4500 Hz, respectively. This linear

(5.18)

3Both data sets have been incorporated in the PRAAT program. The command Create iris data set
in the New menu results in a 150 x 4 TableOfReal object with row labels ‘1°, ‘2" or ‘3’ that indicate class
membership and column labels ‘sl’, ‘sw’, ‘pl’ and ‘pw’. The command Create TableOfReal (Van Nierop
1973)... 0 1in the New menu results in a 300 x 3 TableOfReal object with the twelve vowel classes as row
labels and F1, F2 and F3 as column labels.

4 All nodes are analog nodes.

76 Chapter 5. Comparison of cost functions

scaling makes logarithmic scaling independent of the base of the logarithm and has
the additional advantage that all transformed frequencies are in the range (0, 1) which
guarantees better training.

With MSE we get excellent classification on the data set as is
shown in the last column of table 5.1. When the MCE cost function (5.12) in combi-
nation with equation (5.13) was used for finite 5, classification results were generally
poorer. For a net of topology (3, 10, 12), the percentage correct classification, on the
average, was less than 70% with the following settings of the simulation program:
weights were initialized at a random value between 0.1 and —0.1, a blocked update
scheme was used with conjugate gradient minimization, # = 4 was chosen in equation
(5.13), linear output nodes were used, the number of iterations was chosen sufficiently
large (>10000) to guarantee good minimization. The performance of less than 70%
correct classification is substantially below the more than 86.6% correct classification
obtained with the combination of MSE and nonlinear output nodes. Apart from the
worse classification performance, we notice that the blocked minimization with MCE
more often got stuck in a local minimum than MSE minimization. Using a pattern-
by-pattern update and choosing appropriate values for y and a did not help. A careful
look at the patterns that were not correctly classified revealed a flaw in this MCE-
based cost function. For finite values of #, the value of d; can become very negative,
meaning very low cost, even when the output value of the correct class is very much
smaller than that of one (or more) incorrect class(es). The derivative of the cost func-
tion, equation (5.16), is very small as well in this situation, meaning that virtually no
correction on this unfavourable situation is taking place. As long as the average of
the M — 1 values of 07 stays much below the value OZ, the misclassification does
not add much to the cost function. Indeed, the total cost function can reach any small
positive value e without 100% correct classification, a very undesirable property. For
example, in one session with MCE simulation as above, the total cost was minimized
from an initial value of 250.0 to a value of 0.0013 with only 67.3% correct identifi-
cation. In another session the total cost was reduced from an initial 150.0 to a final
0.00038 and, despite a reduction of the cost with a factor of 103, only 58.3% correct
classification resulted. When the number of classes (M) increases, the probability that
this phenomenon occurs is likely to increase.

Since finite # does not do the job, the only formulation of this MCE cost function
that needs checking is the limiting case # — oo: only the difference of the output
for the correct class and the highest output of the resulting output units appears in the
cost function. The measure in equation (5.14) for d; now clearly is better coupled
to classification performance than before: a negative value represents correct classi-
fication. In table 5.1 we have accumulated some results of testing this MCE-based
cost function. We have tested MCE by a pattern-by-pattern weight update; for each
iteration the patterns were randomized. The values chosen for the gradient descent for
the pattern-by-pattern update were: y = 0.003 and @ = 0.9. The number of iterations
was chosen to be sufficiently high (50000). We had to use this pattern-by-pattern up-
dating scheme because the blocked updating scheme did not perform reliably with this
cost function; it got stuck many times in a local minimum. It seems that with MCE
in the blocked update case some sort of cancellation of weight changes often takes

5.4. The cost function by Hrycej 77

Table 5.1. Comparison of classification performance between the MSE cost
function and the MCE cost function by with # - oo. The
topology of the neural net was (3, N, 12). The training data set of van Nierop
et al. was used (see text). MCE was tested with pattern-by-pattern update with
randomization (4 = 0.003 and @ = 0.9). The columns, from left to right, denote
the number of hidden units, the MCE-cost after training, and the percentages
correct for MCE- and MSE-based training, respectively. The percentage correct
derived in the study via maximum likelihood classification
was 79.0%.

#Hidden Cost MCE (%) MSE (%)

2 72.0 77.0 75.6
3 65.0 78.0 79.3
4 58.2 81.3 80.3
5 55.9 82.0 83.0
6 53.7 83.0 82.6
7 52.5 83.0 86.6
finite 5 10 <70.0 > 86.6

place, in such a way that no effective updating is possible any longer. The results
in table 5.1 show that with the van Nierop et al. data set, the results for MCE, espe-
cially for topologies with a small number of hidden units, are satisfying. But these
results come at a great cost: many times the blocked updating of weights with fast
conjugate gradient minimization cannot be used, and pattern-by-pattern updating with
steepest descent has to be used instead. Furthermore, the learning parameters (¢,)
have to be optimally adjusted to guarantee proper minimization. Pattern-by-pattern
updating takes considerably more computer time than a blocked update. Moreover,
our powerful minimization algorithms cannot be used. Careful testing with more dif-
ficult artificially generated data sets with strongly overlapping classes showed clear
superiority of the MSE cost function in combination with nonlinear output nodes over
MCE with linear output nodes.

In summary, we could not find convincing evidence for the superiority of this
MCE-based cost function over the standard MSE-based cost function.

5.4 The cost function by Hrycej
The cost function by () is the simplest form of a function that imposes no

weight changes if classification is correct. It has a non-zero gradient only in the region
were the cost is positive. The cost function is:

E(p) = Cii pos(0i(p) — O« (p)) (5.19)

78 Chapter 5. Comparison of cost functions

in which k is the index of the correct class of pattern p, i the index of the largest
output, Cy; is the element of the cost matrix that denotes the cost of misclassifying a
pattern belonging to the correct class k as belonging to the incorrect class i, and the
function pos(u) is defined as:

@) u u>0 (5.20)
os(u) = .
P 0 otherwise

The cost matrix Cy; need not be symmetric and can be any general matrix. The errors
at the output level can be expressed as

-Cri0(0;,-0y), j=k
6rj =9 Cub(Oi=0), j=i (5.21)
0, otherwise

where 6(u) denotes the step function, defined by

o) = 1 u>0 (5.22)
v 0 otherwise ’

This cost function, in combination with blocked updating, has the admirable property
that it is a convex function with regard to the classifier parameters, i.e. the weights
(,). This means that the global minimum of the cumulative cost function
can be found by gradient descent.

5.4.1 Tests with actual data

In table 5.2 we have accumulated some results of the comparison of MCE versus MSE.
The data set used for the comparison was again ’s vowel formant
frequency data set of 25 Dutch female speakers. We mention that, as was the case
with the MCE-based cost function of the previous section, a blocked updating scheme
of the weights was not very successful. Again, we had to use incremental updating.
We chose ¢ = 0.003 and @ = 0.9. The classification results for this MCE-based cost
function were again not very impressive. We did several other tests with data sets
with strongly overlapping classes and this MCE cost function did not perform well.
Many times it got stuck in a local minimum without any substantial classification
performance. Careful analysis of the resulting states lead us to detect a defect in this
cost function: The main weakness of the Hrycej cost function is that it is too sensitive
to scale: a trivial reduction of all output weights and biases with a factora (0 < @ < 1)
reduces the outputs with the same factor because the output nodes are linear. The net
effect of this reduction is that the total cost is reduced with the same factor, but without
any implication on the classification performance whatsoever. The global cost can be
reduced to any small positive number e, without affecting the classification at all. A
very undesirable property for a cost function.

5.5. Discussion on cost functions 79

Table 5.2. Comparison of classification performance between the MSE cost
function and the MCE cost function by Hrycej. Incremental updating scheme
with y = 0.003 and @ = 0.9. For further details see table 5.1.

#Hidden Cost MCE (%) MSE (%)

2 0.43 72.0 75.6
3 0.42 74.3 79.3
4 0.34 73.0 80.3
5 0.24 73.3 83.0
6 0.44 71.3 82.6
7 0.86 72.0 86.6

5.5 Discussion on cost functions

Most of the criticism formulated in section 5.1 on MSE-based learning is only appro-
priate for the combination of MSE and linear output units. The only serious objection
that MSE has no remedy for, is the first one of the list: the MSE cost function is not
necessarily optimal for classification. The rest of the objections can be dealt with eas-
ily, as we will demonstrate. A class-specific cost can be incorporated in the MSE cost
function of equation (5.10) in an analogous way as was done in the previous section
with the Hrycej cost function:

1 M
E(p) = EZCM(OJ —d;)> (5.23)
j=1

In this cost function, pattern p belongs to class k and Cy; is the cost when class k is
misclassified as class j. This reduces to the standard MSE formulation when all Cy;
are equal to 1. The errors at the output level can be calculated in a simple way:

8y, = f1Ur;) - Cy;(0; —d)), (5.24)

where f is the function present at the output nodes.

As was explained in section 5.1, when used in combination with linear units, the
MSE cost function slows down learning. However, this need not worry us since MSE
and linear output nodes were not meant for each other. The solution is to change
the output function to a sigmoid. This immediately creates the necessary freedom and
removes the unnecessary constraints because the domain of the sigmoid is (—o0, +00).
The price we have to pay for changing the output function to a sigmoid is an increase
in the learning time. All MSE classification tests in this paper were performed with
sigmoid nonlinearities in a/l nodes. A cost function that is monotonic with respect to
classification cannot be a function of all outputs at the same time. When the number
of classes is substantial and the cost function is non-monotonic, it is always possible
that misclassified patterns exist with low cost. It may be that for these misclassified

80 Chapter 5. Comparison of cost functions

patterns the way to go in weight space in order to reach perfect classification is either
partly uphill or very slowly downhill. In the averaging performed by a cumulative
update this can usually be remedied. The only objection against MSE that remains
valid is the first argument in the list of section 5.1: MSE is not necessarily optimal for
classification. From the discussion above we must conclude, however, that although
MSE as a cost function is probably suboptimal, it is certainly hard to beat.

In the next chapter we will use a neural net with an MSE cost function to model
speaker adaptive vowel normalization.

Chapter

Modelling speaker normalization
by adapting the bias in a neural
net*

Abstract

In this chapter we present our first attempt at modeling speaker normalization in terms
of bias adaptation. The model is tested on vowel formant data from a variety of speak-
ers. In this model vowel identification is considered to be based on the integration of
a number of decisions. Each decision is of the same simple form: decide whenever
the accumulated evidence exceeds a certain threshold (bias). Changing the bias can
influence a decision and consequently the identification. This process could equally
well describe human vowel perception as neural net classification.
This model will be tested with formant frequency data from (),

() and (). These tests show that although the model
seems to work allright an unrealistic amount of test data is needed for the adaptation
to perform well.

*This chapter is a modified version of ().

82 Chapter 6. Speaker normalization and bias adaption

6.1 Introduction

In this chapter we will try to explore the knowledge that was gained in the previous
chapters about neural nets and incorporate it in a general model about speaker nor-
malization. The listening experiments with manipulated vowel segments in blocked
and mixed speaker conditions were described in chapter 2. In these experiments
there was a significant difference in identification errors between the blocked and the
mixed speaker condition. As subjects listened to more stimuli from the same speaker
(blocked condition), they made fewer identification errors. This result has also been
noted by many other researchers (s ; , ; ,
; s). Along another line of experiments (

s ; s ; ,) it was shown
that by manipulating the context, exactly the same stimulus could evoke different re-
sponses (this phenomenon, by the way, occurs in all aspects of human perception).
The generally accepted explanation for this type of listening experiments is that con-
text enables the user to construct a frame of reference for a particular speaker and
this frame of reference makes it easier to identify the stimulus. The outcome of these
experiments described above can be generalized. In all these experiments we are con-
fronted with the fact that a different context can evoke a different response to the same
stimulus. We must therefore conclude that in many cases the identity of the stimulus
can only be defined in relation to its context. The context provides a means for the
listener to adapt to a speaker. Instead of normalization we prefer the term adaptation.
In order to describe and model this adaptation process we have to define how we view
the identification process of a vowel.

6.2 The model

In traditional normalization procedures the general idea is that, for an unknown vowel
with formants (Fj, F;), the normalizing transformation generates a new (Fj, F)).
The identity of the unknown vowel with normalized formants (F/, Fz’) is then deter-
mined by searching for the minimum distance between the normalized vowel and nor-
malized prototypes according to some distance metric in the normalized space (see

(, chapter 2) for an overview). Besides the Euclidean distance metric,
many other distance criteria have been developed (s ;

,). We propose a different normalization model which can easily be sim-
ulated with a neural net. In the present model the extrinsic and intrinsic aspects of
normalization are interwoven.! It is based on the following hypotheses concerning the
identification/normalization process:

1. Identification is the integration of a number of decisions. Each individual deci-

IThe transformations are sometimes divided into the classes extrinsic and intrinsic. This division
depends on whether the normalization procedure uses more information than available in the vowel and its
immediate context or not. For example an extrinsic procedure might use the average vowel position of a
speaker in the calculation. An intrinsic procedure only uses information present within the vowel and its
immediate context.

6.3. Geometrical interpretation 83

sion has the same basic structure: a decision is made if accumulated evidence
exceeds a certain threshold (bias).

2. The way to accumulate evidence is fixed, the threshold (bias) is variable. The
general strategy to make a decision is fixed, but the amount of evidence nec-
essary to force a decision may be variable. A change in the bias shifts an in-
dividual decision and consequently can alter the outcome of the identification
process.’

3. Adaptation can be modelled as a variation of bias. The listener may use context
to adjust the bias(es) if necessary.

This model of adaptation can be implementation with feedforward neural nets.
The decisions made by a neural net can be interpreted in terms of the first hypothesis
of the model. The summing of the multiplications of the inputs to a node with the
appropriate weights (e.g., in formula 4.2) can be viewed as the gathering of evidence.
With a nonlinearity of the Heaviside form a decision for a 1 is made whenever the
evidence (the sum of the products) exceeds the bias. When the sum is less than the
bias a decision O is made. With a continuous function as the nonlinearity, e.g., the
sigmoid function, the decisions need not be binary values but can attain any value
between 0 and 1. A feedforward neural net can be viewed as the integration of all
these decisions.

6.3 Geometrical interpretation

The second hypothesis of the model has a nice geometrical interpretation. As was ex-
plained in section 4.2, the linear combination of the » inputs of a node, when equated
to a constant, forms the equation of a hyperplane in n-dimensional space. This hyper-
plane separates the input space into two regions, one on either side of the hyperplane.
Through the nonlinearity, the output attains two different values on either side of the
hyperplane. The hyperplane thus forms a decision boundary. When the bias changes,
the orientation of this hyperplane remains fixed. However, bias changes correspond
to parallel translations of this plane. This can most easily be visualised in two dimen-
sions. The decision boundary in this case is a line. In fig. 6.1 the decision boundaries
of a node with two inputs are shown for three values of the bias 6 for fixed weights
w1 and w;. A line through the origin would correspond to & = 0. As can be verified,
by only varying the bias, the position of the line changes parallel to the line through
the origin. This results in a change of the class membership for those inputs that lie
between the dashed lines. Varying the bias therefore is a means to change the decision
boundaries between classes.

Of course, there are more ways to change the decision boundaries between the
classes. The most drastic one is to change all weights instead of only the biases. In
this way not only parallel movements of the boundaries are possible, but rotations as
well. However, we have to keep in mind that here we want to describe adaptation

2See chapter 10 for a different view.

84 Chapter 6. Speaker normalization and bias adaption

and not the whole process of learning. In the learning process all weights and biases
are changed to values that minimize a particular cost function. Adaptation is not the
process of learning anew. The problem is how to learn ‘new’ things without forgetting
knowledge acquired previously. With adaptation we mean here that we can make
certain small changes to our perceptual strategy to be able to cope better with some
stimuli that lie near decision boundaries given a certain context.

The term adaptation has a slightly different meaning in the field of adaptive pattern
recognition. In the latter field, adaptive stands for incrementally updating the weights
after each input pattern. These networks are based on self-organization and are prac-
tically always in the training phase. Adaptation is then described as a balanced inter-
action between assimilation and accommodation. Assimilation corresponds to assign-
ing patterns to categories and improving the definition of the corresponding category.
New patterns are integrated into existing structures, which leads to the strengthening
of these structures. Accommodation can be viewed as changing the category system
of the classifier upon arrival of completely novel patterns. Existing structures are mod-
ified by new patterns. Overemphasized assimilation leads to egocentric, nonadaptive
behaviour, while too much accommodation leads to instability and poor generaliza-
tion. The problem of keeping a balance between assimilation and accommodation is
also called the stability-plasticity dilemma. In the field of adaptive pattern recognition,
Grossberg s Adaptive Resonance Theory (ART) deals with this problem (,

,). This will be discussed in more detail in chapter
10 where we will develop another adaptation model that is based on ART.

(0,1) (1,1)

ST® 1/,’j
M A
input R
O% LT T
/ output Xz_,«—‘;/’
w -7
xO° "2 B

0,0 X{ —= (10

(a) (b)

Figure 6.1. An example of the effect of bias change on the decision boundary.
In the left figure the topology of the net is shown. The right figure shows three
parallel decision boundaries wix; + wyx, + 6 = 0 for three different values of
the bias 0 and fixed weights w; and w,.

6.4. The test data sets 85

6.4 The test data sets

As training sets we will use the formant frequency data sets of ()
and (). For easy reference some of their classification results,
those based on three formant frequencies per vowel, have been accumulated in table
6.1.All entries in the table are based on the logarithmically transformed frequencies
of the first three formants. Apart from the twelve standard vowel categories, they
also considered classification on a grouping of the vowels into nine categories. These
nine categories consisted of six single vowel categories with /w/, /a/, /a/, Iy/, i/, I/,
and three categories with the long-short vowel pairs /o, o/, /@, Y/, and, /e, /. The
classification results on these grouped categories are also accumulated in the table.

Table 6.1. Percent correct classification results based on the three logarith-
mically transformed formant frequencies per vowel of 50 male speakers, la-
belled M50, and 25 female speakers, labelled W25. The centred data have been
normalized by subtracting the difference between the speaker centroid and the

group centroid. These results are a compilation from () and
(). For more details see text.
Speakers Non-Centred Centred
12 Categories 9 Categories 12 Categories 9 Categories
M50 75.3 89.3 80.5 95.5
W25 79.0 93.0 84.0 97.3

In order to compare the classification results of the neural nets with these data,
we also performed training and testing both with and without grouping of vowel cat-
egories. From both training sets we will only use the formant frequencies since the

() test sets that were described in chapter 2 do not contain formant level
information. The training set with 50 male speakers contains 600 (= 50 x 12) patterns,
the set with the 25 female speakers contains 300 (= 25 x 12) patterns. The testing of
the model consists of the following phases.

* Pre-processing of the formant frequency values. The procedure used for the i-th
formant was the same as that we have used in the previous chapter (see equation
(5.18)). The chosen formant extrema were also the same.

» Training. Adjust all weights and biases of the neural network according to the
MSE cost function with formula (5.1). This cost function was shown to be
very efficient in chapter 5. The total number of weights and biases of a two
layer network with n inputs, 4 hidden units and m outputs is the sum of the
number of weights and biases from the inputs to the hidden layer, h(n + 1),
and the number of weights and biases from the hidden layer to the output layer,
m(h + 1), which amounts to A(n + m + 1) + m. This last number is equal to
the dimensionality of the search space. For a two-layer neural net we can see

86 Chapter 6. Speaker normalization and bias adaption

that the number of parameters that have to be modelled increases linearly both
with the dimensionality of the input space (n) as well as with the number of
hidden units (#). This implies that the size of the training set needed only has
to increase linearly when the input dimensionality increases. This still remains
true for neural nets with more than one hidden layer.

» Adaptation to the test set. Here we perform a subminimization: all weights and
biases of the trained network keep their value and only the m biases of the output
layer or the n biases in the hidden layer are varied in the minimization process.
The search space thus is reduced to either m-dimensional or n-dimensional. As
test sets we use the (), the () and the

() formant frequency data. These sets consist of the first three
formant frequencies of twelve vowels produced by male, female, and children
speakers.

 Classification of the test sets. The percentage correct classifications of the test
sets are collected. Correct classification occurs when the output of the ‘correct’
output unit is bigger than the output of any other output unit, whatever the max-
imal output level is (there is no minimum level that the output should attain).

6.5 The number of parameters

In the simulations that follow, we vary the topology of the net, i.e. the number of
hidden units, between two and seven. When the number of hidden nodes is seven, the
number of weights and biases in the neural net is approximately equal to the number
of parameters in the () classification model for the grouped
vowels. This is based on the following assumptions: in the paper
the classification was based on ellipses in three dimensions that did not have their
main axes in parallel. These ellipses that determine how distance is measured were
calculated from the individual covariance matrices. ’s classification
method is very similar to a Quadratic Discriminant Analysis as implemented in the
PRAAT program (see section 3.5.6 for more information).

The number of parameters for a general ellipse in n dimensions can easily be
calculated. We start with the number of parameters that specify a two-dimensional
ellipse. The position of the “centre” of the ellipse is determined by two parameters.
Three additional parameters specify the ellipse: two parameters specify the major
axis, i.e. axis length and the angle with respect to the x axis. To specify the minor axis
we need only one length parameter since its orientation, orthogonal to the major axis,
is fixed. A three-dimensional ellipse needs three parameters to define its centre and
six parameters to define its form: three parameters for the principal axis, i.e. two for
its orientation and one for its length, and another three that define the resulting two-
dimensional ellipse. For a four-dimensional ellipse we need four parameters for the
principal axis plus six for the resulting three-dimensional ellipse. For specification of
its centre we need an additional four. To specify the form in » dimensions we need n
parameters for the principal axis plus the number of parameters to specify the resulting

6.6. Frequency scales 87

(n — 1)-dimensional ellipse. This expandsto (n)+(n—1)+m—-2)+---4+3+2+1,
which is equal to n(n + 1) /2. When we add the n parameters for the centre this sums
to n(n + 3)/2.> For m output classes the total number of parameters necessary will
be mn(n + 3)/2. We note that the number of parameters increases linearly with the
number of categories and quadratically with the dimensionality of the input space.
This makes this type of classification unfavourable for large input dimension n as
compared to the neural net where the size of the net only increases linearly with the
input dimensionality. This also implies that the size of the data set needed to train
a classifier based on the Mahalanobis distance, which was defined in equation 3.25
on page 39, has to increase quadratically with the input dimensionality because this
classification is based on multi-dimensional ellipses (the dimensionality of the inverse
covariance matrix is n(n + 1)/2). The need for input-dimension-reduction techniques
for classification based on Mahalanobis distance is therefore very urgent. Fixing all
directions of all the ellipses in parallel reduces the number of parameters with a fac-
tor of m. A simple classification based on means and standard deviations along the
“standard” directions i.e. the x and y axes and so on, involves 2nm parameters.

For a two-layer neural net with n inputs and m outputs, the number 4 of hidden
nodes can be varied. We want to find the number 4 for which the number of parameters
in the net attains the number of parameters used for the classification based on the
Mahalanobis distance. This number functions as the upper limit for the number of
hidden nodes in our tests. The value for 4 can be calculated by equating the number
of parameters in both models:

3
h(n+m+1)+m=%+), 6.1)
which translates to 3 _2
h = M 6.2)

2(n+m+1)

For twelve output classes the equation above gives & = 6.0, for nine output classes 7 =
5.5. To make a fair comparison between the neural net method and the Mahalanobis
distance the number of hidden nodes should be six or lower. We decided to use seven
as the maximum number of hidden nodes and two as the minimum number in the
training.

6.6 Frequency scales

Before extensively testing our adaptation model, we first want to check whether a
logarithmic frequency scale is appropriate.
In table 6.2 on page 89 the classification results are displayed for the
data set with formant frequencies transformed to three different frequency scales:
linear, logarithmic and Bark scale, respectively. This scaling is performed according to
equation (5.18) with appropriate values for the function f. These values are f(x) = x

3 An alternative calculation is based on QDA: since the form of each ellipse is based on a covariance
matrix which is a square symmetric real matrix, the number of independent parameters follows directly.

88 Chapter 6. Speaker normalization and bias adaption

and f(x) = In(x) for linear and logarithmic scaling, respectively. For the Bark scale
the following formula was used (,):

X x \2
fo) =T (=+ 1+<ﬁ) , (6.3)

where the result f(x) is in Barks and the frequency x is in Hz.

In general, one can never guarantee that the minimization of a function in multi-
dimensional space succeeds in finding the global minimum. Therefore, a number of
trials were performed with different starting positions in weight space for each topol-
ogy. The numbers in the table are the maximum classification results of these trials.
From table 6.2 we note that, when the number of hidden nodes increases, the classifi-
cation results get better. It is also clear that no significant differences exist between the
different frequency representations. This notion is in line with (), who
could not find classification differences between logarithmically and linearly scaled
formant frequencies either. The fact that no differences in classification performance
is noticeable between the different frequency scales is at first sight surprising. One
could argue that since Bark- and log-frequencies give more compact representations
and are more perceptually motivated, this would result in better classification results.
We have to notice that a ‘better’ compactness under these circumstances always meant
implicitly that the resulting distribution better matched a normal distribution. Most
classifiers are implicitly based on normal distributions. But neural nets do not base
their internal representations on a normal distribution of the inputs. They are powerful
enough to make their own internal representations of the input data, irrespective of the
distribution. The generalizing capabilities do of course depend on how well the input
space is covered by the input data. Since the choice of frequency seems to be irrele-
vant for our data and both the and the data sets contain
logarithmically transformed formant frequencies, in what follows we will continue to
use logarithmically transformed formant frequencies.

In the last two columns of table 6.2 we show the percentages correct classification
for the log transformed vowels with twelve and nine categories, respectively. When
we compare, for different numbers of hidden units, the numbers in this table with
the numbers in table 6.1, we see that our classification results compare favourably
with the results of (79.0% correct for twelve vowel categories and
93.0% for nine vowel categories). A net with two hidden nodes already gives excellent
classification results. This is remarkable because according to table 4.1 two hidden
nodes in a three-dimensional input space can form four cells and we have twelve
vowel categories. The table gives a correct representation when the nonlinearity is of
the Heaviside form. We, however, use the sigmoid nonlinearity and we have seen that
a very powerful aspect of neural nets, equipped with this type of nonlinearity, is level
coding. Considering this aspect of neural nets it may be less surprising to find already
good classification performances for a neural net with just two hidden nodes.

It is even more surprising that a net with six hidden nodes gives almost the same
classification results as the () classification on centred data. For
centred data the difference between the speaker centroid and the group centroid has

6.7. Test of the adaptation model 89

Table 6.2. Percentages correct classification of neural nets trained and tested
with the female formant frequency data of (). Input data
were presented on a linear, a Bark and a logarithmic frequency scale, respec-
tively. The neural nets had one hidden layer and their topologies were (3, h, m).
The number of hidden units, £, is indicated in the first column of the table. The
number of outputs, m, is 12, except for the last column, the grouped data, for
which m is 9. Training set and test set were identical.

#Hidden Lin (%) Barks (%) Log (%) Log Grouped (%)

2 76.3 71.3 75.6 91.0
3 79.3 78.0 79.3 95.0
4 81.0 81.6 80.3 95.3
5 82.3 82.0 83.0 96.0
6 84.6 83.6 82.6 97.0
7 86.0 88.3 86.6 98.0

been subtracted. The speaker centroid is the average of all the vowels from a speaker.
The group centroid is the average of all the speaker centroids. By subtracting this
difference we make all speaker centroids for the transformed vowels equal. Centred
data is a form of extrinsic normalization. This shows that a neural net without speaker
normalization performs almost as well as with speaker normaliza-
tion.

6.7 Test of the adaptation model

In table 6.3 we have collected the results on the test of our adaptation model with
neural nets that were trained with the logarithmically transformed formant frequency
values of the 50 male speakers of (). The grouped data with nine out-
put categories were used, so the distinction between similar long and short vowels was
ignored. The topology of the neural nets used was (3, #,9), with h =3 or h = 7. The
number of hidden nodes (%) is indicated in the first column of the table. The second
column shows the test sets used: MG10, WG10 and CG10 are sets with the formant
frequency values of ten men, ten women and ten children , respectively, where the
twelve Dutch vowels are grouped into nine categories. MG50 and WG25 are the data
sets of and with vowels grouped into nine categories.
In the third column the percentages correct classification of these test sets are shown
(for MG50 the test and training set were identical). The general tendency for these
test sets is that classification performance gets worse when the speaker category goes
from men to women and then from women to children, irrespective of the number
of hidden nodes. When the number of hidden nodes increases we expect better clas-
sification performance when training and test sets are identical. This is indeed the
case for test set MG50: 89.5% and 93.1% correct classification with three and seven

90 Chapter 6. Speaker normalization and bias adaption

Table 6.3. Classification and adaptation performance of a neural net with
topology (3, h,9), three inputs, & hidden units and nine outputs, trained with
the grouped male formant frequency data set of (). In the first
column the number of hidden nodes is given. The column labelled ‘Test set’
shows the data set used for testing the net: MG10, WG10 and CG10 denote
the set of ten Men, ten Women and ten Children, respectively, MG50 the

set of 50 Men and WG25 the set of 25 Women. The
column labelled ‘Test” denotes the percent correct classification for these test
sets. Columns ‘H,;,” and ‘O,;;’ contain the percentages correct of the adapta-
tion of the biases of the hidden units and the output units, respectively, for all
speakers in the test set together. In the columns ‘H;,,;’ and ‘O;,,’ the adaptation
was performed for each speaker in the test set individually. The percentage cor-
rect classification on data set MG50 in the paper of was 89.3%. For
centred data, an extrinsic form of normalization, it improved to 95.5%.

H Testset Test (%) Hay (%) Hing (%) Oan (%) Oina (%)

3 MGI0 91.7 92.5 100.0 95.8 98.3
3 WGIO0 74.2 91.6 96.7 73.3 76.7
3 CG10 26.7 90.8 98.3 39.1 36.7

Mean 64.2 91.6 98.3 69.4 70.5
3 MG50 89.3 89.3 96.7 89.3 94.7
3 WG25 78.3 88.0 97.3 83.3 86.7
7 MGI0 93.3 94.1 99.2 95.0 96.7
7 WGI0 71.7 82.5 85.8 77.5 81.7
7 CG10 51.7 63.3 70.8 58.3 62.5

Mean 72.2 80.0 85.3 76.9 80.3
7 MGS50 93.2 93.2 98.0 93.2 94.5
7 WG25 75.6 84.6 92.0 85.0 83.7

hidden nodes, respectively. Furthermore, the classification performance for test set
MG10 also increases from 91.7% to 93.3% correct when the number of hidden nodes
increases. This is also the case for test set CG10 where the increase in classification
performance almost doubles from 26.7 to 51.7% correct. The test sets of the women
speakers, WG10 and WG25, show the opposite effect. Here the classification perfor-
mance decreases somewhat when the number of hidden nodes increases, which is a
bit unexpected (explanation will follow in this section).

In the next column labelled ‘H,;;” we show classification performance after bias
adaptation on the hidden layer. The bias adaptation procedure went as follows: we
started with a neural network that has been trained on the male data set MG50. In
the following adaptation step we trained a subset of the weights of this network again
with the test set, i.e. only the bias weights on the hidden layer were allowed to change
during the training while all other weights were kept fixed. Training automatically

6.7. Test of the adaptation model 91

stopped if the difference between the Minimum Squared Error’s on two successive
iterations on the test set was smaller than 10~7. For all the test sets this ‘training’
finished within 200 iterations. In the last step of the adaptation process the neural
net was used as a classifier and its performance on the test set was measured. We
note a significant increase in percentage correct classification. Especially the results
for the topology with three hidden nodes are noticeable: with a change in only three
parameters the percentage correct of the women speakers WG10 goes up with almost
20% from 74.2% to 91.6% and WG25 goes up by 9%. For the children CG10 we note
an extreme increase from 26.7% to 90.8% correct.

These results get even better when we go to the next column, labelled ‘H;,4’.
These results were obtained by adapting the biases to each individual speaker. The re-
sults obtained for the individual speakers were then averaged. The recognition scores
for this case came rather close to 100% for all speaker categories, which is quite ex-
traordinary if we realize that the training was performed with data from male speakers.

The last two columns in the table show the performance when the nine biases of
the output layer, rather than from the hidden layer, were allowed to adapt. As before,
the adaptation was either on the whole test set (O,;;) or on the individual speakers
of the test set (O;,4). Both columns show some increase in recognition performance
as compared to the third column labelled ‘Test’. The increase is substantial if the
speaker category of the test set equals the speaker category of the training set (men).
The effect is only small when the speaker categories differ. When we compare for
all speaker categories the adaptation effect for the biases of the hidden and the output
nodes, we note from the table that the best results are obtained with the biases of the
hidden nodes. This means that indeed, on the input side, a simple translation of the
hyperplanes is sufficient to guarantee proper adaptation and at the same time is pow-
erful enough even for the adaptation of the vowels spoken by children to the vowels
as spoken by men. On the output side a translation helps, but is not powerful enough
to adapt the children’s vowels to the male vowels. Probably, besides a translation we
need rotations, which involves many more parameters and therefore is less attractive.

When we investigate the effect of the number of hidden nodes on the classifica-
tion performance we can note the following: As can be expected, the classification
performance, for the case when training and test set are identical, increases when the
number of hidden nodes increases. The net has more freedom to model the training
set when it has more hidden nodes at its disposal, hence a better classification. This
does not necessarily mean that the generalization properties increase with the number
of hidden nodes. Generalization depends more on the relation between the number
of training patterns and the number of parameters that we want to train. In general
one can say that if more training patterns are present in relation to the number of pa-
rameters, the generalization properties tend to increase. From table 6.3 we note that
the generalization properties are somewhat better for the network with seven hidden
nodes. However, the adaptation performance of the net with the smaller number of
hidden nodes are better. A possible explanation could be that the net with three hid-
den nodes necessarily is more general and therefore more easily adaptable. Another
explanation could be that although the fraction of the total number of parameters in the
net that is to be trained anew is the same in the nets with three and seven hidden nodes,

92 Chapter 6. Speaker normalization and bias adaption

the number of parameters that is not changed grows linearly and equals h(n + m).

Table 6.4. Classification and adaptation performance of a neural net with topol-
ogy (3, h,9) trained with the grouped female formant frequency data set of
(). For further details see table 6.3 and the text.

H Testset Test (%) Hay (%) Hing (%) Oan (%) Oina (%)
3 MGI0 73.3 90.8 95.8 90.8 85.8
3 WGI0 88.3 88.3 93.3 88.3 90.8
3 CG10 55.8 90.8 95.0 75.0 70.0

Mean 72.5 90.0 94.7 84.7 82.2
3 MG50 68.8 79.0 89.2 78.6 80.8
3 WG25 95.0 95.0 96.3 95.0 96.0
7 MGI10 75.8 86.6 90.0 71.5 78.3
7 WGI0 84.2 90.8 94.2 85.0 87.5
7 CG10 40.8 55.0 75.8 46.6 41.7

Mean 66.9 77.5 86.7 69.7 69.2
7 MG50 62.5 76.5 82.3 65.6 70.3
7 WG25 98.0 98.0 98.3 98.0 98.0

Table 6.4 shows the adaptation performance of neural nets that were trained with
the logarithmically transformed formant frequency values of the 25 female speakers
of (), using again the grouped data with nine output categories.
The topology of the neural nets used was (3, 4,9), with h = 3 and & = 7, the same as
in the previous table.

The general results are in line with the data in table 6.3: very good adaptation
properties, better adaptation when the biases of the hidden layer are changed as com-
pared to a change in the biases of the output layer and better adaption performance
for the net with the lower number of hidden nodes. Some small differences, however,
do exist. The women data set seems to be more homogeneous, which leads to higher
classification results when training and test set are identical (WG25). This results in a
somewhat less succesful generalization performance: the results for WG10 in column
‘Test’ show 88.3% and 84.2% correct for a net with three and seven hidden nodes.
This is probably caused by the fact that we do not have enough training data. We may
conclude from both tables 6.3 and 6.4 that the adaptation capabilities by only vary-
ing the bias of the hidden units of a trained neural net are very powerful. However,
in order to get good generalizing capabilities the number of training patterns has to
increase.

6.8. Discussion 93

6.8 Discussion

We discussed a simple model of normalization in terms of adaptation. First we trained
the neural net with data that reasonably covered the input space. Next we adapted the
net to individual speakers by letting the net only vary a small subset of the weights,
namely the biases of either the hidden layer or the output layer. The model proved
reasonably successful within the limited task of the classification of static vowel tar-
gets. It showed that by selectively training only a subset of all the weights in a neural
net, the adaptation of the net towards speakers could be greatly improved. In this
field, () has an interesting approach to normalization that he tests on the

() data. He uses neural nets, in a two-staged process. First
he tries to find the speaker-dependent transformations that are necessary to transform
formants to normalized formants. These normalized formants are then input to the
second stage, a classifying neural net. His model is based on a clear distinction be-
tween extrinsic and intrinsic normalization: the transforming and the classifying net
perform these tasks, respectively. Adaptation is performed by an independent opti-
mization of the transforming net. In our approach the same neural net performs the
normalization task. Before we can investigate how well this adaptation can be used
on bandfilter data (in chapter 9), we first have to discuss some technical issues in the
next two chapters.

94

Chapter 6. Speaker normalization and bias adaption

Chapter

Canonical correlation analysis*

Abstract

In this chapter we discuss algorithms for performing canonical correlation analysis
to find correlations between two data sets. The canonical correlation coefficients can
be calculated directly from the two data sets or from (reduced) representations such
as the covariance matrices. The algorithms for both representations are based on sin-
gular value decomposition. The methods described here have been implemented in
the speech analysis program PRAAT (,). We show how to
calculate the correlations between formant frequency values and formant levels, and
how to use these correlations to predict the formant frequency values when only the
values for the levels are known. Another example will show that an auto-associative
neural network actually performs a principal component analysis.

*This chapter is a modified version of ().

96 Chapter 7. Canonical correlation analysis

7.1 Introduction

Let X be a data matrix of dimensionality m x n which contains m replications of
an n-dimensional random variable x. The correlation coefficient p;; that shows the
correlation between the variables x; and x; is defined as

where the number 2;; denotes the covariance between x; and x; which is defined as

pij = (7.1)

] m

3y = D KX =) (Xaj = pj), (7.2)

m—1k:1

where u; is the average value of x;. The matrix X is called the covariance matrix. From
X we construct the data matrix A, by centring the columns of X, i.e. the elements of
A, are a;; = X;; — p;. We can now rewrite the covariance matrix as

1
v= 1 aa, (7.3)

m—1
where A/, denotes the transpose of A.

Note that the correlation coefficient only provides a measure of the linear associ-
ation between the two variables: when the two variables are uncorrelated, i.e. when
their correlation coefficient is zero, this only means that no linear function describes
their relationship. A quadratic relationship or some other non-linear relationship is
certainly not ruled out.

Equation (7.1) shows us the recipe to determine the correlation matrix from the
covariance matrix. However, the correlations in the correlation matrix depend very
much on the coordinate system that we happen to use. We could rotate the coordinate
system in such a way that the projections in the new coordinate system are maximally
uncorrelated and this is exactly what a principal component analysis (see chapter 3)
achieves: the correlation matrix obtained from the principal components would be
the identity matrix, showing only zeros with ones on the diagonal. While each el-
ement in the correlation matrix captures the correlation between two variables, the
object of canonical correlation analysis is to capture the correlations between two sets
of variables. Canonical correlation analysis tries to find basis vectors for two sets of
multidimensional variables such that the linear correlations between the projections
onto these basis vectors are mutually maximized. In the limit when the dimension-
ality of each set is 1, the canonical correlation coefficient reduces to the correlation
coefficient.

We will need this type of analysis when we want to find relations between differ-
ent representations of the same objects. Here we will demonstrate its usefulness by
showing the correlations between principal components and auto-associative neural
nets for vowel data.

7.2. Mathematical background 97

7.2 Mathematical background

Canonical correlation analysis originates in () and the two equations
that govern the analysis, as we will show below, are the following:
(T ey =2)y = 0 (7.4)

(ZxyZ5y Zhy = PP)X (7.5)

where X/ denotes the transpose of X,yand £}, = Xy,. Both equations look similar
and have, in fact, the same eigenvalues. And, given the eigenvectors for one of these
equations, we can deduce the eigenvectors for the other, as will be shown in the next
section.

7.2.1 Derivation of the canonical correlation analysis equations

In canonical correlation analysis we want to maximize correlations between objects
that are represented with two data sets. Let these data sets be A, and A, of dimen-
sions m x n and m x p, respectively. Sometimes the data in A, and A, are called the
dependent and the independent data, respectively. The maximum number of correla-
tions that we can find is then equal to the minimum of the column dimensions » and
p. Let the directions of optimal correlations for the A, and A, data sets be given by
the vectors x and y, respectively. When we project our data on these direction vectors,
we obtain two new vectors z, and z,, defined as follows:

Z, = Ax (7.6)
z, = Ay (7.7)

The variables z, and z, are called the scores or the canonical variates. The correlation
between the scores z, and z, is then given by:

p=—— (7.8)

Our problem is now to find the directions y and x that maximize equation (7.8). We
first note that p is not affected by a rescaling of z, or z,, i.e., a multiplication of z, by
the scalar @ does not change the value of p in (7.8). Since the choice of rescaling is
arbitrary, we therefore maximize equation (7.8) subject to the constraints

zZ. -z, =XAAx=x2Z,x =1 (7.9

X

z,-z, =yAAy=yZ,y =1 (7.10)
We have made the substitutions £, = A} A, and £,, = A\ A,, where the X’s are co-
variance matrices (the scaling factor to get the covariance matrix, 1 /(m—1), can be left
out without having any influence on the result). When we also substitute X, = A} A,

98 Chapter 7. Canonical correlation analysis

we use the two constraints above and write the maximization problem in Lagrangian
form:

’ Px ’ p ’
L(p.py X Y) =YX = = (XZox = 1) = 5 (YZy - 1), (71D
We can solve equation (7.11) by first taking derivatives with respect to y and x:
oL
~ = Ty = prZnX =0 (7.12)
oL
5 =2 x—pZ,y =0 (7.13)

Subtractig X’ times the first equation from y’ times the second yields
0 =yZXx—pyYE,y— Xy + paX Lx
= pxX' X —pyy' 2y,

Together with the constraints of equations (7.9) and (7.10) we must conclude that
px = py = p. When X, is invertible we get from (7.12)

= w (7.14)
p
Substitution in (7.13) gives essentially equation (7.4):
(202, =022,y = 0. (7.15)
In an analogous way we can get the equation for the vectors x as:
(s ZiEyx — p°Zi0)x = 0. (7.16)

Because the matrices X, and X, are each other’s transpose we write the canonical
correlation analysis equations as follows:

(T — "%,y =0 (7.17)
(E0ZZ, =P Za)x = 0. (7.18)

We can now easily see that in the one-dimensional case both equations reduce to a
squared form of equation (7.1). The equations (7.17) and (7.18) are so called gener-
alized eigenvalue problems. Special software is needed to solve these equations in a
numerically stable and robust manner. In the next section we will discuss two meth-
ods to solve these equations. Both methods have been implementend in the PRAAT
program.

7.2.2 Solution of the canonical correlation analysis equations

We have to consider two cases here: the simple case when we only have the covari-
ance matrices, or, the somewhat more involved case, when we have the original data
matrices at our disposal.

7.2. Mathematical background 99

7.2.2.1 Solution from covariance matrices

We will start with the simple case and solve equations (7.17) and (7.18) when we have
the covariance matrices X, Xy, and X, at our disposal. We will solve one equation
and show that the solution for the second equation can be calculated from it. Pro-
vided X, is not singular, a simpler looking equation can be obtained by multiplying
equation (7.17) from the left by E;yl:

(2 0y —py =0. (7.19)

This equation can be solved in two steps. First we perform the two matrix inversions
and the three matrix multiplications. In the second step we solve for the eigenvalues
and eigenvectors of the resulting general square matrix. From the standpoint of numer-
ical precision, actually performing the matrix inversions and multiplications would be
a very unwise thing to do because with every matrix multiplication we lose numerical
precision. Instead of solving equation (7.17) with the method described above, we
will rewrite this generalized eigenvalue problem as a generalized singular value prob-
lem. To accomplish this we will need the Cholesky factorization of the two symmetric
matrices X, and X,

The Cholesky factorization can be performed on symmetric positive definite ma-
trices, like covariance matrices, and is numerically very stable (,

). Here we factor the covariance matrices as follows:

2,y = UL,
oy = U;Ux;

where U, and U, are upper triangular matrices with positive diagonal entries. Let K
be the inverse of U, ; then we can write

> 1 =KK' (7.20)
We substitute this in equation (7.17) and rewrite as
(K'Zyy) (K'Zyy) = pU,U,)y = 0. (7.21)

This equation is of the form (A’A — pB’'B)x = 0 which can be solved by a numerically
very stable generalized singular value decomposition of A and B, without actually
performing the matrix multiplications A’A and B'B ((); see
also chapter 3). We have obtained this equation by only one matrix multiplication, two
Cholesky decompositions and one matrix inversion. This allows for a better estimation
of the eigenvalues than estimating them from equation (7.19). The square roots of
the eigenvalues of equation (7.21) are the canonical correlation coefficients p. The
eigenvectors y tell us how to combine the columns of A, to get this optimum canonical
correlation.

We will now show that the eigenvalues of equations (7.17) and (7.18) are equal
and that the eigenvectors for the latter can be obtained from the eigenvectors of the
former. We first multiply (7.17) from the left by X, yE;yl and obtain

(nyz;yl E;yi‘.;; Zyy — Pzzxy)y =0,

100 Chapter 7. Canonical correlation analysis

which can be rewritten by inserting the identity matrix X,, X7} as
(Zay B3y T T Ty = 7 Ee T Ty)y = 0.
Finally we split off the common X! 2., part on the right and obtain
(Z0 X)) Ty = P Z0)Z0E0y = 0. (7.22)

We now use (7.14) and obtain equation (7.18). This shows that the eigenvalues of
equations (7.17) and (7.18) are equal and that the eigenvectors x for equation (7.18)
can be obtained from the eigenvectors y of equation (7.17) asx = ;1 2, y.

7.2.2.2 Solution from data matrices

When we have the data matrices A, and A, at our disposal we do not need to compute
the covariance matrices Xy, = A'Ay, £,, = AJA, and X,, = A'A, from them.
Numerically spoken, there are better ways to solve equations (7.4) and (7.5). We will
start with the singular value decompositions

A, =U,D, V. (7.23)
A, =U,D,V, (7.24)

and use them to obtain the following covariance matrices

To= AA, = VDV,
= ALA, = V,DIV,
Ty = ALA, = V.D,UU,D,V, (7.25)

where we used the orthonormalities U, U, = I and U U, = I. We use these decom-
positions together with X! = V,D;2V’, to rewrite equation (7.4) as

(V,D,U,U,U,U,D,V, — p>V,D}V))y = 0, (7.26)

where we used the orthonormalities V,V, = I and V| V), = I. Next we multiply from
the left with D}'V/, and obtain

(U/yUxU;UyDyV’y - pszV/y)y =0, (7.27)
which can be rewritten as
(U, U,y (U U,) - pZI)DyV’yy =0. (7.28)

This equation is of the form (A’A — pI)x = 0 which can be easily solved by the
substitution of the singular value decomposition (svd) of A. The svd of U, U, = UDV’
substituted in equation (7.28) leaves us after some rearrangement with

(D> - p’DHV'D,V,y =0, (7.29)

7.3. A canonical correlation analysis example 101

where we used the orthonormalities UU = V'V = I. This equation has eigenval-
ues D2, and the eigenvectors can be obtained from the columns of VyD;'V. In an
analogous way we can reduce equation (7.5) to

(D? - p’HUD, V' x = 0, (7.30)

with the same eigenvalues D?>. Analogously, the eigenvectors are obtained from the
columns of V,D'U.

We have now shown that the algorithms above significantly reduce the number of
matrix multiplications that are necessary to obtain the eigenvalues. Most importantly,
we do not actually need to perform the matrix multiplications to obtain the covariance
matrices in equations (7.25). We only need two singular value decompositions and
one matrix multiplication U, U,.. The latter multiplication is numerically very stable
because both matrices are column orthogonal.

7.2.2.3 Solution summary

We have shown two numerically stable procedures to solve the canonical correlation
equations (7.4) and (7.5). In both procedures the data matrices A, and A, were con-
sidered as two separate matrices. The same description can be given if we use the
combined m x (p + n) data matrix A,.,. In this matrix the first p columns equal A,
and the next n columns equal A, . Its covariance matrix can be decomposed as:

z z
Zyx = Aiv+xAy+x = [” yx] .
2x y 2xx
The problem has now been reformulated as obtaining correlations between two groups
of variables within the same data set. This formulation has been adopted in the PRAAT
program.

7.3 A canonical correlation analysis example

As an example we will use the data set of (). This data set is available
as a TableOfReal oObject in the PRAAT program: the first three columns in the table
contain the frequencies of the first three formants in Hertz and the next three columns
contain the levels of the formants in decibel below the overall sound pressure level
(SPL) of the measured vowel segment. There are 600 = 50 x 12 rows in this table.
Because the levels are all given as positive numbers, a small number means a relatively
high value for the bandfilter level while a large number means a relatively low value.
To get an impression of this data set we have plotted in figure 7.1 the standardized
logarithmically transformed first and second formant against each other. This figure
is the standardized version of figure 3.3. In the next subsection more details about the
transformation will be given.

102 Chapter 7. Canonical correlation analysis

3
N
L a
o 0
9
-3
-3 0 3

Figure 7.1. The standardized logarithmically transformed first and second for-
mant frequencies of the () data set.

7.3.1 Finding correlations between formant frequencies and levels

As an example of applying a canonical correlation analysis, we will try to find the
canonical correlation between the three formant frequency values and the three levels.
Instead of the frequency values in Hertz we will use logarithmic values and standardize
all columns' (for each column separately: subtract the column average and divide by
the standard deviation). Before we start the canonical correlation analysis we will first
have a look at the Pearson correlations within this data set. These correlations are
displayed in table 7.1. Actually we show two correlation matrices in the same table,
making use of the fact that a correlation matrix is a symmetric matrix whose diagonal
elements are all equal to 1. The upper triangular part shows the correlations for the
formant frequencies in Hertz while the lower triangular part shows the correlations
for the logarithmically transformed formant frequencies. The column labels belong
to the upper triangular part while the row labels belong to the lower triangular part.

I The standardization is, strictly speaking, not necessary because correlation coefficients are invariant
under standardization.

7.3. A canonical correlation analysis example 103

Create TableOfReal (Pols 1973)... yes > Fj23 (Hz) and levels L; 3.
Formula... if col < 4 then loglO(self) else self endif > To log(Fi23).
Standardize columns

To Correlation

Confidence intervals... 0.95 O Ruben > Bonferroni correction.

Script 7.1. Calculating correlations and confidence intervals.

For example, the number —0.338 in the row labelled log F; and the column labelled
F, represents the correlation between F; and F,, while the number —0.302 in the
row labelled log F, and the column labelled F; represents the correlation between
log F; and log F,. We clearly see in the table that the correlation pattern in the upper
triangular part follows the pattern in the lower triangular part for the logarithmically
transformed frequencies. To get an impression of the variability of these correlations,
we have displayed in table 7.2 the confidence intervals at a confidence level of 0.95.
We used Ruben’s approximation for the calculation of the confidence intervals and
applied a Bonferroni correction for the significance level (, , page 39).
Script 7.1 summarizes.

Table 7.1. Correlation coefficients for the () data set. The entries
in the lower triangular part are the correlations for the logarithmically trans-
formed frequency values while the entries in the upper part are the correlations
for frequency values in Hertz. The lower part reproduces the values found in

table 3.1.

F F, F; Ly L, L;
log Fy —-0.338 0.191 0.384 —-0.507 -=0.014
log F, —0.302 0.190 -0.106 0.530 -0.568
log F3 0.195 0.120 0.113 -0.036 0.019
L 0.370 —-0.090 0.116 —0.042 0.085
Ly —-0.533 0.512 —=0.044 —-0.042 0.127
L -0.021 -0.605 0.017 0.085 0.127

The lower triangular part of table 7.1 in which the correlations of the logarithmi-
cally transformed formant frequency values are displayed, is reproduced from table
3.1. The correlation matrix shows that high correlations exist between some formant
frequencies and some levels, as was already discussed in section 3.5.3.

To obtain the canonical correlations between the formant frequencies and formant
levels we first let the PRAAT program construct a cCA object from the TableOfReal
object. This object will next be queried for the canonical correlations. In the con-
struction of the cca object, the first three columns in the Table0fReal object, namely
those that contain the formant frequencies, are associated with the matrix A, and the
last three columns, which contain the formant levels, are associated with the matrix
A,. Then, the calculations as outlined in section 7.2.2.2 are used to determine the
canonical correlations. Script 7.2 on the following page summarizes.

104

Chapter 7. Canonical correlation analysis

Table 7.2. Confidence intervals at a 0.95 confidence level of the correlation
coefficients in the lower triangular part of table 7.1. Confidence intervals were
determined by applying Ruben’s approximation and a Bonferroni correction
was applied to the confidence level. The upper and lower triangular part display
the upper and lower value of the confidence interval, respectively. For example,
the confidence interval for the —0.533 correlation between L, and log F; is
(—0.614, —0.442).

log F;
log F,
log F3
L,
L,
L;

log F;

—0.407
0.077
0.262

-0.614

—0.140

log F
—0.189

0.001
—0.207
0.417
—0.675

IOg‘Eé 14 lQ l@

0.307 0469 —0.442 0.099

0.236 0.030 0.595 -0.522

0.232 0.076 0.136

—-0.004 0.078 0.203

-0.162 -0.161 0.243
-0.103 -0.035 0.007

select TableOfReal pols_bOmales

To CCA... 3

Get correlation... 1
Get correlation... 2
Get correlation... 3

D> The log(F) values.
> We have 3 dependent variables.

Script 7.2. Canonical correlation analysis.

In table 7.3 we show the canonical correlations together with the eigenvector load-
ings on the variables. The eigenvectors belonging to the first and the second canonical
correlation have also been drawn in figure 7.2 with a solid line and a dotted line, re-
spectively. In this figure the plot on the left shows the weighting of the frequencies.

Table 7.3. The canonical correlations between formant frequencies and formant
levels and their corresponding eigenvectors.

P 10g F] 10g F2 log F3 Ll L2 L3
1 0867 -0.187 0971 -0.148 —0.092 0.714 -0.694
0.545 0.891 0.443 —-0.099 0.646 —0.428 —0.632
3 0.072 0.166 0.017 -0986 —-0.788 —0.530 —0.313

We see that for the first eigenvector most of the weight is put on log F;, and that the
other two frequencies are barely weighted. On the other hand, for the weighting of the
levels, the first eigenvector shows approximately equal weighting of the second and
third level (in an absolute sense). This is confirmed by the data in table 7.1, which
show a high correlation, 0.512, between log F, and L, and the highest correlation,

7.3. A canonical correlation analysis example 105

log F4 log F, log F L, L, Ls

Figure 7.2. The eigenvectors corresponding to the first (solid line) and the
second canonical correlation (dotted line).

—0.605, between log F, and Lj. Table 7.3 indicates that the weightings of L, and L3
in the first eigenvector are even larger than in table 7.1.

7.3.2 Using the correlations for prediction

The outcome of the canonical correlation analysis on the Pols et al. data set was three
canonical correlations, p;, with their associated eigenvectors x; (levels) and y; (fre-
quencies). These eigenvectors can be used to construct the scores (canonical variates)
z, and z, by projecting the data matrices on the eigenvectors, as was shown in equa-
tions (7.7) and (7.6), respectively. In figure 7.3 we have drawn a scatter plot of the first
canonical variates. The straight line shows the empirical relation y; = 0.867x; for the
first canonical correlation. We note two separate clusters, one for the back vowels and
another for the front vowels. The main ordering principle in the figure is from front
to back, as can also be seen from the first eigenvector for the formants in figure 7.2,
which is dominated by the second formant frequency. The linear part of the relation
between these canonical variables can be exploited by predicting one from the other.
In the following we will try to predict formant frequency values from formant levels.
We start with the equations for the canonical variates and write

Zy; = piZy;, fori =1,2and3. (7.31)

These three equations show the optimal linear relation between a linear combination
of formant frequencies and formant levels, the z, and the z,, respectively. Equation
(7.31) could also be interpreted as a prescription to determine the z,when only the
z,.are given. In the equation above the vectors z are three-dimensional. For every
element j of the vectors z, we can substitute back the original variables and obtain the

106 Chapter 7. Canonical correlation analysis

3.1

N

|
o8}
—_

-3.1 0 3.1

X1

Figure 7.3. A scatter plot of the first canonical variates. The straight line shows
the canonical correlation relation y; = p;x;, where p; = 0.867.

following equation
Yf =D(p;)XI, (7.32)

where f and 1 are the vectors with the three formant frequencies and levels, respec-
tively, and D(p;) is a diagonal matrix. The Y and X are the eigenvectors. Now,
because the Y are orthonormal, we can write the solution as

f = Y'D(p)XL (7.33)

When we train a discriminant classifier with the standardized formant frequency
values and use the same set we used for the training as input for the classifier, we
obtain 73.9% correct classification with the 12-label set (discriminant analysis with
the PRAAT program has been covered in chapter 3). When we use the formant lev-
els to predict the formant frequencies and subsequently use these predicted formant
frequencies as input to the classifier, we get 26% correct classification. Using only
formant levels for discriminant classification gives 37.2% correct. Both classifications
are above chance (8.5%). The following script summarizes.

7.4. Principal components and auto-associative neural nets 107

select TableOfReal pols_bOmales
plus CCA pols_50males

Predict... 4 > Start column is 4.
Select columns where row... "1 2 3" 1 > Select only Fy, F, F3.
Rename... £123

To Discriminant > Train the classifier.

plus TableOfReal £123
To ClassificationTable... y y > Use linear discriminant.
To Confusion > Get the confusion matrix.

fc = Get fraction correct

Script 7.3. Prediction from canonical correlations.

7.4 Principal components and auto-associative neural
nets

7.4.1 Introduction

In this section we try to use canonical correlation analysis to demonstrate that appro-
priately chosen neural nets can also perform principal component analysis. We will
do so by comparing the output from an auto-associative neural net with the output of a
principal component analysis by means of canonical correlation analysis. As test data
set we will use only the three formant frequency values from the Pols et al. data set. In
order to make the demonstration not completely trivial we compare two-dimensional
representations. This means that in both cases some data reduction must take place.

7.4.2 The auto-associative neural net

An auto-associative neural net is a supervised neural net where each input is mapped
onto itself. We will use here the supervised feedforward neural net as is implemented
in the PRAAT program. Auto-associativity in these nets can best be accomplished by
making the output units linear> and the number of dimensions of the input and output
layer must be equal. The trivial auto-associative net has no hidden layers and maps its
input straight onto its output. Interesting things happen when we compress the input
data by forcing them through a hidden layer with fewer units than the input layer. In
this way the neural net has to learn some form of data reduction. This reduction must
probably be some way of principal component analysis in order to maintain as much
variation as possible in the transformation from input layer to output layer.

Since our input data is three-dimensional, the number of input and output nodes
for the neural network is already fixed and the only freedom in the topology that is left
is the number of hidden layers and the number of nodes in each hidden layer. To keep
the comparison as simple as possible, we will use only one hidden layer in this task,
with two nodes in this layer. The resulting topology for the supervised feedforward

2This linearity is only for the output nodes, the hidden nodes still have the sigmoid non-linearity.

108 Chapter 7. Canonical correlation analysis

f, A fy
i
©
O
4)
f, A fy

Figure 7.4. Topology of the supervised auto-associative feedforward neural
net used for learning the associations between logarithmically scaled formant
frequency values.

neural net is a (3,2,3) topology, i.e. three input nodes, two hidden nodes and three
output nodes. A network with this topology has only 17 adaptable weights: nine
weights for the output layer and eight weights for the hidden layer. The topology of
this network is displayed in figure 7.4.

In the training phase we try to adjust the weights of the network in such a way
that when we propagate an input through the neural net, the output activation of the
neural net will equal the input. Of course, this is not always possible for all inputs
and therefore we try to make them as close as possible on average. Closeness is then
mathematically defined as a minimum squared error criterion.

7.4.3 Data preprocessing

In order to guarantee proper training we have to arrange for all inputs to be in the
interval (0, 1). We have scaled all formant frequency values as

fi =log +0.5, fori =1,2and 3. (7.34)

F,
(2i — 1)500

In this formula formant frequencies F; in Hertz are first scaled with respect to the
resonance frequencies of a straight tube which are at frequencies of (2i — 1)500 Hz.

7.4. Principal components and auto-associative neural nets 109

L]
[]
]

T T T 0 T T T
log F log F; log F fi fH f3

Figure 7.5. Box plots before (left) and after (right) scaling the logarithmically
transformed frequency values. The f; are scaled to the interval (0, 1) according
to equation (7.34). The dotted lines in the box plots indicate the mean values.

Next the logarithm of this fraction is taken.” Since the logarithm of this fraction

can take on negative values we add the factor 0.5 to make the number positive. This
formula is very similar to formula (5.18), we find the former more “attractive” because
the scalings involved, i.e. (2i — 1)500, are the resonance frequencies of a straight tube,
whereas in equation (5.18) the minimum and maximum values where chosen ad hoc.

To show the effect of this scaling we have drawn in figure 7.5 box plots of the
data before and after the scaling. A “box plot”, or more descriptively a “box-and-
whiskers plot”, provides a graphical summary of data. The box is marked by three
solid horizontal lines which, from bottom to top, indicate the position of the first,
second and third quartile. The box height therefore covers 50% of the data (the line
of the second quartile is also called the median). In the PRAAT version of the box
plot, the box has been extended with a dotted line that marks the position of the mean.
The lengths of the vertical lines, the “whiskers”, show the largest/smallest observation
that falls within 1.5 times the box height from the nearest horizontal line of the box.
If any observations fall farther away, the additional points are considered outliers and
are shown separately.

Besides scaling the values to the (0, 1) interval we also note that the locations
of the scaled formant frequency values have become more equalized. The following
script summarizes the scaling.

31t is not strictly necessary to take the logarithm. The scaling with the corresponding odd multiple of
500 Hz for each formant is already sufficient to move all values into the interval (0.4,2.2]. Subsequently
dividing by a factor somewhat greater than 2.2 would yield numbers in the (0,1) interval. Taking an extra
logarithm, however, achieves a somewhat better clustering. A discriminant classification with identical
training set and test set shows 73.9% correct for the logarithmic scaling, as was already shown in section
7.3.2, versus 72.8% for the alternative scaling discussed in this footnote.

110 Chapter 7. Canonical correlation analysis

Create TableOfReal (Pols 1973)... no > Only frequencies, no levels.
Formula... logl0 (self / ((2%col-1)*500)) + 0.5 > Equation (7.34).

Script 7.4. Scaling of the formant frequencies to the (0, 1) interval.

7.4.4 Training the neural net

After preprocessing the data we have a table in which all elements are within the
(0, 1) interval. We duplicate this table and cast the two resulting objects to a Pattern
object and an Activation object, respectively. These two objects function as the input
and output for the auto-associative feedforward neural net. The next step is then to
create a neural net of the right topology, select the input and the output objects and
start learning. Preliminary testing showed that 500 learning epochs were sufficient for
learning these input-output relations.

Because the learning process uses a minimization algorithm that starts the mini-
mization with random weights, there always is the possibility that learning gets stuck
in a local minimum. We cannot avoid these local minima. However, by repeating the
minimization process a large number of times, each time with different random initial
weights, we hope to find acceptable learning in some of these trials. We therefore
repeated the learning process 1000 times and each time used different random initial
weights. The repeated learning only took 27 minutes of cpu-time on a computer with
a 500-MHz processor. It turned out that after these 1000 learning sessions all the ob-
tained minima were very close to each other. The distribution of the minima in this
collection of 1000 was such that the absolute minimum was 0.5572, the 50% point
(median) was at 0.5575 and the 90% point at 0.5580. If we consider that the training
data matrix had 600 rows (replications) and each row is a three-dimensional vector
with values in the interval (0, 1) and this minimum is the sum of all the squared er-
rors on the test set, then excellent learning has taken place. Script 7.5 summarizes the
learning process.

7.4.5 The comparison

Now that the best association between the three-dimensional outputs and inputs by
means of two hidden nodes has been learned by the neural net, we want to compare this
mapping with the results of a two-dimensional principal component analysis. We want
to obtain the representation of all the inputs at the two nodes of the hidden layer. This
can be done by presenting an input to the trained neural net, let the input propagate
to the first hidden layer and then record the activation of the nodes in this layer. The
input to the neural net will therefore be a 600 x 3 table and the output will be the
activation at the hidden layer, a table of dimension 600 x 2. Script 7.6 summarizes.

The mapping to the principal component plane of the scaled data is simple to
obtain. See chapter 3 for more information on principal component analysis. The first
two principal components explain 95.8% of the variance. Script 7.7 summarizes.

To get more insight in the results of the two different analyses we have plotted in
figure 7.6 the neural net and principal component representations of the formant data

7.4. Principal components and auto-associative neural nets 111

min_global= 1e30 > Initialize to some large value.
Create Feedforward Net... 3.2.3 3320y > Topology (3, 2, 3).
for i to 1000
select FFNet 3_2_3
Reset... 0.1 > All weights random uniform in [-0.1, 0.1].
plus Activation pols_bOmales
plus Pattern pols_5Omales
Learn (SM)... 500 le-10 minimum squared error > 500 epochs.
select FFNet 3_2_3
min = Get minimum
if min < min_global
min_global = min
Write to short text file... 3_.2_3 > Save FFNet object to disk.
endif

endfor

Script 7.5. Training the neural net.

select FFNet FFNetmin B> Select the trained neural net
plus Pattern pols_50males > + the input.
To Activation... 1 > Layer 1 is the hidden layer.

Script 7.6. Get activation at hidden layer.

Create TableOfReal (Pols 1973)... no > No levels.
Formula... 1loglO (self / ((2%col-1)%500)) + 0.5
To PCA D Principal Component Analysis.
vaf = Get fraction variance accounted for... 1 2

plus TableOfReal pols_5Omales

To Configuration... 2 P> The 2-dimensional mapping.

Script 7.7. Mapping to the principal component plane.

preprocessed according to equation (7.34). The figure on the left shows the repre-
sentation in the hidden layer, the figure on the right displays the data in the principal
component plane. Closer inspection shows that after reflecting the second plot around
the pcl-axis both representations will look very similar. When we compare them to
figure 7.1, we notice a great resemblance, which shows that predominantly only the
first two formant frequencies contribute to the representations in figure 7.6.

We can now combine the two representations in one 600 x 4 data matrix and calcu-
late the correlations between the columns of this matrix. The correlation coefficients
are shown in the upper diagonal part in table 7.4. Script 7.8 summarizes.

As for the principal components, the table confirms that the correlation coefficient
between the first and the second principal component is zero, as it must be, since
the whole purpose of principal component analysis is to remove correlations between
dimensions. The representations at the two hidden nodes are not independent from

112 Chapter 7. Canonical correlation analysis

node2

nodel

Figure 7.6. Two different representations of the formant frequency data scaled
according to equation (7.34). Left: the representation at the hidden layer of
the neural net of figure 7.1 with topology (3, 2, 3). Right: the plane with the
first two principal components. The solid and dotted arrows are data taken from
table 7.5 and indicate the directions of the eigenvectors for the first and second
canonical correlation, respectively.

select TableOfReal hidden

plus TableOfReal pca

Append columns > Now 2 times 2 columns — 4 columns.
Rename... hidden_pca

To Correlation

Script 7.8. Correlations between the hidden layer and the principal component represen-
tations.

each other, as the (negative) correlation coefficient between node 1 and node 2 shows.
Substantial correlations exist between the two neural dimensions and the principal
component dimensions. However, the two plots in figure 7.6 suggest that there is
more correlation than is shown in the table. This is where a canonical correlation
analysis can be useful. The results of the canonical correlation analysis between the
two-dimensional representation at the hidden nodes and the two-dimensional princi-
pal component representation are displayed in table 7.5. Besides canonical correlation
coefficients, the table also shows the eigenvectors. Additionally, the eigenvectors are
graphically displayed in figure 7.6 with arrows. The two arrows in the left and the right
plot, drawn with a solid line, are the directions of maximum correlation between the
two representations: when we project the 600 two-dimensional data points on these
directions, the resulting two 600-dimensional data vectors have the maximum obtain-
able canonical correlation coefficient of 1.000. The second coefficient also equals 1,
rounded to three digits of precision. The corresponding eigenvectors are drawn as the

7.4. Principal components and auto-associative neural nets 113

Table 7.4. The correlation coefficients for the combined representations of for-
mant frequencies at the hidden nodes of a neural network and principal com-
ponents. The lower diagonal part contains the correlations after a Procrustes
similarity transform on the hidden nodes representation (see section 7.4.6). For
clarity, the diagonal has been left out.

nodel node2 pcl pc2

nodel’ -0.363 0.927 -0.376
node2’” —0.055 -0.686 —0.727
pcl 1.000 -0.029 0.000

pc2 —0.025 1.000 0.000

Table 7.5. Characteristics of the canonical correlation analysis between the
two-dimensional representation of formant frequencies at the hidden nodes of a
neural network and the two principal components. Canonical correlation coef-
ficients and corresponding pairs of eigenvectors are shown.

p nodel node2 pcl pc2

1 1.000 0.854 -0.520 0.999 -0.033
2 1.000 0.488 0.873 -0.017 -1.000

select TableOfReal hidden_pca > 4 columns.
To CCA... 2 > 2 dependent variables.
plus TableOfReal hidden_pca

To TableOfReal (scores)... 2

Script 7.9. Get canonical variates (scores).

arrows with a dotted line. This shows that the neural net performs a PCA analysis. In
figure 7.7 we have plotted the canonical variates (scores) for this analysis. Script 7.9
summarizes.

We see from the plots in figure 7.7 a nice agreement between the scatter plots of
the neural net scores on the left and the principal component scores on the right. How-
ever, we note from figure 7.6 that the two eigenvectors y in the plot on the left are not
mutually orthogonal because the angle between the two eigenvectors is not 90°. The
same applies to the two eigenvectors X, they are not orthogonal either (although harder
to see in the figure, the numbers in table 7.5 are convincing: the inproduct of the two
eigenvectors x is 0.999 - (—=0.017) + (—0.033) - (—1.000) which equals 0.016017.).
This is a characteristic of equations like (7.4) and (7.5): in general these equations do
not have eigenvectors that are orthogonal. Because the scores (canonical variates) are
obtained by a projection of the original data set on the eigenvectors of the canonical

114 Chapter 7. Canonical correlation analysis

X
X2

0 0.4
X1

Figure 7.7. Scatter plots of canonical variates for the dependent (left) and the
independent data set (right). The dependent and independent data sets are the
neural net data and the principal component data set, respectively.

correlation analysis, the resulting scatter plots will show a somewhat distorted map
of the original data. This is in contrast with principal component analysis, where the
eigenvectors are orthogonal and therefore the new principal dimensions are a mere ro-
tation of the original dimensions. This means that a principal component analysis does
not change the structure of the data set and relative distances between the points in the
data set are preserved. In the mapping to the canonical variate space, the structure of
the data set is not preserved and the relative distances have changed.

7.4.6 Procrustes transform

It is possible, however, to transform one data set to match another data set, as closely
as possible, such that the structure of the transformed data set is preserved. A transfor-
mation that preserves the structure of a data set leaves all relative distances between
the data points intact. The only admissible operations that preserve structure are dila-
tion, translation, rotation and reflection. This similarity transformation which is also
implemented in the PRAAT program, is called a Procrustes transform and we can write
the equation that governs the transformation of data set X into Y as follows:

Y = sXT +1t. (7.35)

In this equation s is the dilation or scale factor, T is an orthonormal matrix that in-
corporates both rotation and reflection, t' is the translation vector, and 1 is a vector of
ones. Given data sets X and Y, a Procrustes analysis yields the parameters for s, t and
T. The total number of parameters for a Procrustes transform in n-dimensional space
is: n(n — 1) /2 for the rotation and reflection matrix, » for the translation vector and 1
for the scale factor.

7.4. Principal components and auto-associative neural nets 115

The equation above transforms X into Y. The inverse, the one that transforms Y
into X, can easily be deduced from equation (7.35) and is:

1
X=—(Y-1t)T". (7.36)
s
More details of the Procrustes transform and the analysis can be found in

(). In figure 7.8 we show the result of a Procrustes analysis on the
neural net and the principal component data sets. The plot on the left is the Procrustes

node2’

nodel’

Figure 7.8. Scatter plots of the Procrustes-transformed neural net representa-
tion (left) and the principal component representation (right). The plot on the
left is obtained from the left plot in figure 7.6 by a clockwise rotation of 31°,
followed by a reflection around the horizontal axis, a scaling by a factor 2.98
and a translation with the vector (-0.42, 1.35). The plot on the right is only for
comparison and shows the same data as the plot on the right in figure 7.6.

transform of the neural net data set and was obtained from the plot in figure 7.6 by
a clockwise rotation with an angle of approximately 31°, followed by a reflection
around the horizontal axis, a scaling by a factor 2.98 and a translation with the vector
(-0.42, 1.35). The parameters for this transform were obtained from matching the
two-dimensional neural net data set with the two-dimensional principal component
data set. The two plots now look very similar. In table 7.4 we show in the lower
diagonal the correlation coefficients between the Procrustes-transformed neural net
data set and the principal component data set. These correlations were also obtained,
in a manner analogous to the data in the upper diagonal part, by appending columns
into a combined data set. The table shows that the correlation between nodel’ and
pel is 1.000 and that the correlation between node2’ and pc2 also equals 1.000. Script
7.10 summarizes.

Table 7.4 shows the number —0.363 for the correlation coefficient of nodel and
node2, and the number —0.055 for the correlation coefficient of nodel’ and node2’.

116 Chapter 7. Canonical correlation analysis

select Configuration pca

plus Configuration hidden

To Procrustes

plus Configuration hidden

To Configuration > Apply Procrustes.
Rename... hiddenp

To TableOfReal

plus TableOfReal pca

Append columns > Combine the two tables.

To Correlation

Script 7.10. Correlation of Procrustes-transformed data with principal components.

This shows that nodel’ and node2’ have become less correlated as compared to nodel
and node2, making these new dimensions more independent from each other. The
Procrustus transform did not touch pcl and pc2 and therefore they stay uncorrelated
as the two numbers 0.000 in the row and the column labelled pc2 show. And, finally,
the correlations between nodel’ and pcl and, especially, between node2’ and pc2 have
increased and are almost perfect now.

7.4.7 Summary

All the data presentations in the preceding sections have shown that there is a great
amount of similarity between the internal representation of an auto-associative neural
net and a principal component analysis for the formant frequency data set.
Although the presentation in these sections constitutes no formal proof and was only
used as a demonstration of some of the methods available in the PRAAT program, we
hope that it has been made plausible that auto-associative neural nets and principal
components bear a lot in common.

7.5 Discussion

We have shown that the canonical correlation analysis can be a useful tool for inves-
tigating relationships between two representations of the same objects. Although the
mathematical description of the analysis that has been given in this chapter can be
considered as a classical analysis, the results can also be used with modern robust
statistics and data reduction techniques. These modern techniques are more robust
against outliers. Essential to these modern techniques is a robust determination of the
covariance matrix and the associated mean values (s).
The description we have given in section 7.2.2.1 does not prescribe how a covariance
matrix is obtained and could therefore be used with these modern techniques. Canon-
ical correlation analysis will be used in section 9.3.2, where we will investigate the
relation between fundamental frequency and bandfilter values.

Chapter

Accessing the TIMIT acoustic
phonetic speech corpus*

Abstract

In this chapter we introduce the TIMIT acoustic-phonetic American-English speech
corpus and we will describe how we have made the corpus accessible for analysis
for the computer program PRAAT. We will further present some basic statistics about
this corpus. The TIMIT corpus gives us the possibility to test various speaker-adaptive
vowel normalization procedures, because it contains labelled speech material from
630 different speakers, of which 438 are male and 192 are female.

*This chapter is a modified version of ().

118 Chapter 8. Accessing the TIMIT speech corpus

8.1 Introduction

The TIMIT acoustic-phonetic continuous speech corpus (,) resulted
from the joint efforts of several American speech research sites. The text corpus design
was done by the Massachusetts Institute of Technology (MIT), Stanford Research In-
stitute and Texas Instruments (TI). The speech was recorded at TI, transcribed at MIT,
and has been maintained, verified and prepared for CDROM production by the Amer-
ican National Institute of Standards and Technology (NIST), and was made available
via the Linguistic Data Consortium.

The TIMIT corpus contains a total of 6300 sentences. Each of 630 speakers from
eight major dialect regions of the United States of America spoke ten sentences. Ap-
proximately 70% of the speakers were male and 30% were female. The speaker’s
dialect region was defined as that geographical area were s/he had lived during child-
hood years. Dialect number 8§ (Army Brat) was assigned to people who had moved
around a lot during their childhood and to whom no particular dialect could be at-
tributed. Table 8.1 shows the dialect distribution of the male and female speakers for
the total and the training part of the database (see below).

The ten sentences produced by each speaker consisted of two so-called SA-type,
five SX-type and three SI-type sentences.

The SA sentences are dialect sentences and were meant to expose the dialectal
variants of the speakers. Only two different SA-type sentences were designed, sa1 and
sa2, and they were spoken by all 630 speakers. The sat sentence is “She had your dark

Table 8.1. TIMIT dialect distribution of speakers. The first column contains the
dialect number, followed by the geographical region. The third, fourth and fifth
columns contain the number of male speakers, female speakers and the total
number of recorded speakers in the corresponding dialect region, respectively.
The last two columns contain the number of male and female speakers in the
train part of the database (see text for an explanation). The last row contains
the column sums.

‘ Training + Test ‘ Training
Dialect Region Male Female Total Male Female
1 New England 31 18 49 24 14
2 Northern 71 31 102 53 23
3 North Midland 79 23 102 56 20
4 South Midland 69 31 100 53 15
5 Southern 62 36 98 45 25
6 New York City 30 16 46 22 13
7 Western 74 26 100 59 18
8 Army Brat 22 11 33 14 8

438 192 630 326 136

8.1. Introduction 119

suit in greasy wash water all year” and the sa2 sentence is “Don’t ask me to carry an
oily rag like that”.

The SX sentences are phonetically-compact sentences and were designed to pro-
vide a good coverage of pairs of phones, with extra occurrences of phonetic contexts
thought to be either difficult or of particular interest. There were 450 different phonet-
ically compact SX-type sentences, and, given that each speaker produced five of these
sentences, each SX sentences was reproduced by seven speakers (= 630 x 5/450). An
example of an SX-type sentence is sx217: “How permanent are their records?”.

The phonetically-diverse SI sentences were selected so as to add diversity in sen-
tence types and phonetic contexts. The selection criteria maximized the variety of
allophonic contexts found in the texts. Each speaker reproduced three unique utter-
ances out of the 1890 different phonetically diverse SI-type sentences. An example of
such an SI-sentence is si1027: “Even then, if she took one step forward he could catch
her”. Table 8.2 gives a resumé.

Table 8.2. Overview of type of sentences in relation to the speakers, train and
test part of the database taken together.

Type #Sentences #Speakers/Sentence Total #Sentences/Speaker
sa (dialect) 2 630 1260 2
sx (compact) 450 7 3150 5
si (diverse) 1890 1 1890 3
2342 6300 10

The speech material was divided into a train set and a test set that contain 462
and 168 speakers, respectively, according to the following criteria:

* Roughly 20 to 30% of the corpus should be used for testing purposes, leaving
the remaining 70 to 80% for training.

* No speaker should appear in both the training and testing portions.

» All the dialect regions should be represented in both subsets, with at least one
male and one female speaker from each dialect.

¢ The amount of overlap of text material in the two subsets should be minimized;
if possible no texts should be identical.

 All the phonemes should be covered in the test material; preferably each phoneme
should occur multiple times in different contexts.

Besides the speech sound recordings, the TIMIT disk contains documentation, a
pronouncing dictionary with 6229 entries and transcriptions and segmentations of all
6300 recorded sentences at the sentence level, the word level and the phoneme level,
all done by hand. This results in the following impressive numbers: the TIMIT disk

120 Chapter 8. Accessing the TIMIT speech corpus

contains 6300 sentences, these sentences contain 54,387 words and all these words
contain 241,225 labelled segments.

The pronouncing dictionary lists all 6229 different words used in the speech cor-
pus with their ‘standard’ phonetic transcription and word stress markers. The TIMIT
phonetic transcription alphabet was inspired by ARPABET but is not quite the same.
TIMIT uses the two-character ARPABET code for vowels. However, different labels
were used for the closure and release part of plosive sounds (,). In
table 8.3 we show the translation between TIMIT symbols and International Phonetic
Association (IPA) phonetic symbols for the vowels in the database.

Table 8.3. Translation table of TIMIT symbols to IPA symbols for vowels only.
The first column shows the TIMIT symbol, the second column shows the corre-
sponding IPA-symbol. The vowel sounds like the vowel in the word given in the
third column. The fourth column shows the TIMIT labeling of the word in the
preceding column. The last column indicates the average duration of the vowel

in seconds.
TIMIT IPA Example TIMIT labeling of word Duration (s)
iy i beet belbiytel t 0.090
ih I bit belbihtcl t 0.079
eh € bet belbehtel t 0.091
ey e bait belbey tel t 0.128
ae & bat bclbaetclt 0.149
aa a bott bclbaatclt 0.123
aw av bout bel b aw tcl t 0.163
ay a1 bite bclbay tel t 0.145
ah A but bel b ah tel t 0.089
ao 2 bought belbaotcl t 0.124
oy a1 boy bcl b oy 0.162
ow 0 boat bcl b ow tcl t 0.127
uh U book bel b uh kel k 0.076
uw u boot bel b uw tel t 0.076
ux i toot tcltuxtclt 0.108
er 3 bird bclberdcld 0.118
ax) about ax bcl b aw tcl t 0.049
ix I debit dcldehbclbix tclt 0.052
axr r butter bcl b ah dx axr 0.082
ax-h) suspect sax-hspclpehkclktclt 0.034

'When we subtract the 12,600 (= 6300 x 2) begin and end markers ‘h#’ we are left with 228,625
labelled phonemes.

8.2. File formats 121

8.2 File formats

The speech and associated data is organized on the CDROM according to the follow-
ing file path hierarchy:

timit/<USAGE>/<DIALECT>/<SEX><SPEAKER>/<SENTENCE>.<FILETYPE>
The top level directory is named timit and the other symbols in the path may obtain
the following values:

<USAGE> := (train]|test)

<DIALECT> := (dr1|dr2|dr3|dr4|dr5|dr6|dr7]dr8)

<SEX> := (m|f) male or female

<SPEAKER> := xyzd (three characters followed by a digit)
<SENTENCE> := (salsilsx)n (sentence number n)
<FILETYPE> := (wav|txt|wrd|phn)

For example, file timit/train/dr3/fpaz0/si2223.phn refers to the transcription at
the phoneme level for sentence si2223 from the female speaker with initials pazo from
the North Midland dialect dr3 in the train part of the database.

8.2.1 Audio files

All 6300 recorded sentences are in separate binary files with extension .wav. These
binary files with audio data have a special format by which they can be recognized
and subsequently read by a specialized computer program that does not need external
knowledge. In the binary files, audio data is preceded by information about the data
according to a prescribed format, the so called SPHERE header which is 1024 bytes
long. We will henceforth call these files NIST sound files.> Each NIST sound file
always starts with a standard sequence of 16 characters by which they can be identi-
fied: NIST_1A\n\s\s\s1024\n where \n and \s stand for the ASCII newline and space
character, respectively. The rest of the header contains, among other things, infor-
mation about the number of audio channels, the number of samples per channel, the
number of bytes per sample, the sampling rate and the type of data compression. This
information is sufficient to read the speech data that follow the header.

8.2.2 Label files

Unfortunately the accompanying description label files do not contain enough infor-
mation to be self-contained and cannot be read without additional knowledge. Their
only identification is that they carry the same filename as the sound file they were
derived from and have different extensions like .txt, .wrd or .phn. They all are ASCII
text files and describe the recording at an ever increasing level of detail. Each file con-
tains one or more lines, each line has three items that are separated by spaces. Each
line starts with two sample numbers followed by a string. These two numbers, with
the second number always larger than the first, mark a segment. Information about the

2NIST or the National Institute of Standards and Technology is the American non-regulatory federal
agency that also coordinates the yearly DARPA Automatic Speech Recognition evaluations.

timit/<USAGE>/<DIALECT>/<SEX><SPEAKER>/<SENTENCE>.<FILETYPE>

122 Chapter 8. Accessing the TIMIT speech corpus

duration of the segment can only be calculated with information about the sampling
frequency. Sampling frequency information is not given in the label files. Files with
extension .txt contain only one line with the text of the sentence in the string, files
with the extension .wrd contain a line for each word in the sentence and files with
the extension .phn contain one line for each phonetic symbol that occurs. A .phn file
always starts and ends with the symbols n#.

Although a robust TIMIT label file recognizer cannot be build, we have neverthe-
less exploited the structure of the TIMIT label files to program a heuristic “TIMIT label
file recognizer” into the PRAAT program. Algorithm 8.1 incorporates the heuristics
that we have used.

if ((first two lines each show two numbers followed by a string) and
(number; >0) and (number;>number;) and
(numbers > number;) and (numbers; > numbers) and
(((string; == "h#) and is_phonetic_label (string,)) or
(is_lowercase(string;) and is_lowercase(string>))))

then
file is TIMIT label file

end if

Algorithm 8.1. TIMIT label file recognizer.

8.3 Accessibility of the material

In order to be able to visualize the speech corpus and (part of) the associated data we
decided to extend the general speech analysis computer program PRAAT (

,) with the possibility to recognize and read the audio files and phonetic
label files and make them accessible in the program.

As was described above, the recognition of a NIST audio file is simple, since it
always starts with the same identification string. Reading the data is also straightfor-
ward since all information for the interpretation of the data is contained within the
header in a fixed format.

Although the NIST audio files in the TIMIT database are not in a compressed for-
mat, we nevertheless incorporated A-law and u-law and embedded-shorten decom-
pression algorithms in our PRAAT program.’ In this way the PRAAT program can also
read other databases that use audio files in NIST format such as the Dutch Polyphone
Database (,), the Groningen corpus (

,) and the Translanguage English Database (,).

All the audio files on the TIMIT CDROM have a sampling frequeny of 16 kHz and
are quantized with 16 bits per sample, although the actual resolution of many files is
not better than approximately 12 bits per sample.

3The shorten audio compressor has been removed recently because we obtained no permission to dis-
tribute its modified source code.

8.3. Accessibility of the material 123

The TIMIT label files with extensions .wrd and .phn can be recognized by PRAAT’s
label file recognizer and then read from file into a TextGrid object. In this process
sample numbers were converted to seconds by dividing by the sampling frequency.
8.3.1 A phoneme database

To be able to select specific phonemes in the TIMIT speech corpus, such as, for ex-
ample, vowels in stressed or unstressed syllables in penultimate word position, we
decided to build a database with information about every phoneme in the corpus.* We
have 241,225 records in the database (in table 8.4 the phoneme inventory is shown
with more details). Each record contains the following fields:

ph_id The phoneme label. The label symbols can be found in table 8.4.

ph_tmin Start time of the phoneme with respect to the start of the sentence in sec-
onds. All sentences start at time 0 seconds.

ph_tmax End time of the phoneme with respect to the start of the sentence in seconds.

ph_dur Duration of the phoneme, defined as the difference between end time and
start time. Added for convenience only.

ph_type Phoneme type. One uppercase letter from the set s, 4, F, N, G, V, 0, indicating
Stop, Affricate, Fricative, Nasal, Glide&Semivowel, Vowel and Other, respec-
tively. For the assignment to the groups see table 8.4.

ph_stress Stress. A number 0, 1, or 2, indicating no stress, primary stress and sec-
ondary stress, respectively. In section 8.3.2 we will explain how we obtain this
value.

ph_in_wd Position of the phoneme in the word, i.e. a number from 1 to n, where n
is the number of phonemes in the word.

ph_id_l Label of the phoneme on the left.

ph_type_l Type of the phoneme on the left.

ph_id_r Label of the phoneme on the right.

ph_type_r Type of the phoneme on the right.

wd_id Orthographic representation of the word that contains this phoneme.
wd_tmin Start time of the word.

wd_tmax End time of the word.

wd_dur Duration of the word. Again, added for convenience only.

4We used the PostgreSQL relational database that is freely available for the Linux operating system.
More information about this database can be found at the following URL http://wuw.postgresql.org/

http://www.postgresql.org/

124 Chapter 8. Accessing the TIMIT speech corpus

wd_ph Transcribed phoneme string for the word.
wd_nph Number of phonemes in the word.

wd_nsyl Number of syllables in the word. The simple heuristic to determine the
number of syllables is: the number of syllables in the word equals the number
of vowels.

wd_in_st Position of word in the sentence, implying a number from 1 to n, where n
is the number of words in the sentence.

st_id The identification of the sentence in which the phoneme occurs. This can be
one of sai, sa2, sx1, ..., sx450, Of, sil, ..., si1890.

st_tmin Start time of the sentence.
st_tmax End time of the sentence.
st_dur Duration of the sentence. Again, added for convenience only.

sp_id Speaker identification. A four character string. This string together with the
data for the next three descriptors were obtained directly from the directory
specifiers

sp_dr Dialect region of the speaker. One of the numbers 1 to 8.
sp_sex Sex of the speaker. Either m or £.

usage Either train or test.

8.3.2 Obtaining stress information

The start time and the end time were obtained by dividing the sample numbers that
mark the phoneme by 16,000, the sampling frequency of the audio files. The fields
st_id (sentence identification), sp_id, sp_dr, sp_sex and usage can all be obtained
directly from the file path.

Because the .phn label files do not contain any information about actually realized
word accent (stress), we could only rely on the stress information in the pronouncing
dictionary available on the CD-ROM. This dictionary is a simple text file and it is
formatted so that each line contains a word in lower case followed by two spaces and
then the quasi-phonemic transcription given between slashes. There are 6229 entries
in the dictionary. Stress markers are given as 1 for primary stress and 2 for secondary
stress, tagged on to the end of the vowel symbol. One pronunciation is provided per
entry except in the case where the same orthography corresponds to different parts of
speech with different pronunciations, and both forms exist in the TIMIT label files. To
differentiate these words, multiple entries are given, with the syntactic class following
the symbol ~. The classes found in the lexicon are: ~n for a noun, v for a verb, ~adj
for an adjective, ~pres for present tense and “past for past tense. An example is the
word “live”, with the entries:

8.3. Accessibility of the material 125

live“v /1 ihl v/
live“adj /1 ayl v/

A two-syllable entry, e.g. the word “accent”, will look like this:
accent /ael k s eh2 n t/.

The realized pronunciation, however, often differs from the ideal pronunciation in
the dictionary, both in terms of actually spoken phonemes and word stress. This means
that to find the position in the realized phoneme string where the stress is supposed
to occur, we have to find a match between this realized phoneme string and the ideal
phoneme string. We can do this with a dynamic programming matching algorithm
that goes as follows:

for i = 1..6300
Get .phn phonetic label file
Read realized phonene string
Get .wrd word label file
Construct ideal phoneme string from word label file
Construct associated cost matrix
Find optimal path through matrix
Assign the realized stress

endfor

Algorithm 8.2. TIMIT stress info.

The ideal phoneme string for a sentence can be constructed from the word label file
by concatenating all the phonemes from the word entries in the pronouncing dictio-
nary. Because the plosives in the phonetic label files have closure and burst separately
labelled, we choose to adapt the dictionary by inserting before every plosive (b, 4, g,
p, t, k, jh and ch) the corresponding closure string. The realized phoneme string is
simply the concatenation of all the labels in the phonetic label file.

With these two strings we can construct a cost matrix. A matrix element at position
(i, j) measures the cost of the confusion of realized phoneme i with ideal phoneme
Jj. By varying the costs associated with a particular confusion, we can differentiate
between vowel-consonant, within-category and between-categories confusions. We
made confusions between a vowel and a consonant, and vice versa, most costly. Next
most costly were the remaining between-categories confusions, for example, confus-
ing a nasal with a glide or a fricative with a nasal. We made within-category confu-
sions least costly.’

A Viterbi dynamic programming algorithm was used to find the path of lowest
cost through the cost matrix. The path was constrained to start at the lower left corner
of the matrix and to end in the upper right corner. When the realized string equals the
ideal string the optimal path follows the diagonal of this matrix. Both for square and
rectangular matrices, the path did not deviate much from the ‘diagonal’. We used this
optimal path to map the accent from the phonemes of the ideal string on the vowels

5The actual confusion costs used in the algorithm were: vowelConsonant = 10, withinCategory = 3,

betweenRestCategories = 5.

126 Chapter 8. Accessing the TIMIT speech corpus

h# \ S.h \1y \hvl\ eh Iidc][jh\axridcla aa \rkc]

0 0.97875
Time (s)

LR L
: T

W‘aoh)iaxr‘ ao \l\y\ ih ‘axr‘ h#
2.11287 3.09762

Figure 8.1. The sound waveform and the labels for sentence sa1, “She had your
dark suit in greasy wash water all year”, from speaker mjsw0 from dialect dr1
in the test part of the database.

from the realized string. In case of insertions, i.e. an ideal phoneme matches two
or more realized phonemes, the stress was placed on the last vowel. As an example
we will show for sentence sai from speaker mjsw0 from dialect drt in the test part
of TIMIT some details of this stress assignment processing.® In figure 8.1 we show
the sound file with its labels. To show all labels reasonably well the sound has been
drawn in three sequential parts that start and end at exact label interval boundaries. For
maximum visibility, the amplitude of the sound has been scaled too. The minimum
path in a stylized cost matrix is displayed in figure 8.2. The realized phoneme labels
are displayed below the cost matrix and the ideal label string is displayed on the left

The relative path names for the sound file and the label file will be . ./test/drl/mjsw0/sal.wav
and . ./test/dr1/mjsw0/sal.phn, respectively

../test/dr1/mjsw0/sa1.wav
../test/dr1/mjsw0/sa1.phn

8.4. Phoneme statistics 127

of the matrix in the second column. There were 42 labels in the ideal string and 36
labels in the realized string. The first column displays the row numbers in units of five
and the stress marker 1 is indicated in the third column. When the realized phonemes
all equal the ideal phonemes the path is plain diagonal and would be filled with *o’
symbols. We see that this is not the case in the table; this has several reasons.

substitution The speaker realized another phoneme instead of the canonical phoneme.
The path still runs diagonal but shows a *+’ symbol instead of a "o’. The ta-
ble shows nine substitutions. For example, in row four, the voiceless nh in the
canonical form is substituted by the voiced variant hv and in row five the ae is
substituted by eh.

deletion The speaker did not realize the phoneme at all. This effect shows itself in
the table when the path is directed vertically. Of the seven deletions in the table,
four are from plosives. In row 35 the plosive is released as a tap dx, in row 16
and 20 the plosives are unreleased and in row 7 the plosive is released as an
affricate.

insertion The speaker realized an extra phoneme. The path is horizontal then. This
happens only once, at row 40 where an axr is inserted.

8.4 Phoneme statistics

We will start with a summary of how the 241,225 items in the database are divided over
phonemes and dialect regions. This data is presented in tabel 8.4 which shows how the
number of occurrences of the 61 different labels in the TIMIT database are distributed
over the dialect regions. The last column shows the total number of occurrences of a
particular label and we notice large differences in numbers between the labels: from
43 occurrences for the label eng to 12600 for the label n#. Because every sentence
starts and ends with n#, it occurs 630 x 10 x 2 = 12600 times. Therefore, the cells in
the n#-row display the number of sentences in each dialect multiplied by two. If we
divide this number by 20 we simply obtain the number of speakers.

Table 8.4. Phoneme inventory of the TIMIT acoustic phonetic database by di-
alect region. The first column shows the TIMIT phoneme label and the second
column a typical word in which this phoneme label occurs. The next eight
columns, labelled drl, ..., dr8, show the number of phonemes in each dialect
group. The last column shows the row sum, i.e. the total number of occurrences
of this phoneme. The last row in the table shows the column totals, i.e. the total
number of phonemes per dialect. The rows are grouped according to phoneme
type.

Label Word drl dr2 dr3 dr4 dr5 dr6 dr7 dr8 Total

128 Chapter 8. Accessing the TIMIT speech corpus
Table 8.4. Continued.

Label Word drl dr2 dr3 dr4 dr5 dr6 dr7 dr8 Total
..................................... Vowels ..
aa bott 333 726 623 656 619 303 743 194 4197
ae bat 425 880 882 822 851 425 847 272 5404
ah but 255 493 511 453 527 261 532 153 3185
a0 bought 206 623 633 714 688 277 637 228 4096
aw bout 70 166 146 161 136 86 142 38 945
ax about 400 774 833 867 825 302 706 249 4956
ax-h suspect 49 86 69 86 79 29 76 19 493
axr butter 319 816 811 806 732 312 743 251 4790
ay bite 256 528 534 492 493 234 512 193 3242
eh bet 409 867 870 836 830 382 838 261 5293
er bird 178 521 498 447 389 188 443 182 2846
ey bait 245 463 489 492 485 234 531 149 3088
ih bit 479 1097 1034 1145 1098 469 1069 369 6760
ix debit 963 1820 1811 1798 1743 934 1916 602 11587
iy beet 693 1601 1517 1576 1560 660 1504 552 9663
ow boat 240 452 466 447 473 226 465 144 2913
oy boy 81 167 171 119 116 71 166 56 947
uh book 67 112 118 114 114 72 109 50 756
uw boot 83 155 111 86 107 60 93 30 725
ux toot 169 358 444 411 406 177 401 122 2488
.................................... Affricates o
ch choke 93 151 199 159 183 69 182 45 1081
jh joke 124 232 268 259 278 100 234 86 1581
................................... StOp ClOSUIES . . o v vt e e
bcl bee 211 403 432 405 432 181 468 153 2685
dcl day 528 1028 1043 1054 1036 469 1089 338 6585
gcl gay 233 492 498 467 465 216 515 145 3031
kel key 603 1293 1238 1243 1221 560 1259 406 7823
pcl pea 262 609 570 579 570 257 575 187 3609
tcl tea 672 1439 1422 1444 1411 678 1473 439 8978
...................................... StOPS « e
b bee 242 467 504 471 459 206 543 175 3067
d day 390 800 749 729 721 354 802 248 4793
dx dirty 273 595 599 581 542 279 576 204 3649
g gay 211 451 462 421 437 191 466 133 2772
k key 493 1080 1028 1033 979 469 1081 325 6488
p pea 263 599 549 561 541 255 595 182 3545
q bat 377 840 700 741 839 363 762 212 4834
t tea 413 982 904 950 940 421 974 315 5899

8.5. Characteristics of the vowel material

129

Table 8.4. Continued.

Label Word

dh then

f fin

S sea

sh she

th thin
van

z zone

zh azure

el bottle

hh hay

hv ahead

1 lay

r ray

w way

y yacht

em bottom
en button
eng washington

m mom
n noon
ng sing
nx winner

epi silence
h# begin/end
pau pause

drl dr2 dr3 dr4 dr5 dr6

.................. Fricatives

308 600 649 625 592 290
256 503 493 460 481 243
796 1674 1655 1565 1545 758
242 487 450 492 472 240
72 171 151 179 150 73
227 420 435 439 419 168
374 772 840 833 808 357
15 34 38 40 47 16

110 207 184 212 214 82
103 205 226 184 220 110
115 241 272 236 222 110
638 1336 1346 1300 1271 586
643 1473 1432 1445 1434 650
329 725 713 693 698 331
191 373 413 354 364 184

14 27 31 24 25 10
78 151 158 144 132 79
3 8 7 9 8 5
428 880 880 870 843 388
734 1596 1509 1529 1493 691
135 287 272 253 297 149
90 215 246 235 185 98

179 308 310 290 305 171
980 2040 2040 2000 1960 920
117 213 195 221 252 73

18575 39112 38681 38257 37762 17552

38733 12553 241225

8.5 Characteristics of the vowel material

In order to gather some information on the spectral characteristics of the vowels in the
database we performed a number of analyses on them. Because males and females
have different voice characteristics we first separated the vowels into a male and a
female set. We did this for the training part as well as for the test part of TIMIT. Table

8.5 summarizes.

130

Chapter 8. Accessing the TIMIT speech corpus

40

35

30

25

20

15

10

h#
ih 1 - - - -

L o B T T T S T O ¢ « o + =«

L) T T T T P o - - -

w T o T

Sh F Y T T R T T

ly e + .
gcl T T T T
kel e e e e e e e e e e o . -
aal..........o....

XC a Cc Xxcnc y x ah oxxo
rl 1 I 1 r

10 15 20 25 30

[
(¥,

Figure 8.2. The stylized cost matrix with the optimal path for the sentence
“She had your dark suit in greasy wash water all year” of speaker mjsw0. The
first column shows the row number of the matrix in units of 5, each unit being
one label. The second column shows the ideal phoneme string as found in the
dictionary. The third column indicates dictionary stress with a 1. At the bottom
of the cost matrix we show the transposed stress and the realized phonemes.
The symbols that form the path are o, +, —, + and indicate identity, insertion,
deletion, and substitution, respectively.

1 1 11 1 1 1 1
edﬂladdarksuteggrisiwaswadaalyiah
hc

1

1

hx#
r

35

8.5. Characteristics of the vowel material 131

Table 8.5. The number of vowels in the TIMIT database split up by speaker sex.

Male Female Total

Training 40468 13889 54357
Test 16995 7022 24017

57463 20911 78374

8.5.1 Analysis of the vowels

Although only the vowel parts of the sentences in the TIMIT database have our current
interest, the analyses that will be described were performed on the complete sound
files. These analyses involved a fundamental frequency analysis, a filterbank analysis
and an intensity analysis. Frames of interest at one or more locations within a vowel
can easily be extracted from the results of these analyses. We decided to extract three
analysis frames for each vowel: one frame at the midpoint and two frames at 25 ms be-
fore and after the midpoint.7 In rare cases, if the vowel segment is very short, the last
two points could lie in the surrounding phonemes (see also figure 8.9 and its explana-
tion in section 8.6). These positions can easily be calculated from the information in
our own database since the starting time and the finishing time of each vowel segment
were recorded (see section 8.3.1). For an analysis window with a duration of 20 ms
this amounts to the measurement of a vowel nucleus of approximately 70 ms duration.
The frames of interest were collected in a table and speaker and vowel information
were saved too. We will now describe each analysis in somewhat more detail.

8.5.1.1 Fundamental frequency analysis

The fundamental frequencies or pitches® were determined by the autocorrelation method
as implemented in the PRAAT program. This method consists of two steps: in the first
step a number of pitch candidates are found for each frame and in the second step
the optimal candidate in each frame is selected. The details of the algorithm are de-
scribed in (). Both steps in the pitch algorithm depend on a number of
parameters.

The first step, finding the candidates depends on two parameters: timeStep which
determines the time interval between consecutive pitch measurements and minimum-
Pitch which determines the minimum pitch that can be measured; at the same time
this parameter determines the length of the analysis window. We have chosen a value
of 5 ms for time step and a value of 75 Hz for minimum pitch.

7 As an alternative we could have performed the analyses at times 25% from the start and 25% before
the end of the vowel, for example. However, this choice is more dependent on a correct labelling of the start
time and end time of the vowel. The centre of a vowel is simpler to detect automatically.

8 Actually the numbers obtained from PRAAT’s pitch measurements are perception oriented and the
term ‘pitch’ would be more accurate than ‘fundamental frequency’.

132 Chapter 8. Accessing the TIMIT speech corpus

The parameters for the second step, finding the optimal candidates, were set to
their standard values.’

4000

3000 I

Number / bin
[\®)
S
3
<

1000+

0 100 200 300 400
Fundamental frequency (Hz)

Figure 8.3. The distributions of fundamental frequency, as measured at the
midpoint of the vowels, for the 54357 male and 24017 female vowels drawn
with solid and dotted lines, respectively. The bin width was chosen as 4 Hz.
The larger column near 0 Hz shows the number of unvoiced decisions for the
male vowels. The smaller column, which has been offset by one bin, shows the
unvoiced decisions for the female vowels.

In figure 8.3 we have plotted the distributions of the fundamental frequencies that
were measured at the midpoints of the vowels. The distribution drawn with solid lines
shows data from the male speakers. The dotted lines show the data for the female
speakers. For some 5.5% of the vowels, 4327 in total, split up into 3598 and 729 for
males and females, respectively, no pitch could be determined. These vowels were
assigned a fundamental frequency of O Hertz. Their presence is indicated in the figure
with bars at the first and second bin near O Hertz, respectively. There can be various
reasons why a stable fundamental frequency could not be measured. In figure 8.4 we
show some examples of vowels where no fundamental frequency could be established
at the midpoints. All these examples occur in the sentence sa1 from the training part
of TIMIT as pronounced by male speaker cpm0 from dialect region drt. For optimum
display all sound amplitudes in the oscillograms have been scaled. The top display
shows the oscillogram of the complete sentence. The next four displays show enlarged
versions of the intervals that are marked in the top display by dotted lines and are
labelled (a), (b), (c) and (d), respectively. The vowel segments of interest are indicated
with a capitalized label. In display (a) we have a voiceless vowel ax-h. In (b) we see
period halving in the vowel aa at approximately 0.73 s. The fundamental frequency

9These parameters and their standard values were: silenceThreshold = 0.03, voicingThreshold
= 0.45, octaveCost = 0.01, octaveJumpCost = 0.35, voicedUnvoicedCost = 0.14, pitchCeiling = 600
Hz.

8.5. Characteristics of the vowel material

133

She had your dark suit in greasy wash water all year

del jh | AX-H del

(b)

(@

7o T e

Figure 8.4. Some examples of vowels where no fundamental frequency could
be established at the midpoints. The sentence given at the top is sal from the
training part of TIMIT and is pronounced by male speaker cpm0 from dialect
region dri. All sound amplitudes per oscillogram have been scaled for optimum
display. The top display shows the oscillogram of the complete sentence. The
next four displays show enlarged versions of the intervals that are marked in the
top display by dotted lines and are labelled (a), (b), (c) and (d), respectively.
The vowels of interest are indicated with a capitalized label. (a) Voiceless vowel
ax-h. (b) Period halving in aa. (¢) Noisy ax-h. (d) Incorrect segmentation for
1X.

0 ' (a')' (b) ' ' (c) ' ' (d)' 3.04644

134 Chapter 8. Accessing the TIMIT speech corpus

Fos

+

+
EIE e
PR 24

R . o

0 100 200 300 400 500 600

Figure 8.5. Scatter plot of the fundamental frequencies at the first and last
position in a vowel. The two solid lines originating at the origin mark where
the fundamental frequencies differ by two octaves, i.e. one octave up and one
octave down from the cloud in the middle. The points on the axes mark unvoiced
frames.

before the doubling is approximately 70 Hz and therefore falls below our chosen lower
limit of 75 Hz. In (c) the vowel ax-h is very breathy and no fundamental frequency
was assigned because the voicing threshold was not reached. In (d) the vowel ix has
been incorrectly segmented. For a correct segmentation the left border of the vowel
should have been moved some 11 ms to the right. With the incorrect segmentation
there is a noisy part at the beginning of the vowel and therefore no stable fundamental
frequency could be measured.

In figure 8.5 we show the variability over time of the fundamental frequency mea-
surements. For each analysed vowel we have plotted the Fy’s from the first and the

8.5. Characteristics of the vowel material 135

third analysis frames against each other in a scatter plot. The corresponding axes are
labelled Fy; and Fys, respectively. The midpoints of these analysis frames differ by
exactly 50 ms and for the majority of the cases we expect the fundamental frequencies
not to differ too much over this time range. In the plot we see a heavy cloud of points
in the neighbourhood of the diagonal. These are the points where the two fundamental
frequency measurements were approximately equal, equality applying if the point lies
exactly on the diagonal. Above and below the diagonal, in the lower left hand part of
the figure, we see two small clouds of points. Here the fundamental frequencies differ
by two octaves. The cloud above the diagonal shows the data for which Fy; = 2Fy;
and the cloud below the diagonal shows the data for which Fy; = %F(,]. The two
solid lines in the figure trace these octave relations. Two other clouds of points within
the plot are visible: one at the lower right and the other at the top left. These are
measurements where one of the two frequencies is very much off, probably due to a
noisy signal frame. Finally, the points on the horizontal and vertical axes represent
segments where one of the two frequencies could not be measured. These segments
were assigned a fundamental frequency of 0 Hz.

To get an indication of the number of measurements associated with these regions
in the plot we performed a number of selections on the data and counted the conform-
ing number of data. See table 8.6 for an overview. The first criterion selects all data
and the numbers in the table are a replication of the totals in table 8.5. The next three
criteria select one of the frames where no fundamental frequency could be measured.
They show that, compared to the first and the third frame, fewer frames at the mid-
point show a fundamental frequency measurement of 0 Hz. The fifth criterion selects
the frames where at least one of the three measurements produces a value of 0 Hz.
This occurs approximately once in every five vowels. Criterion six selects the mea-
surements where all three frames produce a value of 0 Hz. This selects the vowels that
were realized either voiceless or with too large a noise component to be considered
voiced. There were 2819 of these realizations, approximately 3.6% of the data. Crite-
rion nine and ten select the vowels where an octave jump occurs between the first and
third frame.

Octave jumps to the lower octave were selected by counting all points in a small
“octave cone” limited by the lower two dotted lines in figure 8.5. In this cone, the
solid line that marks the lower octave bisects the angle between the dotted lines. The
tangent of this octave line is 0.5. We have arbitrarily chosen the tangent of the lower
line to be equal to 0.4, this gives us a lower limit where Fy3 = 0.4Fy;. With these
two values we can calculate the equation of the other dotted line: Fyz = 0.61Fp;.
For the higher octave line whose tangent equals 2, the two dotted lines intersect at
the same angle as for the lower octave and their equations are Fyz3 = 1.64Fy; and
Fos = 2.50Fy;. Criteria seven and eight select the vowels where the first and third
measurement differ by more than one octave. Finally, citerion eleven selects the vow-
els where the measurements behave in a more or less regular fashion, i.e. the points in
the plot lie in the neighborhood of the diagonal and the fundamental frequencys in the
first and the third frame are approximately the same, although one could probably ar-
gue against the status of measurements that have a fundamental frequency larger than,
say, 400 Hz. If instead of an upper limit of 600 Hz, we would had chosen 400 Hz,
those high frequencies would have been mapped to a value of 0 Hz.

136 Chapter 8. Accessing the TIMIT speech corpus

Table 8.6. The number of fundamental frequency measurements that obey the
criterion in the last column, split up into male and female part. Fy;, Fp,, Foz are
the fundamental frequencies in first, second and third analysis frame of each
vowel, respectively. Logical combinations ‘AND’ and ‘OR’ are shown with Vv
and A symbols, respectively. The relations on which the last three criteria are
based are shown with dotted lines in figure 8.5. For more details see text.

Male Female Total % Criterion
57463 20911 78374 100.0 1 1
8796 2827 11623 14.8 2 Fyu=0
3598 729 4327 5.5 3 Fp=0
8473 2334 10807 138 4 Fy3=0
13404 4102 17506 22.3 5 Fu=0VFp=0VF;=0
2389 430 2819 3.6 6 Fyu=0AFp=0AF3=0
169 21 190 0.2 7 Fyu>0NAFy3 >0A F03/F()1 <040
257 45 302 04 8 Fyi>0AFy>0A F()3/F01 > 2.50
22 164 186 0.2 9 Fy >0A(040< FQ3/F01 < 0.61)
35 231 266 03 10 Fy >0A (1.64 < Fyz3/Fy < 2.50)
40587 19500 60087 767 11 Fo >O0A (0.61 < Fo3/For < 1.64)

8.5.1.2 Filter bank analysis

The filter bank analysis that we have implemented in the PRAAT program uses fil-
ters that are equally spaced on a Bark frequency scale. The associated object type is
BarkFilter. The number of filters is optional and we have chosen to represent a vowel
analysis frame with 18 filter values. With 18 filters, the centre frequency of the 18
filter being 4227 Hz, we cover the most important frequency region for vowels, which
runs approximately to 5000 Hz. All filters have a bandwidth of 1 Bark and are spaced
1 Bark apart. The first filter is positioned at a frequency of 1 Bark. The filtering is
simulated in software with a filtering function specified by () as

10log F(z) =7 — 7.5(z — 0.215) — 17.51/0.196 + (z — 0.215)2, (8.1

where z is the frequency in Bark. The relation between frequencies in Bark and fre-
quencies in Hertz is given by the following equation:

_ f '\
dfN)=Tin| =5+ 1+<@> . (8.2)

The inverse relation is: z
f(z) = 650sinh 7 (8.3)

Equation (8.2) is visualized in figure 8.6a where the horizontal axis is in Hertz and
the vertical axis in Bark. The figure clearly shows approximate logarithmic behaviour
above 650 Hz and approximate linear behaviour below this frequency.

8.6. Selection of the vowel material 137

The 18 Sekey and Hanson filter functions described by equation (8.1) are dis-
played in figure 8.6b on a Bark frequency scale. Figure 8.6c displays the same filter
functions but now on a linear frequency scale in Hertz. The centre frequency of the
18 filter has been marked with a dotted line at z = 18 Bark or f =4228 Hz.

After choosing the “Analysis window length” and “Time step” parameters, the
filter bank analysis proceeds as follows:

1. Apply a Gaussian window to the sound frame.
2. Convert the windowed sound frame to a Spectrum.

3. Convert the spectral amplitudes to energy values by squaring the real and imag-
inary parts and multiplying by the frequency distance between two successive
frequency points in the spectrum.'?

4. For each of the N filters in the filter bank we determine the inner product of its
filter function with the energies as determined in the previous step. The result
of each inner product is the energy in the corresponding filter.

5. Convert the energies in each filter to power by dividing by the window length.

6. Correct the power, due to the windowing of the frame, by dividing by the inte-
gral of the squared windowing function.

7. Convert all power values to dB according to 10log(power/4 - 10719).
8. Write the power values into the corresponding BarkFilter object.

As an indication of how a BarkFilter spectrogram compares with a standard spectro-
gram we have displayed in figures 8.7a and b both representations of the same sentence
sat.!! We clearly see a more expanded low-frequency region and a more compressed
high-frequency region in the BarkFilter representation. The frequency quantization
into 18 bins is also clearly visible, as well as a loss of spectral detail.

8.6 Selection of the vowel material

The tasks chosen in this thesis have to do with classification of mainly monophthongal
vowels. In order to gather some information on the spectral characteristics of the
vowels in the database we performed a number of analyses on them. Because males
and females have different voice characteristics we separated the vowels into a male

101 the spectrum of a real signal the content at positive and negative frequencies is related. The Spec-
trum object in PRAAT therefore only needs to store the values for positive frequencies because the values
for negative frequencies can calculated from them. Taking negative frequencies into account for the energy
calculation boils down to multiplying all values by 2, and weighting the first and the last energy with a
factor 1/2.

"1"The commands to perform the analyses were:

To BarkFilter... 0.025 0.005 1 1 19
and
To Spectrogram... 0.025 5000 0.005 20 Gaussian

138 Chapter 8. Accessing the TIMIT speech corpus

(a)

22.44
2z
53
g
oy
5
=
g
3
0 — T T T T T T
0 650 8000
Frequency (Hz)
(b)
0

RIEL0000.00000.00.0¢
R

Frequency (Bark)

(©)

Amplitude (dB)
I
(o)
=)

0 ' ' ' a8 ' ' 8000
Frequency (Hz)

Figure 8.6. (a) The relation between the frequencies in Bark and Hertz. (b)
The 18 filter functions on a Bark frequency scale. (c) The 18 filter functions on
a frequency scale in Hertz.

8.6. Selection of the vowel material 139

(@)
184
] 11
] il |
- f !
5]
Na)
E i
g i
= B
B i
£]
1
0 3.04644
Time (s)
(b)
42281
N
T
oy
g
=
o
£
0 T T
0 1.0 2.0 3.04644

Time (s)

Figure 8.7. Two different spectral representations of the sal sentence “She had
your dark suit in greasy wash water all year”. (a) BarkFilter. (b) Spectrogram.

and a female set. We did this for the training part as well as for the test part of TIMIT.
In this section we only display some global characteristics of the male vowels in the
training part of the database (40468 vowels). The analyses that we performed will be
explained in more detail in the next chapter. Here it suffices to say that the following
steps were performed:

* Select all the vowels produced by men in the training part of the database. This
results in 40468 vowel segments for all 20 different vowel labels and 326 speak-
ers, representing, on the average, 6.2 realisations per vowel per speaker.

* Perform a bandfilter analysis on three frames in each vowel: a frame at the
midpoint and two frames at 25 ms before and after the midpoint. These positions

140

Chapter 8. Accessing the TIMIT speech corpus

can be calculated from the information in the database, in the way described in
section 8.3.1. In this way we measure a vowel nucleus of approximately 70 ms
duration when the analysis window is 20 ms wide. The bandfilter analysis for
each frame results in 18 values, as described in section 8.5.1.2.

Because each speaker has several reproductions of most of the 20 vowels, we
calculate the average representation for each vowel for each speaker. This re-
duces the 40468 vowel representations to 6008 vowel representations. If ev-
ery speaker had realized all 20 vowels one or more times, we would have had
6520 = 326 x 20 representations. The lower number of 6008 thus indicates that
not all 326 speakers produced all 20 vowels. We do this averaging per vowel to
give all vowels the same weight in some of the subsequent analyses, because we
want representations that do not depend too much on differences in the number
of occurrences of a vowel in the database.

 Perform principal component analyses, as described in chapter 3.

120

80
60 130

Figure 8.8. The positions and 0.5 o ellipses of the 20 vowels in the principal
component plane as averaged over the 326 male speakers in the training part of
the TIMIT database. The horizontal axis was inverted to get the main axes of
the ellipses to point from the lower left to the upper right. The first and second
principal components explain 52% and 16% of the variance, respectively.

To give some insight in the vowel structure we present in figure 8.8 the average

positions of the vowels in the principal component plane. This plane was calculated
from the 6008 x 18 labelled numbers from the central analysis frame in the vowels.
The first and second principal components together account for 68% of the variance;
52% is accounted for by the first component, and 16% by the second component. The
orientation of the vowels in this plane is reasonably in accordance with the vowels in

8.6. Selection of the vowel material 141

120
T e
_ ax-h
B B “¢h
o er & . e
g 1 X i
a0 Qo /‘ﬂf&
80 T T T T T T
60 130

pecl

Figure 8.9. The positions in the principal component plane of the begin, middle
and end parts of the 20 vowels, averaged over the 326 male speakers in the
training part of the database. The positions in the three parts are connected
with a line. The start position has been labelled with the corresponding vowel
symbol. To conform to figure 8.8, pcl has been inverted.

the traditonal formant plane, as can be seen, for example, in the paper by

(). The 0.50 ellipses in the figure give an indication of
the variability for each vowel. The directions of the principal axes of all these ellipses
are almost the same, which suggests that these variations are due to the different vocal
tract lengths of the speakers. We see that the sizes of the ellipses show some small
variability. The ax-h, being on average the shortest vowel in the database, shows the
largest variability. We will offer an explanation of this strange effect below.

In tables 8.3 on page 120 and 8.4 on page 127 it was indicated that the TIMIT
database distinguishes 20 different vowels. Many authors have made vowel groupings
to reduce this number of vowels to a more managable number. On the basis of fig-
ure 8.8 on the facing page one could argue that some of the vowel groupings used in
papers on vowel recognition are problematic. For example, () and

() make the following vowel groupings {ih, ix}, {ah, ax,
ax-h}, {aa, ao}, {er, axr} and {uw, ux}, resulting in 14 “different” vowel labels.
Only the vowels in the groupings {ih, ix} and {er, axr} lie acoustically “close”’to
each other in the figure. The grouping {uw, ux} shows a complementary distribution:
they represent the same phoneme but two symbols have been used because uw and ux
sound different. In the grouping {ah, ax, ax-h} the ax-h, being the voiceless pen-
dant of ah, shows acoustic characteristics that place it very apart from the other two
members in the figure. This is reflected by the large number of confusions between
the group with ax-h and the group with ih in figure 1 in the paper of

(), where they give baseline classifier confusions.

142 Chapter 8. Accessing the TIMIT speech corpus

Some insight in the dynamics of the vowels can be gained by trying to represent
spectral change. In figure 8.9 we have represented spectral change in terms of change
in projections on principal directions. In this figure the avarage vowels in the start, the
middle and the end frames were projected on the plane spanned by the first two prin-
cipal components that resulted from an analysis of the three frames for these vowels.
We therefore performed a principal component analysis on the 18024 x 18 data ma-
trix which simply consists of the three 6008 x 18 data matrices for these three frames
appended. In the next step the average positions in the three frames were projected on
the principal component plane.'?

The projections of the three frames are connected with lines. In this way, large
spectral change should correspond to long lines. We see in the figure that short vow-
els have short lines, the only exception being ax-h, and that long vowels have long
lines, indicating diphthongization. Clearly oy, ey and ay are diphthongs. Contrary
to our intuition, the shortest vowel in the database, ax-h, shows the largest spectral
change and it also showed the largest variability in figure 8.8. This effect, however,
can be explained just because the ax-h is so short. Its average duration according
to table 8.3 is only 34 ms, which means that parts of the first and the third analysis
frame are located outside the ax-h vowel and are biased by the preceding and follow-
ing phonemes, respectively. Due to its short duration it will be influenced relatively
stronger by its neighbouring sounds and therefore shows a relatively large variability.
ix and ax, being monophthongs, with average durations of 52 and 49 ms, respec-
tively, also show a relatively large change between the first and the third frame due to
context. () select 13 what they called monophthong vowels, being
{iy, ih, eh, ey, ae, aa, ah, ao, ow, uh, uw, ux, er}. One look at figure 8.9 shows that
ey, with an average duration of 128 ms, cannot be regarded as a monophthong. Also
the monophthong status of ow, with an average duration of 127 ms, is questionable.

Clearly, the groupings advocated by () and
() as well as the selections made by () have their drawbacks.
For the time being we make no selection at all and stick with static analyses made at
the central part of the vowel keeping all 20 different vowel categories. Grouping can
always be done afterwards.

8.7 Conclusion

In this chapter we have given a description of the TIMIT acoustic phonetic speech cor-
pus and how the labelled material was made accessible for the PRAAT program. We
have made all information about the 241,225 labelled segments in this corpus accessi-
ble via a relational database. As a consequence, this database can be queried with the
standard SQL database query language, leading to the analyses already presented in
this chapter and to more analyses, which will be presented in the following chapters.

12We note that the resulting figure could also be obtained by a projection on the plane from an analysis
of the second frame alone, as the eigenvectors in the three frames are almost the same.

Chapter

Normalizations on bandfilter data
from TIMIT™

Abstract

In the first part of this chapter we explore the spectral differences between vowels
produced by male and female speakers. We show a successful extrinsic normaliza-
tion method based on the Procrustes transform that is able to reduce the differences
between vowel bandfilter spectra from male and female speakers.

In chapter 6 we have successfully applied a normalization of the formant frequency
data from 50 male speakers and 25 female speakers by adapting the biases in a feed-
forward neural network. In the last part of this chapter we will test this model again
on bandfilter data from a much bigger data set. The bandfilter data are measurements
at the central part of all the vowels in the TIMIT database. The results indicate that
bias adaptation is successful also on bandfilter data. The bias adaptation at the output
layer showed a slight advantage over the adaptation at the hidden layer.

*This chapter is a modified version of ().

144 Chapter 9. Normalizations on bandfilter data from TIMIT

9.1 Introduction

In chapter 6 we described a vowel normalization model on formant frequency data ob-
tained from the data sets of () and (). This model
was based on adapting only the biases of the hidden layer in a neural network. The
results in that chapter indicated that, by only retraining the biases, a neural network
of the feedforward type was able to learn the vowel representation for other speakers.
For example when trained with male data it reasonably well classifies female data af-
ter adaptation of the biases. The results indicated that the model was more successful
if the biases of the hidden layer were modified than if the biases of the output layer
were modified. See tables 6.3 and 6.4 for these results.

Conceptually, bias adaptation is a simple idea. First we train a neural network with
vowel data from a number of speakers. This neural net can then be used as a vowel
classifier. Next, for each individual new speaker we retrain only the bias weights in
a specified layer. This retrained neural net can then be used as a vowel classifier for
that particular speaker. The advantage of using this model is that modifying only bias
weights requires less (re)training effort.

The motivation behind this is the following. We know that differences exist be-
tween productions of the same vowel by different speakers. The neural network,
trained with material from a number of speakers, cannot possibly recognize all vowels
from different speakers equally well. To cope with a new, possibly divergent, speaker,
the network parameters have to change. Instead of modifying all weights in the net-
work, we proposed to only change the biases in one layer. A modification of the bias
weights of, for example, the output layer, shifts the decision boundaries in weight
space in a parallel fashion. In other words, it leaves the relative positions of vowel cat-
egories intact and only shifts the decision boundaries between them. This is effective
because the vowel spaces of different speakers tend to be similar.

In this chapter we want to test whether this can be done with bandfilter data as well.
However, no bandfilter data is available for the data sets used in chapter 6. The audio
material on which the formant frequency measurements were based is not available
any longer, so a new bandfilter analysis is impossible. We therefore decided to use
the available TIMIT data set and perform bandfilter analysis on it. A second and more
important reason to switch to a bandfilter representation is that bandfilter values can
be reliably determined automatically, whereas formant frequency values cannot. A
third reason for choosing TIMIT is its widely accepted status as a standard data set of
considerable size (s ; , ; s).

Measuring formant frequency values is a tedious and error-prone job that cannot
be fully automated. Given the amount of vowels in the TIMIT database we decided
not to use formant frequencies. Bandfilter analysis can be applied automatically and
lower-dimensional representations can be obtained that correlate very well with for-
mant frequencies and with perceptual data, as was shown by

(). Bandfilter analysis is, of course, not a one-size-fits-all solution. In the
low-frequency region we may have an interaction between fundamental frequency and
filter bandwidth: for high-pitched sounds some of the bandfilters do not contain en-
ergy, because, spectrally speaking, there are no harmonics of the fundamental within

9.2. Data set nomenclature 145

the bandwidth of these filters (s , page 32). As an example, consider
a filterbank where the first filter is centered at 100 Hz and has a bandwidth of 100 Hz.
A signal with a fundamental of 200 Hz has almost no energy within this filter’s band-
width. Just by being “empty” because of the high pitch of a vowel and not because of
its timbre, this filter would introduce a large variance that could ruin a later process-
ing step like principal component analysis based on variances. At the same time this
offers opportunities to discriminate higher-pitched vowels from lower-pitched vowels.
We could use this to discriminate between the vowels from male and female speakers,
since their fundamental frequencies differ a lot, as can be seen from figure 8.3.

The general outline of this chapter is as follows. In the next section we introduce
the naming conventions for the subsets of the TIMIT vowel database that we use. In
section 9.3 we explore these vowels and present some information on the differences
between male and female vowel spectra. We show results on classifying a spectrum as
either “male” or “female”. In section 9.3.3 we introduce a very powerful method based
on Procrustes transformations, to map female spectra to male spectra and vice versa.
In section 9.4 we continue the investigation started in chapter 6 whether differences
between vowel spectra from different speakers can be equalized by a neural net. The
intention is that by allowing only the bias weights of the neural net to change, the net
adapts to every speaker. We also describe data reduction to reduce the training times
for the neural networks. The chapter ends with a discussion.

9.2 Data set nomenclature

In order to have some shorthand notation for the different spectral data subsets from
TIMIT we developed the following naming scheme for a subset: <SEX><PART>-
<SUMMARY><DIMENSION>. In this scheme the most important division of the data,
<SEX>, is according to whether they originated from a male or female speaker. This
will be indicated by the start sequence M or F. If both speaker sets are involved we start
with the MF combination. The next division, <PART>, will be according to whether
the data originated from the test or the training part of TIMIT. This will be indicated
by -T for the test part and -L for the training part (-L stands for learning). If the
dataset has both the test and training part included, we do not use any symbol. In the
next part, <SUMMARY>, an -S symbol indicates that we use summary data, i.e. one
representation per vowel per speaker, and an -A symbol indicates that we use all the
vowels of a speaker. More information on how we obtained the summary data will
be presented in the next section. The last part of the naming scheme, <DIMENSION>,
indicates the dimensionality of the data set. If the dimensionality is 18, i.e. the full
dimensionality of the spectrum, this number will not be shown. The following list, in
which the symbol _ represents ‘empty’, summarizes the naming scheme.

<SEX> := (MIFIMF), male, female, both

<PART> := (-LI-TIl_), learning (training) or test part or both
<SUMMARY> := (-Sl-A), speaker summary, or all
<DIMENSION> := (_|-<NUMBER>).

146 Chapter 9. Normalizations on bandfilter data from TIMIT

To give an indication of the number of items in some of these partitions, table 9.1 gives
a summary. The first line in the table shows that data set M-L-A, which contains all

Table 9.1. Summary of the naming scheme, for further explanation see text.

Name Entries Name Entries Speakers Description

M-L-S 6008 M-L-A 40468 326 Males, training part
M-T-S 2070 M-T-A 13889 112 Males, test part

M-S 8078 M-A 54357 438 M-L-: 4+ M-T--

F-L-S 2490 F-L-A 16995 136 Females, training part
F-T-S 1011 F-T-A 7022 56 Females, test part

F-S 3501 F-A 24017 192 F-L+F-T

MF-S 11579 MF-A 78374 630 M---+ 4 F---

vowel spectra from all male speakers in the training part of TIMIT, has 40468 entries.
These 40468 vowel entries are condensed to 6008 entries in data set M-L-S, in which
for each speaker multiple entries for a vowel have been reduced to only one average
entry.

9.3 Characteristics of the vowel material

The TIMIT database offers a great opportunity to perform vowel recognition and nor-
malization, since all of its vowels have been segmented and labelled. In the previous
chapter it was already outlined how we have made TIMIT generally accessible within
the PRAAT program by making the audio files and the label files readable.

We have used all the vowels in TIMIT in the analysis in this chapter. Because the
number of occurrences per vowel and per speaker differ very much, as can be seen
from table 8.4, we can expect that any learning method that uses the raw vowel data
will be biased towards the vowels that occur most frequently. In order to prevent
this bias, we decided to compress the vowel material by averaging all the occurrences
of the same vowel for each speaker in the same way as was done in section 8.6 for
the male vowels in the training part of the database. The compression resulted in a
11579 x 18 summary table with one realization per vowel per speaker, i.e. at most 20
entries per speaker. These summary data are indicated with an -S in table 9.1. The
number of entries in MF-S is actually less than the maximum possible, which is 12600
(= 630 x 20), since not all 630 speakers realized all 20 different vowels.

The motivation for splitting the data in a male (M-S) and a female (F-S) part can
be found in table 9.2 and in the figures 9.1, 9.2 and 9.3 and, partly, also in figure 8.3.
Table 9.2 shows the result of the vowel recognition performance of a discriminant
classifier trained with three “different” data sets and tested with the same data sets.
These data sets were MF-S, the total summary data set discussed above, containing

9.3. Characteristics of the vowel material 147
()
130
de
- éh
pcl =30
R (©)
g ———————————————— " T T A e i
L * L
n +
)
g L
= +
> L
c
)
2|, r
N L
- -5 T 0.5
1 18 1 18
Element number Eigenvalue index

Figure 9.1. Characteristics of male and female vowel centroids in a common
PCA eigenspace.

(a) Vowel centroids. The average male vowel centroids are labelled. Each la-
bel is the starting point of a solid line that ends at the female vowel centroid.
The ends of dotted lines, which start at a female vowel centroid, indicate the
positions of the female vowel centroids after a Procrustes transformation to op-
timally match the male vowel centroids (to be discussed in section 9.3.3). The
points labelled ‘m’ and ‘w’ are the average male and female spectra, respec-
tively.

(b) The first and second eigenvectors drawn with a solid and a dotted line, re-
spectively.

(c) The cumulative eigenvalues as fractions of the total sum of the eigenvalues.

148

Chapter 9. Normalizations on bandfilter data from TIMIT

aa

ao

ax—h

axr

eh

cr

ih

ow

oy

uh

1 Filter number 18 1 Filter number 18 1 Filter number 18

Figure 9.2. The average male and female vowel spectra. The male and female

spectra are drawn with solid and dotted lines, respectively. The two spectra at

average male and average female spectra.

the position in the middle, i.e. fourth row and second column, are the overall

9.3. Characteristics of the vowel material 149

Table 9.2. Fractions correct with a discriminant classifier. The classifier was
trained with the data sets displayed in the first column and tested with the data
sets shown in the first row. M-S is the summary data with maximally 20 vowel
spectra per male speaker. F-S represents the summary data set for the female
speakers. MF-S is their combination (see also section 9.2). The numbers in
parentheses show the fractions correct after speaker normalization. The nor-
malization for each male/female speaker was done by subtracting the difference
between the average of a speaker’s vowels and the average of all the speakers’
vowels in the male/female group.

MEF-S M-S F-S Entries

MF-S 0.575 (0.645) 0.634 (0.704) 0.440 (0.510) 11579
M-s 0.533(0.596) 0.663 (0.734) 0.233 (0.280) 8078
F-s 0.370 (0.398) 0.259 (0.267) 0.624 (0.702) 3501

11579 entries, the M-S subset with the 8078 only-male entries and the F-S subset with
the 3501 female-only entries. The row marked MF-S in the table reads as follows: a
classifier trained on the whole data summary set, male plus female data, shows 0.575
fraction correct when tested on the same data set. It shows 0.634 fraction correct when
tested on the male (M-S) data set only and 0.440 when tested on the female (F-S) data
set only. The increase in fraction correct from 0.575 for MF-S to 0.634 for M-S and
the following decrease to 0.44 for F-S is due to the fact that MF-S training is biased
because M-S and F-S contain very unbalanced amounts of data, as was indicated above
and can also be seen from table 9.1. Having separate classifiers for M-S and F-S sub-
stantially improves the fractions correct to 0.663 and 0.624, respectively. At the same
time, these classifiers show smaller fractions correct when the “other” set is tested, as
the numbers 0.233 and 0.259 show. These differences between the speaker groups M-S
and F-S still remain if we perform speaker normalization, as the numbers in parenthe-
ses show. In the straightforward speaker normalization procedure that we have applied
here, we have corrected the bandfilter data by the difference of the speaker’s average
and the group average. We see that the fractions correct increase substantially but the
differences between the M-S and F-S sets remain.

Additional evidence that male and female data behave differently is shown in fig-
ure 9.1, which displays the common eigenspace obtained by a principal component
analysis on the 20 average male and the 20 average female vowels. The 20 male and
20 female average vowels were determined from M-S and F-S, respectively. These 40
representations were collected in one table and a principal component analysis was
performed. In part (a) of the figure, which shows the plane spanned by the first two
principal components, the average male vowels are projected and shown with the cor-
responding label. To avoid a clutter of symbols in the figure, we have indicated the
positions of the female average vowels as the endpoint of the solid line that starts at
the centre of each male average vowel. In part (b), drawn with a solid curve, the first
eigenvector whereas the dotted curve shows the second eigenvector. Part (c) shows

150 Chapter 9. Normalizations on bandfilter data from TIMIT

the cumulative sum of the eigenvalues, i.e. the cumulative fraction explained vari-
ance. The first component explains as much as 57.2% of the variance and the first two
components together explain 75.9%.

In the figure we see that the relative positions of the male and female vowels are not
the same: some female vowels, like ao, lie higher than their male counterpart while
others, such as iy, lie lower. The main difference in orientation is in the direction
of the second component. To understand these differences we have to look at both
the weighting of the second eigenvector and the form of the male and female vowel
spectra. The average male and female vowel spectra are displayed in figure 9.2. The
male spectra are drawn with a solid curve whereas the female spectra are drawn with
the dotted curve. The spectra in the middle position, i.e. fourth row second column, are
the overall average male and female spectrum. The position of a vowel in the principal
component plane is the result of the inner product of the first two eigenvectors with
the vowel’s spectrum. From figure 9.1b we note that the second eigenvector weighs
the first five spectral values with a negative sign and the following with a positive sign.
A larger value for the second principal component of a female vowel thus may occur
when the higher part of the female spectrum lies above the male spectrum and/or
the lower part is beneath this spectrum. We see that for ao the first five bandfilter
values of the female spectrum lie below the male values and that the contribution of
the following six filters is definitely positive. The total contribution of the last six
filters is negative but this contribution is only small. The net effect is, as was shown
in figure 9.1a, the female ao lying above the male ao. For the iy vowel we note from
the spectra that at the interval where the difference between the spectra is largest,
i.e. somewhere between filter numbers 10 and 14, we also have the largest weights
from the eigenvector. Since the difference in this interval is negative, i.e. the female
spectrum lies below the male spectrum, this results in the relative positions shown in
the principal component plane, where the female iy lies below the male iy.

If we consider all the 20 vowels in the principal component plane, then, on average,
the female vowels lie somewhat higher than the male ones, as can be seen from the
positions of the average male and female spectra. These average spectra are indicated
in figure 9.1 with an ‘m’ and a ‘w’, respectively. We must conclude from the figure,
however, that a common basis for the M-S and F-S data sets would not be very optimal.

Figure 9.1 was purely based on the distribution of variance. In figure 9.3 we have
plotted vowel centroids in the eigenspace of a discriminant classifier trained on the
M-S data set. A common eigenspace cannot be constructed as easily as for figure 9.1
because we do not have equal numbers of male and female spectra and we cannot use
the trick of the vowel centroids. In part (a) we display the male vowel centroids in
the Linear Discriminant (LDA) eigenspace. The vowel centroids for the F data set
are indicated in the same picture as the endpoints of the solid lines that start at the
male vowel centroids. Parts (b) and (c) display the first and the second eigenvectors.
This picture also shows different structures for male and female vowel centroids but
the positions of the centroids are not as clearly interpretable in terms of the traditional
high, low, front and back features as in figure 9.1.

Again, the LDA projections show that a common basis for the male and female
data sets would not be very optimal.

9.3. Characteristics of the vowel material

151

(@

f

35

’ 3
a ax

Eigenvector 2
o
I
= :/
;/

O T T T T
—45 Eigenvector 1 0
(b) (©

1 Filter number 18 1 Filter number 18

Figure 9.3. Characteristics of the male and female data sets in the male LDA
eigenspace. (a) Projection of the vowel centroids in the male eigenspace. The
average male vowel centroids are labelled. Each label is the starting point of a
solid line that ends at the average female vowel position. (b) First eigenvector.
(c) Second eigenvector. The eigenvectors are represented by solid curves for
the males and by dotted curves for the females.

152 Chapter 9. Normalizations on bandfilter data from TIMIT

Filter number

Figure 9.4. The eigenvector from the two-class male/female discriminant clas-
sifier.

9.3.1 Classifying a spectrum as male or female

Now, given that the male and female data sets M-S and F-S behave differently, we may
ask how well both sets can be discriminated from each other in an automatic fashion.
To perform such a test, we relabelled the spectra in the MF-S table. Instead of the
vowel labels we substitute either “m” or “f”, depending on whether the vowel was
from a male or a female speaker. We then have a two-class discrimination problem.
A discriminant classifier with identical training and test sets showed 0.937 fraction
correct with pooled covariance matrices. If we do not pool the two covariance matrices
but use an individual covariance matrix per speaker category, the fraction correct rises
to 0.961. If we use a strict separation between training and test set, i.e. for training
we use only speakers from the training part of TIMIT and for testing we only use
speakers from the test part, we still have 0.913 fraction correct for pooled covariances
and 0.948 for individual covariances. According to the naming scheme these training
and test sets are MF-L-S and MF-T-S.

Because we have two classes, the discriminant space is one-dimensional and there-
fore we only have one eigenvector that maps the bandfilter spectra on this space. In
figure 9.4 this eigenvector is displayed. We clearly see that it puts most emphasis on
the first two filters. Not surprisingly it is here that fundamental frequency differences
between males and females are most easily measurable, because (simplifying a bit) a
low pitch has both filters filled, a high pitch only the second. One would guess that
leaving these two filters out could ruin the discrimination between male and female
spectra. In order to investigate this hypothesis we performed discrimination tests in
which we successively reduced the number of filters used in the classification tasks.
We split up MF-S in independent training and test sets for the discriminant classifier
depending on whether the spectrum was from a speaker in the training or in the test
part of TIMIT.

In the first series of 18 tests, we used the filter subsets from filter numbers i to

9.3. Characteristics of the vowel material 153

(@)
1
o 0.9\ I T S R
9] .
S 0BTt H- M- H- -
c
(@]
@
0.5 I A
1 2 3 45 6 7 8 9101112 1314 15 16 17 18
Start filter number
(b)
1

o
>

Fraction correct
o o o
al N @
o ‘ ‘

3456 7 8 9101112 131415 1617 18
End filter number

Figure 9.5. Discriminant classifier fraction correct as a function of filter subsets
for data set MF-S (split up into independent training and test parts). The light
and dark bars show the fractions correct with and without covariance matrix
pooling, respectively. (a) Subset with filters from i to 18, where i = 1..18. (b)
Subset with filters from 1 to j, where j = 1..18.

18, where i = 1..18, i.e. the number of filters used runs from 18 down to only 1. For
example, leaving only the first two filters out corresponds to i = 3. In the second
series of 18 tests we used the 18 subsets in which the filter numbers varied from 1
to j, where j = 1..18. For example, j = 2 corresponds to the first two filters only.
The results with and without covariance matrix pooling are displayed in figure 9.5.
Much to our surprise the fractions correct for subsets turn out to be remarkably high.
In bar chart (a) where the fractions correct for the subsets i..18 are displayed, we see
a gradual decrease from 0.948 for the complete set of 18 filters at bar position 1 to

154 Chapter 9. Normalizations on bandfilter data from TIMIT

0.657 for only the 18t filter. Even for this 18t filter the 0.657 fraction correct is
well above the 0.5 chance level. In bar chart (b) we see a steep increase in fraction
correct from 0.605 for the first filter to 0.88 for the first three filters together. When
the number of filters increases to 18 we see a gradual increase in fraction correct,
topping of course with 0.948 with all 18 filters. Limiting the filter subset to a range
that approximates the telephone speech bandwidth, i.e. filter numbers 3—-16, we still
obtain 0.895 fraction correct. As the light and dark bars in figure 9.5 show, the effects
with and without covariance matrix pooling show the same behaviour. Our conclusion
must be that although the filters that show the largest variation due to speaker class,
i.e. the first three or four, the resulting gender differences are distributed along the
entire spectrum.

9.3.2 Relation between bandfilter values and fundamental frequency

In this section we elaborate on the influence of fundamental frequency on spectral
characteristics. In the previous section we noted that although gender differences are
distributed along the entire spectrum, low filters show the most prominent effect of
fundamental frequency. As figure 8.3 shows, the fundamental frequency distributions
of males and females differ significantly. This might suggest that there must be a
correlation between fundamental frequency and spectrum. We will investigate this
by performing a canonical correlation analysis on the data in the centre part of each
vowel. However, as figure 8.3 also shows, for a number of segments no pitch could
be determined by the periodicity detector in the PRAAT program, and these segments
were assigned a fundamental frequency of 0 Hz. We therefore made a simple cut on
the data by selecting only frequencies between the minimum pitch 75 Hz and a more
or less artificial upper limit of 350 Hz. In this way we selected 93.4% of the data,
i.e. 73165 out of 78374. Since we correlate a one-dimensional vector (fundamental
frequency) with an 18-dimensional vector (bandfilter values) this results in only one
canonical correlation coefficient whose value is 0.748. Because we have only one de-
pendent variable, the canonical correlation coefficient equals the multiple correlation
coefficient. It explains 56% of the variance. In figure 9.6 we show the eigenvector
of the CCA analysis. This vector shows the linear combination of bandfilter values
that correlates optimally with the fundamental frequency. The eigenvector that results
from the canonical correlation analysis is very similar to the eigenvector in figure 9.4.
This again indicates the correlation between fundamental frequency and male-female
differences.

9.3.3 Procrustes normalization

The previous sections have shown that differences between the male and female vowel
spaces exist. The question of this section will be whether these differences can be
reduced in some way.

As figure 9.1 shows, where the average male and female spectra are displayed with
the symbols ‘m’ and ‘w’, respectively, the first thing that comes to mind is a translation
to map these averages on top of one another. In our exploration about other possible

9.3. Characteristics of the vowel material 155

Filter number

Figure 9.6. The spectral eigenvector that results from a canonical correlation
analysis between fundamental frequency and bandfilter values.

manipulations besides translation, we will limit ourselves to shape-preserving trans-
formations. We may translate, scale, rotate or invert the vowel space but we do not
want to change the relative distances between the vowels. These relative distances
have to be invariant under a transform. The allowable transform that may be a combi-
nation of scaling, rotation, reflection and translation is called a Procrustes transform.
We have given some background on the Procrustes transform in section 7.4.6. The
Procrustes transform boils down to the same feature space transform as was used by

(, ch. 7). He used a rotation constructed from the product of the eigen-
vectors of two covariance matrices. The two sets of eigenvectors were first aligned.
A Procrustes transform combines the rotation and the alignment of the eigenvectors
automatically. The only big decision remaining is whether the transformation is based
on the unequal distribution of the vowels or not. We have chosen to give all vowels
equal weights.

We use a Procrustes transform to transform the average female vowel system to the
male vowel system as closely as possible. In part (a) of figure 9.1, we have indicated
the positions of the transformed female vowels as the endpoints of the dotted lines that
start at the female average vowel positions. The figure shows that the transformed fe-
male vowel positions fit the male positions much better than the untransformed ones.
The transformation on the bandfilter spectra seems to work remarkably well. Closer
inspection of the 18-dimensional Procrustes transform that actually accomplishes this
mapping reveals that the scale factor was only 1.015. The translation vector was dif-
ferent from zero.

To further investigate whether the Procrustes transform could help discrimination,
we applied the transform to the F-S data set. As table 9.2 shows, a discriminant clas-
sifier trained with M-S has 0.663 fraction correct when tested with the same male
data set, but only 0.233 fraction correct when tested with the female vowel summary
data set F-S. After applying the Procrustes transform to set F-S, the fraction correct
increased to 0.583, which is a large improvement. If we perform the same transforma-

156 Chapter 9. Normalizations on bandfilter data from TIMIT

tion procedure on the F-S-9 set, i.e. first obtaining the male and female vowel centroids
in the 9-dimensional space, then calculating the Procrustes transform and applying it
to F-S-9, the fraction correct increases from 0.254 to 0.573, again a very large im-
provement. To get a better view on the impact of the Procrustes transformation on the
bandfilter spectra we have plotted in figure 9.7 the male and the transformed female
vowel centroids. The layout of the figure is identical to figure 9.2. The male spectra
are drawn with solid curves while the female spectra are dotted. Again the plot in the
middle shows the average spectra. They fall together. The Procrustes transform seems
to be very powerful since the differences between the male and female vowel spectra
as shown in figure 9.2 are reduced to almost nothing. For most of the vowels a perfect
match between the male and the Procrustes-transformed females occurs. Only some
vowels, namely uw, ae and ow show minor differences. These differences were also
apparent in figure 9.1, where these transformed vowels show the largest difference in
position with the male vowels (the transformed female vowels are at the endpoints of
the dotted curves).

9.4 Bias adaptation

9.4.1 Introduction

In this section we will continue the investigation that was started in chapter 6 about
whether partly retraining a neural net can equalize differences between vowel spectra
from different speakers. The starting point is a neural net that has been trained on
vowel data. We model speaker adaptation by only retraining a small part of the weights
of the neural net for each new speaker. The motivation for doing so is that the positions
of the vowels in the vowel spaces of different speakers are comparable. Therefore the
expectation is that differences between these vowel spaces can be modelled by changes
in only a relatively small part of the weights of the neural network. Theoretically all
possible subsets of weights could be chosen to be modified in this adaptation process,
however, as was shown in chapter 6, bias changes can be most easily interpreted. The
intention is that by allowing only the bias weights of the neural net to be changed, the
neural net is able to adapt to each speaker to better discriminate the speaker’s vowels.
We will use a supervised feedforward neural net to implement these ideas. To reduce
some of the training times for these types of networks, we will start with some data
reduction techniques.

9.4.2 Data reduction

In the following sections where we want to train neural nets, we preferably want the
training times to be short. The best way to achieve this is to reduce the data itself and
this can be done, for example, by keeping the dimensionality of the data as low as pos-
sible. We therefore try to reduce the 18-dimensional representation of the bandfilter
spectrum to a lower-dimensional one. However, we know that reducing the dimen-
sionality can have a degrading effect on quality. In order to find a reasonable balance

9.4. Bias adaptation

157

aa

ax-h

eh

er

uh

1 Filter number 18 1 Filter number 18 1 Filter number 18

Figure 9.7. The male and female vowel centroids after a Procrustes transform.
The male and the transformed female spectra are drawn with solid and dotted
curves, respectively. The two spectra at the plot in the middle, i.e. at the fourth
row and second column, are the average male and average transformed female

spectra; they fall together.

158 Chapter 9. Normalizations on bandfilter data from TIMIT

T e T S e

T

i e

Cumulative fraction
+

Eigenvalue index

Figure 9.8. The cumulative contribution of the eigenvalues from a principal
component analysis (+) and discriminant analysis (-) on data set MF-S.

between data reduction and quality we decided to reduce the dimensions with a fac-
tor of two. A reduction to nine dimensions, i.e. principal components, was chosen
as a compromise between optimal variance and optimal discrimination quality and is
corroborated by figure 9.8. The figure shows that at nine components, the cumulative
fractional contribution of the first nine eigenvalues sums almost to 1, or, in comple-
mentary terms, the last nine components only contribute a very small fraction, 0.027,
of the total variability in the material. According to the naming scheme in section
9.2, the nine-dimensional tables that result by extracting only the first nine principal
components from tables M-S, F-S and MF-S will be named M-S-9, F-S-9 and MF-S-9,
respectively.

9.4.3 Neural net parameters

The topologies of the feedforward neural nets that we will use are (9, &, 20), where
h =1,...,9. The inputs will be the first nine principal components, the outputs the 20
vowel classes. Since we do not know the optimal number of hidden nodes in advance,
we have tested a number of topologies where the number of hidden nodes varies from
one to nine. As was shown in section 6.4, the number of parameters in a two-layer
net with » inputs, 4 hidden nodes and m outputs is #(n + m + 1) + m. In section 6.5
it was shown that a covariance matrix in » dimensions has n(n + 1)/2 independent
parameters. Therefore linear discriminant analysis, where all classes share the same
covariance matrix, has mn + n(n + 1)/2 independent parameters, whereas quadratic
discriminant analysis, where we need one covariance matrix for each class, has mn +
mn(n + 1)/2 independent parameters. In these two expressions the term mn gives the
number of independent parameters for m centroids in an n-dimensional space. For
fixed inputs and outputs (n = 9 and m = 20) we find h = 7 and h = 36 when

9.4. Bias adaptation 159

we equate the neural net equation to the LDA and QDA equations and solve for the
number of hidden nodes h, respectively. An upper limit of nine hidden nodes was
chosen to keep the number of parameters in the neural net comparable to the number
of parameters for the LDA.

To decrease network training time for finding an optimal solution it sometimes
helps to increase the number of hidden nodes, since this introduces extra freedom in
the minimization task. However, increasing the number of hidden nodes also increases
the risk of overtraining the network. At least two remedies exist against overtraining:
reducing the number of hidden nodes and early stopping. We decided to give the net
some extra freedom by choosing the maximum number of hidden nodes comparable
to the number of parameters for the LDA and have some extra freedom by choosing an
upper limit of nine hidden nodes. By selecting nine hidden nodes we hopefully stay
out of the overtraining region. By early stopping the learning task, we try to avoid
that the neural network zooms in too much on the specific training data and again,
hopefully, remains at a stage where the generalization performance of the network is
still reasonable. The idea is that after a certain number of epochs, the two criteria
performance on the training set and performance on the test set start to diverge. This
moment would be the theoretically optimal time for stopping the minimization. Ex-
periments show that this moment is often very difficult to obtain (R).
We did not determine this optimal moment in time yet have fixed the maximum num-
ber of iterations in the learning tasks to equal 1000 epochs. Several trials showed that
the cost functions levels off at this number of iterations.

9.4.4 Test procedure

We train neural nets of topology (9, &, 20), where h = 1..9. These nets have 30h + 20
parameters. As training sets we use M-L-S and F-L-S. The test sets will allways be
independent from the training sets.

We use batch training and the maximum number of epochs was set to 1000. As an
error criterion the Minimum Squared Error (MSE) measure was taken. This measure
has been shown to be very effective (see chapter 5 for a comparison of error measures).
Figure 9.9 shows the typical development of the error during the training of a neural
network with topology (9, 9, 20).

Now, after the neural net has learned the data set we perform the adaptation process
as follows. The data in the test set have been grouped according to speaker identity.

1. We make a copy of the trained neural net and arrange its parameters in such
a way that only the biases of the hidden or the output layer are allowed to be
modified during adaptation. We note that when the bias weights were then
initialized with uniform random numbers drawn from the interval [-0.1, 0.1],
the minimization algorithm always got stuck in a local minimum and it was
not able to find optimal values for the biases from these starting positions. For
the biases of the output nodes it did not matter: good minima could always be
found. We therefore did not initialize the biases with random values but started
the minimization in the adaptation step with the biases as they resulted from the
training phase.

160 Chapter 9. Normalizations on bandfilter data from TIMIT

5500

¥

1 1000
Number of epochs

Minimum squared error

Figure 9.9. Typical development of the cost function during the training of a
neural network with topology (9, 9, 20).

2. We select the vowel spectra for a particular speaker and again train the neural
net. However, this time only the selected biases are allowed to change. Since
the number of data is much smaller than before (maximally 20 spectra) and only
a limited number of bias weights have to be modified, we limit the maximum
number of allowed epochs in this stage to 100.

3. We then use the neural net as a classifier for the data of the selected speaker and
record the fraction correct. Given the amount of data available for the tests with
formant frequency values in chapter 6, the test and training sets were identical.
Although we have more bandfilter data available, we decided to take identical
test and training data sets as well.

4. We start again with step 1, until all test speakers have been processed.

This procedure was repeated for each of the nine different neural net topologies
(9, h,20). Because the learning procedure in a neural net is a very complex mini-
mization in a high-dimensional space, the outcome will not be reproducible. To see
whether results were reproducible at all, the whole procedure, i.e. training the neural
net and testing the adaptation behaviour for all the test speakers with different neural
net topologies, was repeated ten times.

9.4.5 Results

In figure 9.10 we have displayed summaries of the adaptation results. In part (a) the
training and test sets were M-L-S-9 and M-T-S-9, respectively, coded as MM. We
recall from section 9.2 that these sets are average spectra from male speakers in the
training and the test parts of TIMIT, respectively. The same training set was used in
part (b), but now the test set was F-S-9, i.e. the complete female summary set coded as
MW. Part (c) and (d) also have the same training set, F-L-S-9 but different test sets,
F-T-S-9 and M-S-9, respectively. Therefore, in parts (a) and (d) we have a learning
task in which the data in the training and test sets belong to the same speaker group,

9.4. Bias adaptation 161

males and females, respectively. In parts (b) and (c) the training and test data belong
to different speaker groups.

In all plots in figure 9.10 the horizontal axes show the number of hidden nodes
from 1 to 9, while the vertical axes show the fractions correct from O to 1. The “base-
line”, i.e. no adaptation at all, is indicated with ‘0’ symbols. These symbols represent
the fractions correct when testing the trained neural net with an independent test set.
The ‘1’ and ‘2’ represent the fractions correct when the biases of the first or the second
layer, i.e. the hidden or the output layer of the network, respectively, were adapted. We
note that in all four sub-figures adaptation is effective and shows larger fractions cor-
rect than the baseline. The adaptation of the output layer ‘2’ has a slight advantage
over the adaptation of the hidden layer. We see for the three conditions ‘0’, ‘1’ and 2’
that the fractions correct gradually increase and then level off.

(a) MM (b) MW
R 2.2.2.] |
0.5 3%%%000 0.5 1312
N “l 33880000
9]
O T T T T T T T T T G T T T T T T T T T
123456789 123456789
Number of hidden nodes Number of hidden nodes
(c) WM (d) WW
1
0.5
O T T T T T T T T T G T T T T T T T T T
123456789 123456789
Number of hidden nodes Number of hidden nodes

Figure 9.10. Fractions correct classification as a function of the number of hid-
den nodes in a feedforward neural net with topology (9, #,20). A ‘0’ indicates
the result without speaker adaptation. The symbols ‘1’ and ‘2’ shows results for
speaker adaptation of the biases in layer one and two, the hidden and the output
layer, respectively. The training and test sets were, respectively: (a) M-L-S-9
and M-T-S-9 (b) M-L-S-9 and F-S-9 (c) F-L-S-9 and M-S-9 (d) F-L-S-9 and
F-T-S-9. See section 9.2 for nomenclature.

162 Chapter 9. Normalizations on bandfilter data from TIMIT

9.5 Discussion

As we found in chapter 6 for formant frequency values, the bias adaptation model also
seems to work well for bandfilter spectra. The classification performance is reason-
able, even when compared to human listeners. () reported
that human listeners, presented with vowel sounds from a set of 16 isolated monoph-
thongal and diphthongal vowel classes from TIMIT, agreed about 55% of the time with
the labellers. In ten one-hour sessions these listeners where confronted with a random
permutation of the set of 2668 vowel sounds, being 16 vowels from 168 male and fe-
male speakers from the test part of TIMIT. With more than three hidden nodes figures
(a) and (d) in 9.10 show that the neural net without adaptation performs equally well
as human listeners when the training and test sets belong to the same speaker category.
Bias adaptation, both for the hidden layer and for the output layer, show comparable
behaviour, and improve on the results above. However, when training and test sets
belonged to different speaker groups, as was the case in figures (b) and (c) of 9.10,
the fractions correct were not so impressive. Only for a sufficient number of hidden
nodes and adaptation to individual speakers could the performance of human listeners
be attained.

As was already indicated by figure 9.1 and confirmed again with these adaptation
tests, the differences between male and female vowel spectra cannot be fully annihi-
lated by simply adapting the biases. These positive results for formant frequency data
can be explained by the fact that a bias change in the hidden layer has the same effect
as a uniform scaling of the formant frequencies. This is like vocal tract length scaling,
which is a very succesful formant frequency normalization procedure (,).
This is in contrast with the results based on formant frequencies, where we saw excel-
lent performance when test and training sets belonged to different speaker categories.
Clearly the type of transformation performed by modifying the biases is not powerful
enough to overcome the differences between the male and female bandfilter spectra.

As we saw in section 9.3.3, the differences between male and female bandfil-
ter spectra could be annihilated to a large extent by a Procrustes transform. This
type of transform is based on more effective data scalings than are possible by bias
weight modifications alone and produces almost identical average spectra, as figure
9.7 showed. The neural net approach and the Procrustes transform could be combined
in a two-stage process if we try to classify both male and female data with a refer-
ence set obtained from only one speaker category: first Procrustes transform and then
neural net adaptation. Being only a minor variation of the same supervised neural net
model that has been tested in this chapter, we will not elaborate on this variant any
further. In the next chapter we test a potentially more powerful neural net model and
try to find a better speaker adaptation model.

o 10

CategoryART: A variation on
Adaptive Resonance Theory
neural networks”

Abstract

In this chapter we describe our CategoryART, a variation on adaptive resonance theory
(ART) neural network models. CategoryART is a predictive ART architecture because
it incorporates an ART module and is able to learn to predict a prescribed category
given a prescribed n-dimensional input vector. In contrast to ARTMAP, which contains
two ART modules, CategoryART contains only one ART module and the map field
algorithm has been simplified. The ART module in a CategoryART neural network
model can be either a FuzzyART or an ART2-A module. The CategoryART shows
excellent performance on a benchmark neural network test, the artificial two-spirals
problem, but unfortunately rather poor performance on a real-world vowel recognition
test based on TIMIT.

*This chapter is an extended version of ().

164 Chapter 10. Category ART

10.1 Introduction

In the previous chapter we have used feedforward neural networks to normalize vowel
bandfilter spectra. Feedforward neural networks are based on supervised learning and
need a lot of training material to adapt to a new speaker. In this chapter we want to
explore neural network models that are based on unsupervised learning, in order to
test whether these networks show potential in speaker-adaptive vowel identification.

CategoryART is a neural network topology whose dynamics are based on Adaptive
Resonance Theory (ART). ART was developed by (, ,)asa
theory of human cognitive information processing. ART was the result of an attempt
to understand how biological systems are capable of retaining plasticity throughout
life, without compromising the stability of previously learned patterns. Somehow, bi-
ologically based learning mechanisms must be able to guard stored memories against
transient changes, while retaining plasticity to learn novel events in the environment.
This tradeoff between continued learning and buffering of old memories Grossberg
calls the stability-plasticity dilemma. It poses special design problems. For example,
in the (supervised) feedforward networks new information gradually washes away old
information. Therefore feedforward networks cannot be made stable in a changing
environment.

To be able to mimic biological behaviour, the emphasis of ART neural networks
lies on unsupervised learning and self-organization. Self-organization means that the
system must be able to build stable recognition categories in real time. Unsupervised
learning means that the network learns the significant patterns on the basis of the in-
puts only; there is no feedback. There is no external teacher that instructs the network
to which category a certain input belongs. Other types of learning are reinforcement
learning and supervised learning. In reinforcement learning the net receives only lim-
ited feedback, like ““on this input you performed well” or “on this input you have made
an error”. In supervised mode a net receives for each input the correct response. Ac-
cording to Grossberg, unsupervised learning is the substrate on which the other types
of learning are based. In biological systems, learning always starts as unsupervised
learning: for the newly born hardly any pre-existing categories exist. A system that
can learn in unsupervised mode, can always be adjusted to learn in reinforcement
mode and in supervised mode. However, a system specifically designed to learn in
supervised mode will never be able to perform in unsupervised mode. Needless to
say that in unsupervised mode we cannot have a separate training and performance
phase, like in supervised mode, because this implies the presence of a homunculus
that knows when to alter phases.'

These design constraints have led to a series of real-time ART neural network
models for unsupervised category learning and pattern recognition. Model families

! () describe the acquisition of language-specific sound categories
as a first and unsupervised stage of a two-stage learning model, in accordance with the proposal of Func-
tional Phonology (,). In the first auditory-driven stage, the statistical distribution of auditory

phonetic information leads ultimately to the creation of phonetic categories. These phonetic categories
turn into simple abstract phonological categories in the transition to the second stage. During the second
lexically-driven stage, more abstract representations are developed and multi-dimensional perception will
be optimized. The lexicon then acts as a supervisor for achieving more accurate perception.

10.1. Introduction 165

include ARTI1, which can stably learn to categorize binary inputs presented in an arbi-
trary order (,), ART2, which can stably learn to catego-
rize either analog or binary data (s) and ART3, which can
carry out parallel search of distributed recognition codes in a multilevel network hier-
archy (,). The FuzzyART model of

() is based on fuzzy logic computations and incorporates the ART1
model, since computations from fuzzy set theory reduce to binary computations when
the fuzzy variables become binary valued.

i b (TRAINING)
— ART, —
A
Y
\ \
MAPFIELD — MAPFIELD
GAIN@ MAP FIELD Oom ENTING
CONTROL N SUBSYSTEM
\j MATCH
- TRACKING
— ART, '

Figure 10.1. Block diagram of a supervised ARTMAP system. Two ART mod-
ules are linked by an inter-ART module called the map field. The map field
forms predictive associations between categories of the ART modules and real-
izes a match-tracking rule. If ART, and ART, were disconnected each module
would self-organize category groupings for their respective input sets.

Besides networks based on these models, supervised network architectures have
been developed that incorporate one or more of the unsupervised ART modules given
above. ARTMAP is one of these architectures (,

). Figure 10.1 shows a block diagram of such a system. In supervised mode,
mappings are learned between input vectors a and output vectors b. A familiar exam-

166 Chapter 10. Category ART

ple of supervised neural networks are feedforward networks with backpropagation of
errors, also called backpropagation networks (BP). In chapter 4 an introduction was
given to the classifying capabilities of this type of networks and in chapters 6 and
9 they were succesfully applied in adaptive vowel normalization tasks based on for-
mant frequency values and bandfilter values, respectively. Supervision is, however,
the only similarity of BP networks with ARTMAP networks. ARTMAP networks are
self-stabilizing whereas in BP networks new information gradually washes away old
information. A consequence of this is that a BP network has separate training and
performance phases whereas ARTMAP systems perform and learn at the same time.
Besides, ARTMAP networks are designed to work in real time, while BP networks are
typically designed to work off line, at least during their training phase. Another dif-
ference is that while ARTMAP systems can learn both in a fast and in a slow match
configuration, BP networks can only learn in a slow mismatch configuration. This
means that an ARTMAP system learns, i.e. adapts its weights, only when the input
matches an established category, whereas BP networks learn when the input does not
match an established category. In BP networks there is always the danger of the sys-
tem getting trapped in a local minimum whereas this is impossible for ART systems.
However, in systems based on ART modules, learning may depend upon the order of
the input patterns.

CategoryART, which we herewith introduce, is a specialized fast algorithmic vari-
ant of the ARTMAP class of neural network architectures. It performs incremental
supervised learning of recognition categories in response to input vectors presented in
arbitrary order. Under supervised learning conditions, CategoryART’s internal control
mechanisms create stable recognition categories by maximizing predictive generaliza-
tion while minimizing predictive error, just as the ARTMAP architectures do.

CategoryART differs in several ways from the ARTMAP architecture in figure 10.1:
only one ART module is present, and the map field has disappeared. Instead, a simpler
algorithm replaces the dynamics of both components. The dynamics of the network,
however, are still based on Adaptive Resonance Theory. Originally all learning equa-
tions in ART systems are written in the language of real-time systems, i.e. differential
equations. In our implementation, as in most algorithmic variants discussed above,
steady-state approximations are used that capture the essence of these dynamic equa-
tions. Hence we do not have to use integration methods nor will we use differential
equations in the formulation of the dynamics of CategoryART.

10.2 Basic features of ART systems

The basic features of Adaptive Resonance Theory and its relation to perception are
laid out in a great number of articles by Grossberg and his associates (see for example

(,) for an overview). A block diagram for a typical ART system is
displayed in figure 10.2. The main components are the attentional subsystem and the
orienting subsystem. The attentional subsytem consists, among other things, of two
fields of neurons, F| and F,, where each field may consist of several layers of neurons.
These fields are connected by feedforward and feedback connection weights. The

10.2. Basic features of ART systems 167

connection weights form the long term memory (LTM) components of the system and
multiply the signals along these pathways. The name short term memory (STM) will
be associated with the pattern of activity that develops on a field as an input pattern is
processed. The orienting subsystem is necessary to stabilize the processing of STM
and the learning in LTM. As can be seen from the figure, the F) field receives input
from possibly three sources. These three input sources are the bottom-up input to Fj,
the top-down input from F5, and the gain control signal. To avoid the possibility that
mere feedback from F, can generate spontaneous activity at level F, i.e. to avoid that
the system hallucinates, system dynamics are limited in such a way that at least two
of the three inputs must be active to generate activity at the F; field. This is called the
2/3 rule in ART. The same rule applies to the three possible input sources for the F,
level.

ATTENTIONAL ORIENTING
SUBSYSTEM SUBSYSTEM
RESET
@ F,
+ gain 2 +
+
+
- A
F
! P
gain 1 + -
+
+
INPUT

Figure 10.2. Typical ART neural network block diagram. After preprocess-
ing, the input activity pattern is transformed to the first field F;. Field F; is
connected to field F, with feedforward and feedback connections which are in-
dicated with black half ellipses. These connections form the long term memory
components of this system.

All ART systems incorporate basic features, namely pattern matching between

168 Chapter 10. Category ART

bottum-up input and top-down learned prototype vectors. This matching leads either
to a state that focuses attention and triggers stable prototype learning or to a self-
regulating parallel memory search. This search ends in either of two ways. First, if an
established category is selected in field F,, then this prototype may be refined to in-
corporate new information in the input pattern. In this case when an input matches an
established category, we speak of resonance. This resonant state persists long enough
for learning to occur; hence the term adaptive resonance theory. Second, if the search
ends by selecting a previously untrained node, then learning of a new category takes
place. The criterion of an acceptable match is defined by a dimensionless parameter p
called vigilance. Vigilance weighs how close an input must be to the top-down proto-
type for resonance to occur. Because the vigilance parameter can vary across learning
trials, a single ART system is able to encode widely differing degrees of generalization.
Low vigilance leads to broad generalization and more abstract prototypes than high
vigilance. In the limit of very high vigilance, prototype learning reduces to exemplar
learning.

With the help of the diagrams in figure 10.3, we will now follow in detail a typical
ART search cycle. Not shown in this figure is the preprocessing field F, whose main
purpose is a normalization of the input pattern.

(a) After the preprocessing by field Fy, an input pattern I generates a pattern of
activity X at field F;. The 2/3 rule is satisfied here because input I also activates
the gain control at the F; level. The activation of the gain control is nonspecific
because it does not depend on the type of pattern but only on its overall input
activity. Pattern X both inhibits A and generates an output signal .S from field
F,. Inhibition of A is necessary because otherwise a reset of field F, would
occur. The signal S is multiplied by the bottom-up connection weights and
results in a signal T that inputs to the F, level. The signal T produces an output
Y from the level F,. Here also the 2/3 rule is obeyed because the input signal
I also nonspecifically activates the gain control for the F, level. The signal Y,
for example, could result from the activation of the node(s) whose connection
weights best matched the signal S.

(b) The pattern Y now generates a top-down signal pattern U which, after being
multiplied by the top-down connection weights, results in the prototype pattern
V. This prototype pattern V' is compared at F| with the input pattern I. The
result of this comparison is a new pattern of activity X* at Fj. If V" mismatches
I at F), the resulting activity X* will have significantly dropped. As a result of
this reduction in total activity, less inhibition results at A.

(c) If now the vigilance criterion p at A fails to be met, A can release a nonspecific
signal to F, which inhibits the nodes at F, that were most active. As a result the
signal Y is reset as well as the feedback signal U and its prototype V.

(d) Pattern X is restored at F| and a different STM pattern Y* becomes active at
F,because the Y nodes are still inhibited. If the top-down prototype due to Y*
also mismatches I at F, then the search for an appropriate code continues until

10.2. Basic features of ART systems

169

Figure 10.3. ART search for an F, code: (a) The input pattern I generates,
after being properly normalized, the specific STM activity X at F, as it non-
specifically activates the orienting subsystem A. Pattern X both inhibits A and
generates the output signal pattern S. Signal pattern S is transformed into the
input pattern 7', which activates the STM pattern Y across F,; (b) Pattern Y
generates the top-down signal pattern U, which is transformed into the proto-
type pattern V. If V' mismatches I at F;, then a new STM activity pattern X*
is generated at F;. The reduction in total STM activity which occurs when X
is transformed into X* causes a decrease in the total inhibition from F; to A;
(c) If the vigilance criterion p fails to be met, A releases a nonspecific arousal
wave to F3, which resets the STM pattern Y at F;; (d) After Y is inhibited, its
top-down prototype signal is eliminated, and X can be reinstated at F;. Once
again X generates the input pattern 7" to F, and activates a different STM pat-
tern Y* at F,, since Y remains inhibited. If the top-down prototype due to Y*
also mismatches I at Fj, then the search for an appropriate F, code continues
(adapted from ().

170 Chapter 10. Category ART

either a prototype has been found that satisfies the matching criterion at A, or a
new category must be established at a previously uncommitted node.

Later we will describe how the ideas of this section can be implemented in the form
of an algorithm for our CategoryART. However, before we can explain the supervised
CategoryART algorithm, we first have to explain how a basic ART module works.
As an example we take the FuzzyART module for unsupervised classification. This
FuzzyART module will later be incorporated in the CategoryART model.

10.3 FuzzyART algorithm

The FuzzyART component in CategoryART consists of a preprocessing field of nodes,
Fy, which modifies the current input vector a, a field F;, which receives both bottom-
up input from Fy and top-down input from the field F,, and a field F,, which is the
output field. We do not need to distinguish between the connection weights of the
top-down feedback paths and the bottom-up feedforward paths between the fields F;
and F, in the FuzzyART module: both will be implemented by the same weights.
Three parameters determine the dynamics of a FuzzyART network, a choice parameter
a > 0; a learning rate parameter f§ € [0, 1] and a vigilance parameter p € [0, 1].
The influence of these parameters on the network dynamics will be explained in the
following sections.

10.3.1 Preprocessing

When an M-dimensional input vector a, which has all its activities a; in the interval
[0, 1], is presented to the network it is first normalized by the field Fy. This normaliza-
tion is necessary to guarantee stable category learning. The F; output activity vector
I is a simple function of the Fj input vector a and its complement vector a“, namely,

I=(a° =(ay,..., ay,l —ay, ..., 1—ay).
The net result of this normalization operation is accordingly a doubling of the length

of the input vector a, while at the same time the norm of the new vector will always
be equal to M. We use the following definition of the norm of a vector x:

M
Xl =) lail (10.1)
i=1
We then get for the norm of I:

M M
I =|@a) =) a+) (1-a)=M. (10.2)
i=1 i=1

10.3. Fuzzy ART algorithm 171

10.3.2 Category choice

The input vector I is now fed forward from the F; field to the F, field. Both fields are
implemented with a single layer of 2M and N nodes, respectively. N is the capacity
of the F, field and at the same time represents the maximum number of categories
that this field can accommodate. All nodes in one layer are fully connected with all
of the nodes of the other layer, i.e. each of the N category nodes in the F, field has
2M connections with field F;. The connection strengths from category node j to the
nodes in the Fj field are represented by the weight vectorw; (j =1,..., M). Initially,
before any learning has occurred all weights in w; have the value 1 and each category
node is said to be uncommitted. A weight vector w; is also called a template. When a
pattern I is presented at the field Fj, a choice function T} is defined according to the
following formula
|I AW j |

T;d) = ——,

a + |W jl

where « is the choice parameter and A is the fuzzy AND operator, defined as
(X A'y); = min(x;, y;).

The fuzzy AND operator reduces to the Boolean AND operator in the case of binary
vectors. The system is said to make a category choice when at most one F, node
can become active at a given time. The F, node with maximum T} will be chosen to
represent the pattern I, and, when the Jth category node is chosen, the output vector y
of the field F, is setas y; = 1 and y; = 0if j # J. In a choice system, the F; activity
vector X obeys the equation

| if F, is inactive
IAw; if the Jth F, node is chosen.
If the chosen category J meets the vigilance criterion, that is if

|I/\WJ|
T

then learning can occur. Mismatch reset occurs when the vigilance criterion is not met,
and subsequently a new node is chosen. This search process continues until the chosen
node satisfies the vigilance criterion. The search order among the nodes in the F, layer
depends on the choice parameter «. If @ is small then the search is more dominated
by the pattern with the largest ratio [I A w;|/|w;| than by the size of |[I A w;]| alone.
For larger values of @ we see that the patterns for which |I A w;| is large dominate
the search. We could now make the following hierarchy for the F, nodes that will be
chosen when an input pattern I is presented at the F; layer (

;)-

(a) If there is a subset node, it will be chosen over an uncommitted node. A subset
node has a template w; whose components satisfy

WjiSIi, for i=1...M.

172 Chapter 10. Category ART

This means that for a subset node
[TA w;|
|w; |

(b) Because of the choice parameter > 0, among all the subset nodes, the node
with the largest template w; will be chosen first.

(¢) An uncommitted node will be chosen whenever there are no subset nodes and
all committed nodes j satisfy

TAw;| 1

lw;[— 2

In our implementation of the FuzzyART algorithm in the PRAAT program we always
maintain a list of committed and uncommitted nodes to speed up the search process.

10.3.3 Learning

The template vector w; is updated according to the following equation

W(Jnew) = BAA W(Jold)) +(1— ﬂ)W(JOld).
When f = 1 we speak of fast learning. For efficient coding of noisy inputs, we choose
the fast learning option when J is an uncommitted node, and then take f < 1 after the
node is committed. Then w'™") = I the first time category J becomes active. After
the commitment, the weight vector update causes the new weight vector to become

more aligned with the most recently coded input pattern.

10.4 categoryART algorithm

Our CategoryART neural network module is a simplification of the ARTMAP mod-
ule. In the ARTMAP architecture, as shown in figure 10.1, two ART modules, ART,
and ART), are linked together via an inter-ART module, F,,, called the map field.
The ART, and ART, modules could be one of the set ART1, ART2-A or FUzzyART.
Two choices are described in the literature: in ARTMAP (s) two
ARTI1 modules are combined, and in FuzzyARTMAP (

,) two FuzzyART modules are combined.

Input vectors to ART, and ART, are named a and b, respectively, X, and x, are
the outputs of the corresponding F; fields, Fy, and Fy,, and y, and y, are the outputs
of the corresponding F, fields, F», and F,. For the map field, let x,, denote its
output vector and w,,; denote the weight vector from the j-th node of F>, to Fy;. The
map field includes an associative memory and control signals and both are used to
form predictive associations between categories of ART, and ART, and to realize the
match-tracking rule. Match tracking means that a wrong prediction triggers the search

10.5. Simulation: Learning to tell two spirals apart 173

mechanism in the ART, module anew in order to look for a better match or, if a better
match cannot be found, for a new category. Match tracking can reorganize category
structure so that predictive errors will not be repeated on subsequent presentations of
the same input.

ARTMAP can be used for mapping multidimensional vectors. However, when we
want to associate category labels with multi-dimensional vectors, for example, vowel
labels with spectral representations, using ARTMAP forces us to represent the category
labels as a multi-dimensional input vector to the ART, network, and initializing ART,’s
vigilance to a very high level.

Two possible options for how to choose ART,’s input vector when we have M
different categories are: choose vector b of dimension M and make b; = 1 for category
i, or use a binary representation with a p-dimensional vector b, where 27 > M. This
vector b is processed by the ART, module, in which different input vectors (resulting
from different category labels) should activate different output nodes of field F,,. In
effect, ART, categorizes one to one, each different input is represented by a different
output node. This means that for each b, only one output node is active and thus the
norm of y, equals one. As a consequence this makes the map vigilance parameter, p,p,
in the following match-tracking equation, which is equation (35) in the FuzzyARTMAP
implementation of (), non-effective:

|Xab| < pablYal:

where X, is the output of the map field F,,. We note that both in the ARTMAP, as
well as in the FuzzyARTMAP implementations of (,), the
map vigilance parameter is ineffective because the output of the ART;, network, yp, is
always normalized to one.

In our CategoryART algorithm, the second ART system, ART}, whose only function
is to form a category representation, and the map field are replaced by an ordered
collection of category labels and an array of pointers. There is a pointer to a category
label for each node of the F; layer of the ART, module. The condensed CategoryART
learning algorithm in pseudo code goes as follows:

Because of the combination of match tracking and fast learning, a single ARTMAP
system can learn a prediction for a rare event that is different from that for a cloud of
similar frequent events in which it is embedded. This means that eventually noise is
also learned since the system cannot know beforehand what constitutes the signal and
what the noise.

10.5 Simulation: Learning to tell two spirals apart

To get an impression of the capabilities of a CategoryART network we will describe
its performance on a complicated classification task. We reproduce the example from

() in which they describe the FuzzyARTMAP network: learning
to tell two spirals apart in a two-dimensional plane. This benchmark task cannot be
learned by a standard feedforward network, which has connections from each layer to
the next layer only. According to the authors cited above, ()

174 Chapter 10. Category ART

forall (pattern p, categoryLabel c)
learn (pattern p, categoryLabel c)
if (categoryLabel c ¢ categoryLabelList)
create categoryLabel ¢
add categoryLabel ¢ to categoryLabelList
end if
J « categorize p by ART, network
if (categoryLabelList[nodePointer;] # c)
temporarily increase vigilance
J « categorize p by ART, network
reset vigilance
end if
updateWeights (w)
nodePointer; « index (categoryLabel in categoryLabelList)
end learn
end for

Algorithm 10.1. The CategoryART learning algorithm.

Figure 10.4. Two spirals in the plane. Each spiral consists of 97 points.

succeeded by constructing a special 2-5-5-5-1 network with each node connected to all
nodes in subsequent layers. The system had 138 trainable weights. With their fastest
algorithm they needed at least 8000 epochs to complete the task, i.e. each of the 194
points in the training set responds to within 0.4 of its target output value, equal to 0 on
the ‘1’ spiral and equal to 1 on the ‘2’ spiral. The spirals of the benchmark each make
three complete turns in the plane and consist of 97 points, as is illustrated by figure
10.4. The coordinates of the points (x(l) y,(,l)) and (xff), y,(qz)) of the two spirals are

n

10.5. Simulation: Learning to tell two spirals apart 175

given by
xPV= 1-xP = r, sina, +05 (10.3)
yW= 1-y® = r,cosa,+05,
where
105 —n .
rn—0.4< 104) with n=1...97, (10.4)
and (3
w(n—
= ——. 10.5
’ 16 (10.5)

The 194 points defined above define the training set for CategoryART. The test set also
contains 194 points, which lie inbetween the points in the training set. These points
are generated by equations (10.3) but now with slightly modified r, and a,,:

1045 -n .
r, =04 <T> , with n=1...97, (10.6)
and (05)
z(n—0.
p= ——" 10.7
* 16 (107

A trivial solution with CategoryART is obtained by selecting for the vigilance param-
eter p = 1. In this case the network learns all patterns in one epoch with 100% correct
classification. However, the network uses 194 category nodes for the classification,
one node for each training pattern. This amounts to using 970 parameters for the clas-
sification: the 194 times four connection weights from the F, nodes in the FuzzyART
module plus 194 category index pointers to either the first or the second spiral.

In a FuzzyCategoryART we have, in principle, four parameters that determine
learning. The first three parameters are determined by the FuzzyART module namely
the choice parameter a, the vigilance parameter p, and the learning parameter §. The
fourth parameter matchtrack determines whether match tracking is on or off. The
parameters that influence most the number of categories and therefore the number
of weights, are the vigilance parameter and the matchtrack parameter. When match
tracking is on, the network is capable of raising its vigilance level when a mismatch
at the category index level occurs. The most effective strategy to lower the number of
categories is to start with match tracking on and a very low vigilance, i.e. p = 0.

We performed two series of runs with the vigilance parameter increasing from 0
in steps of size 0.02 to 1.0, the learning parameter § fixed at 1, the choice parameter a
fixed at 0.001. The first series had match tracking on, the second had match tracking
off. The results are displayed in figure 10.5. For all combinations of the parameters the
training of CategoryART completed within 15 training epochs. When match tracking
was on, the percentage correct classification obtained was always 100%. The left plot
in figure 10.5 shows the number of committed nodes as a function of the vigilance
level. For vigilance levels smaller than approximately 0.45 the number of committed
nodes stays at the very low value of 36. It shows a gradual increase in the number of
committed nodes when the vigilance level increases to 0.96, still higher values of the

176 Chapter 10. Category ART

vigilance level show a steep increase in this number. The maximum, 194, is reached
when the vigilance level is equal to 1.0. When match tracking is off, the percentage
correct drops to 50% when the vigilance level is reduced, as the right plot in figure
10.5 shows. Because match tracking is off, the number of committed nodes drops
much steeper, ultimately to only two committed nodes when the vigilance level drops
below 0.4.

This shows that a CategoryART neural network is able to tell two spirals apart with
only 36 nodes.

match tracking ON match tracking OFF
200 1 200 @100

) «n (0] T
5 150 4 5150 o =
=} 3 8
=] g

=
2 100 + B 100 mmmmms 2
g o T g 8
s N i S 50 ?‘,S,

0 0
0 1

vigilance (p) vigilance (p)

Figure 10.5. FuzzycCategoryART performance figures for the two spirals data
set. The figure on the left shows the number of committed nodes as a function
of the vigilance parameter when match tracking was active. In this case there
was always 100% correct classification. For match tracking off, the figure on
the right shows besides the number of committed nodes (+) also the percentage
correct classification (0) as a function of the vigilance parameter.

10.6 A real-world test

The two-spirals simulation in the previous section was an example of the potential
power of an ART-type neural network in a very special noise-free context with no
overlapping classes. We now test CategoryART in a more real-world context where
the data are not clear cut. The TIMIT database was introduced in chapter 8 and we try
to classify the 20 different vowel classes from this database with a CategoryART type
neural network. As can be seen from figure 8.8, in which the mean position of each
vowel and its 0.5 o ellipse are shown, there may be a great deal of overlap between the
vowel classes. As input to the CategoryART network the bandfilter values are used.
Because the 18 dimensions of the bandfilter measurements are not strictly necessary
for the neural net processing, we use the same nine-dimensional training and test sets

10.6. A real-world test 177

as we were used in the previous chapter.

In order to gain more insight into the vigilance and learning rate parameters in
training CategoryART with data with overlapping categories, we systematically vary
both parameters. We train with set M-L-S-9, the male summary data from the training
part of TIMIT, and test with set M-T-A-9, the male summary data from the test part.
Table 9.1 indicates that these data sets contain 6008 and 13889 entries, respectively.
We vary the vigilance parameter p in seven steps from a value of 0.7 to a value of
1.0 and the learning rate parameter f in five steps from 0.05 to 1.0. These 35 differ-
ent parameter combinations are tested with match tracking on as well as with match
tracking off. With match tracking on, the network artificially increases the vigilance
level until a matching node has been found (or created). The choice parameter a is
kept constant at a value of 0.001. This amounts to 70 = 7 x 5 x 2 possible combi-
nations of parameters in the training process: one could say that we have trained 70
different CategoryART’s. In the training of each classifier the data were presented 20
times to the network (20 epochs).2 After each training session, the fractions correct of
the CcategoryART were determined on the training and test sets. The tests for each of
the 70 parameter settings were repeated 10 times and the results from these repetitions
were averaged. The results for match tracking off are displayed in figure 10.6. In
figure 10.6a the fraction correct is displayed as a function of the vigilance parameter
p for the training set. We note a steady increase in fraction correct as the vigilance
increases, leading to correct classification of all items in the training set when p = 1.
In fact, we can obtain any fraction correct on the training set by properly choosing the
vigilance level.

In figure 10.6b the combined effect of the learning rate and the vigilance on the
fraction correct is displayed for the training set. We show the fraction correct as a
function of the learning rate parameter with the seven different vigilance levels la-
belled from 1 to 7 (the lowest vigilance, p = 0.7, corresponds to number 1, the highest
vigilance, p = 1.0, corresponds to number 7). The fraction correct on the training set
seems to be a monotonically increasing function of the learning rate. We also note
from the figure that the vigilance parameter has a much larger effect on the fraction
correct than the learning rate parameter. Figure 10.6c shows the generalizing prop-
erties of the network. In the scatterplot we show the fraction correct for the test set
versus the fraction correct for the training set at the seven different vigilance levels.
The dotted line shows where the performances on the training and test sets are equal.
The plot clearly shows that for the first five vigilance levels the performances on the
training set and the test set are almost equal and increase monotonically with vigilance
level. At vigilance level 6, where p = 0.95, the fraction correct levels off to a value
of roughly 0.52. The value of 0.52 seems to be the maximum performance on the test
set. Even if the fraction correct on the training set is at an absolute maximum, i.e. at a
value of 1, the maximum attained fraction correct on the test set is 0.51.

In figure 10.6d we show the number of committed nodes as a function of the

20nly for the smallest learning rate, # = 0.05, the 20 epochs were necessary. For all other values the
network was trained within fewer epochs. () give results about possible combinations of
p and f. However, most of their rules apply to situations where either patterns are binary, or fast learning
is on, or both.

178

Chapter 10. Category ART

Fraction correct (train)

Fraction correct (test)

(a)
14 +
0.5 +
. s
+
: ¥

1 -
ol +FT
0.6 1
Vigilance p
©
1_

0.51 §66666 7
| $5 ‘

o #

0 0.5 1

Fraction correct (train)

Fraction correct (train)

Committed nodes

(b)
w7 77 77
1 6
1 6
J 6 6
051 6
1. 5557
{15
i 4 4 4 4
O- T T |ii| T T T T Ii
0 0.5 1
Learning rate 3
(d)
1300 6
66
500 6
0
0 0.5 1

Fraction correct (train)

Figure 10.6. Summary of CategoryART training with TIMIT vowel data when
match tracking is off. (a) Fraction correct classification of the training dataset
as a function of the vigilance parameter p. (b) Fraction correct classification of
the training dataset as a function of the learning rate parameter f. The seven
different vigilance levels have been numbered from low to high with numbers
1 to 7, respectively. (c) Fraction correct classification of the test dataset as a
function of the fraction correct classification of the training dataset. (d) Number
of committed nodes as a function of the fraction correct classification. Vigilance
level 7, i.e. p = 1 is left out since the number of committed nodes is equal to
the number of items in the training set, i.e. 6008.

10.7. Conclusions 179

fraction correct for different values of the vigilance parameter. We have left out the
seventh level since the number of committed nodes for p = 1 equals the number of
items in the training set, 6008. When we compare these fractions correct with the
numbers displayed in table 9.2 for discriminant classification, we must conclude that
the generalization capabilities of the CategoryART are not too impressive with this
kind of data. For example, the discriminant classifier scores 0.663 fraction correct on
the (summary) test set, which is a clearly better result than 0.52. Also the feedforward
neural network shows better results, as was shown by the ‘0’ symbols in figure 9.10a
when the number of hidden nodes exceeds four or five.

It is clear that the CategoryART exemplar-based network does not show strong gen-
eralisation properties under these circumstances. This is confirmed by figure 10.6d,
which shows the number of committed nodes as a function of the fraction correct. We
see a rapid increase in the number of committed nodes when the fraction correct ex-
ceeds 0.5, i.e. for high vigilance levels. This rapid increase is a manifestation of a too
detailed representation of the training set by the neural net and results in low compres-
sion ratios. For example, if p = 0.95 the number of committed nodes varies between
500 and 1000. Giving a training set with 6008 items, the resulting compression ra-
tio, i.e. the number of training items divided by the number of committed nodes, lies
approximately between twelve and six and on average we need between 25 and 50
exemplars per class.

For completeness, we show in figure 10.7 the same plots as in figure 10.6 but now
with match tracking on. These plots do not show the smooth and continuous behaviour
of figure 10.6. For example, the fraction correct as a function of the vigilance p
suddenly jumps to a much higher level for p ~ 0.95. Also, if we want to get past 0.5
fraction correct, the number of committed nodes increases dramatically.

The fact that CategoryART does not perform as well with the vowel database as
with the two spirals example, must be attributed solely to the fact that the vowel classes
show a considerable amount of overlap. For example, in section 5.3.1 we used the iris
data which is four-dimensional and which shows almost no overlap between the three
iris classes. With a CategoryART we can easily obtain a fraction correct of 1.0 with
only six committed nodes using the following training parameters: p = 0.7, f = 1,
numberOfEpochs=10 and match tracking on. This data set has 150 items, so we have
a compression factor of 25 and on average only two exemplars for each class.

10.7 Conclusions

The preliminary performance of the CategoryART neural network for the task was to
tell two spirals apart was good. It was capable of learning this reasonably complex
task in a very short time. For the vowel recognition task with a lot of overlapping
classes, the performance was not at par with a discriminant analysis or a feedforward
neural net. The latter two showed superior results with significantly fewer parameters.
As for the number of parameters, () have devised
a distributed variation of ARTMAP that reduces the number of committed nodes con-
siderably. However, the classification performance of this new type of network was

180

Chapter 10. Category ART

Fraction correct (train)

Fraction correct (test)

(@) (b)
e ++ _ w7 777 &
: : 1
+ &
_ I : 6
i 5] i
0s] Fe++ti E sl 6 &S
J ++++ S] 3
1 et s {1 311
_ Q i
_ i3 |
O T T T T T G T T T T T T T T T T T
0.6 1 0 0.5 1
Vigilance p Learning rate 3
(©) (d)
1] %
] . g 3 6
0.5 ST R
] 660 6 £ 1300 g
] 53@ 8] 4
1 © 5003
01 -]
0 0.5 1 0 0.5 1
Fraction correct (train) Fraction correct (train)

Figure 10.7. Summary of CategoryART training with TIMIT vowel data when
match tracking is on. (a) Fraction correct classification of the training dataset as
a function of the vigilance parameter. (b) Fraction correct classification of the
training dataset as a function of the learning rate parameter. The seven different
vigilance levels have been numbered from low to high. (c) Fraction correct
classification of the test dataset as a function of the fraction correct classification
of the training dataset. (d) Number of committed nodes as a function of the
fraction correct classification of the training dataset.

10.7. Conclusions 181

not improved. We must conclude that for data with overlapping classes this ARTMAP
type of network is not very well suited. What has been advertised as their strength,
i.e. correctly classifying individual data points of a class positioned in the middle of
data points belonging to another class, has become their weakness. For the batch
processing that we perform, with noisy overlapping classes, we prefer discriminant
analysis because of its simple algorithmic structure. And, as will be shown in the next
chapter, discriminant analysis can be made adaptive as well.

182 Chapter 10. Category ART

s 1 1

Adaptive speaker normalization
for vowels with TIMIT*

Abstract

In this chapter we present an adaptive speaker normalization procedure for vowels.
The model is found to reproduce the difference in human vowel recognition perfor-
mance for stimuli presented in blocked and mixed speaker context although the model
does not incorporate any knowledge at all about speaker identity. The model is in-
dependent of the representation of the vowels and we have tested it on bandfilter and
formant frequency representations of vowels.

*This chapter is a modified version of ().

184 Chapter 11. Adaptive speaker normalization

11.1 Introduction

In chapter 2 we described listening experiments that showed that subjects, when con-
fronted with vowel-like stimuli from different speakers, show better recognition per-
formance if successive stimuli come from the same speaker than if the speaker identity
varies very often. These two experimental conditions are called blocked and mixed
speaker context, respectively. Most of the time the mixed/blocked effect is not a large
effect, only a few percent, but the effect is consistent and always statistically signifi-
cant.

In previous chapters a number of vowel normalization procedures have been tested.
In chapters 6 and 9 supervised feedforward neural nets were used. After proper train-
ing these neural nets were able to recognize vowels reasonably well. By making only
the biases variable, we were able to have them adapt to the vowels of a new speaker by
proper training. As for example table 6.3 on formant data and figure 9.10 show, this
turned out to be successful. However, two disadvantages of the feedforward neural
nets are that they are supervised and that the adaptation process needs a lot of training
material when compared with human listeners. Because of the way these neural nets
are constructed we need at least one training item for each output class. This means
that only after proper training with the new, possibly deviant items the net is able to
recognize them. Basing network topology on unsupervised topologies didn’t help: the
recognition performance of CategoryART, which was explored in chapter 10, was not
very satisfying.

A successful adaptation method has to adapt faster than the methods discussed
above. In order to adapt fast a method should not need one item for each class. Adap-
tation can be made fast if we either use symmetries or allow local differences to have
global consequences. Exploitation of symmetries means that we take advantage of for
example the same vowel height as occurs in /o/ and /e/. It implies however that we
dispose of a database of known symmetries. We will not pursue the use of symmetries
here. Instead, we have developed a model in which a local difference possibly induces
a non-local change.

11.2 An adaptive speaker normalization procedure

A rather simple model in which a local difference has global consequences is one
in which not only one class adapts to a new stimulus but more classes adapt at the
same time. This can be accomplished, for example, by moving, instead of only one
reference, (parts of) the whole frame of reference. The behaviour of our adaptive
approach can be described as follows: when an unknown vowel enters, we first try to
establish its identity. If its identity can be guessed reliably and if the position of this
vowel deviates from its class mean, we then move all references a little bit in parallel
to the difference vector in the direction of the newly identified vowel. In this way the
references are not constant but shift along in vowel space.

In this section we will explain the details of this general idea with a specific model,
based on a vowel representation with formant frequencies, that accepts the first two

11.2. An adaptive speaker normalization procedure 185

formant frequencies of a vowel as input and produces one of the twelve Dutch vowel
classes as output. The pre-assumptions of the model are that the average positions
of the twelve vowel classes in the formant plane are known as well as the covariance
structure of the formant space. These assumptions guarantee that a proper distance in
the formant plane can be calculated. The working of this speaker-adaptive classifier
can be visualised with the help of figure 11.1, which displays twelve Dutch vowels in
the formant plane.

1. An unknown vowel’s F; and F, are presented to the classifier. The position of
the unknown vowel is shown with a question mark in figure 11.1a.

2. The distances of the unknown vowel to the reference vowels are determined.
The arrows in figure 11.1b give an impression of these “distances” to the twelve
references. The lengths of these arrows in general do not equal the real distances
as calculated in this model. The “real” distances are Mahalanobis distances and
depend on a covariance matrix.'

3. The shortest distances is determined. The shortest distance is shown in figure
11.1c with a solid arrow.

4. Ttis tested whether the distance meets a tolerance criterion, because we want to
make sure that the unknown is “close enough” to the reference. We have imple-
mented “close enough” as a criterion on the probability of group membership.
In section 3.5.6 we have quantified this, as equation (3.24) testifies.

5. If the “close enough” criterion is satisfied, all references will be moved parallel
to the direction of the difference vector as is indicated by the arrows in figure
I1.1e. If the item is not “close enough” the reference system stays in place.
Howeyver, the unknown is still classified as a member of the closest class.

If during the matching process the “close enough” criterion is satisfied, the ref-
erence system can shift its position. However, we do not know beforehand how far
we should move the references. Therefore, we have parametrized this movement with
a parameter a such that the new positions X, of references i become x; = x; + ad,
where x; is the current position of reference i and d is the difference vector of the
unknown with the “close enough” reference. The parameter « may in principle be any
real number. We first note that for negative values the new reference position moves
further away from the unknown position and therefore the distance of the new refer-
ence to the unknown increases. This is not a very interesting case and we will only
consider positive values of @. When « increases from 0 to 1 the new reference moves
closer towards the unknown, matching it exactly if « equals 1. For a greater than 1 the
position of the new reference starts moving away from the position of the unknown.
The larger a, the larger the shift of the positions of the references. It is clear that some
bounds on a have to be established to guarantee the stability of the positions of the
references. First of all we want our new reference to be closer to the unknown than the

ISee for example equation (3.26) for a distance function when only the pooled covariance matrix is
available.

186 Chapter 11. Adaptive speaker normalization

current reference. If we include the limiting case where the distance stays the same,
has to be in the interval [0, 2]. However, in order to maintain a stable reference system
that does not jump around from one input to the next input, the [0, 2] interval is too
large. Probably some value in the interval [0, 1] will do. In the next section we will
show some results for varying values of «.

11.3 Test with formant data

11.3.1 Introduction

As a first application of the model we will test it with the logarithmically transformed
formant frequency data for the twelve Dutch vowels from 50 men and 25 women that
we used before in chapters 3, 5, 6 and 7. The adaptive classifier discussed in the previ-
ous section has been implemented by making some modifications to the discriminant
classifier that was described in section 3.3. Instead of using the fixed averages for each
class, we keep running averages. The amount of change of these running averages will
then be governed by two parameters, the step size &, which determines the amount of
change, and the probability level p, which determines if there will be any change at
all. Because preliminary runs showed that the value of p is less critical than the value
of @, in what follows we only show results for p at the fixed value of 0.5.

11.3.2 Blocked versus mixed speaker condition

In figure 11.2 we show the results of a series of runs for blocked and mixed speaker
conditions for different values of @. The results for blocked and mixed speaker con-
ditions are indicated with a ‘+” and a ‘0’ symbol, respectively. The sets used to train
and test the classifier are indicated by the pairs of M and W symbols at the top of each
subfigure, respectively. M is the set with data from the 50 male speakers and W is the
set with data from the 25 female speakers.

We will now discuss this figure in detail and we will start by showing how the re-
sults in part (a) of figure 11.2 were obtained. We started by training the discriminant
classifier with the male data to establish the references and the covariance structure in
the vowel formant space. The order in which the data are presented does not matter,
only the global covariances and averages do. For the testing of the adaptive proce-
dure, presentation order does matter. We have devised therefore two different data
permutation schemes, one for the blocked speaker condition and one for the mixed
speaker condition. The male data set has 50 speakers, with twelve vowels per speaker
and three formant frequencies per vowel, i.e. 50 blocks of dimensionality 12 x 3. In
the blocked speaker condition, we first randomly permute the 50 blocks and then ran-
domly permute the twelve items within each block. In this way, we always present
the data from each speaker, one after the other, to the classifier but with a different
vowel ordering for each speaker. In the mixed speaker condition, we first use an inter-
leaving permutation algorithm, i.e., we form new blocks of size twelve by taking the
first data item from the block of the first speaker, then the second item from the block
of the second speaker, the third item from the third speaker, and so on, until the first

11.3. Test with formant data 187

(@) (b)

i
i e 4
3
N y N
iy Y& iy
? a
i a n
0
u 0
Fy Fy
(c) (d)
i
. . I e
£
o o w
a»a
. . a
0
u
Fy Fy
(e) (f)
A’i 1 |
- “le i I é e
«€ € €
y
o nd Py] Ty y Y@vo
at a?
. «fl i a ¢
«0 0 0
«tl ©° uu)
Fy Fy

Figure 11.1. The adaptive vowel classifier at work. (a) An unknown vowel
“? is presented. (b) Distances are determined. (c) Find shortest distance. (d)
Label as best match. (e) Move references (a« = 1). (f) The new references (old
references in grey).

188

Chapter 11. Adaptive speaker normalization

Fraction correct Fraction correct Fraction correct

Fraction correct

(a) M—-M
0.8
0. 74D Gty it
] 66603683+++
00 +++
7 000003+
i 0
0.55+———"7—F—"F—————
0 0.5 1
Step size o
(c) W-M
0.8
196
60666+6+
1 +
B33 obagr,
0 0.5 1
Step size o
(&) W-M,,
0.8
0.683B OGE B+
) 66066666+++
00, ++
i ont+
000$++
0.55+—————————+36
0 0.5 1
Step size o
(g) M—-MW
0.7 14f'@6'6'6'88*++'+' ep
000000++++
J 0 +4
0000 +1
| 00
0.55+———"7F—F—"F—————
0 0.5 1
Step size o

Fraction correct Fraction correct Fraction correct

Fraction correct

(b) M—W
0.8
0.6638 oo 666638?“
J 06
0.55 T T T T T T T T T
0 0.5
Step size o
(d) W—W
0.8
0.743;r®0®666666®666+ """"""""
i 06¢66+“
i 0
0.55 T T T T T T T T T
0 0.5
Step size o
(D]M_“%
0.8
Q73LQQ@@®03666; """""""""""""
06606++
1 007 +1
i)
0.55 T T T T T T T T T
0 0.5
Step size o
(h) W-MW
0.8
|ot065
0.628? ———————————— 6666566’6+++ ——————————
0.55+———F——————"4
0 0.5
Step size o

Figure 11.2. Results of the adaptive vowel classifier for blocked (4) and mixed
(0) speaker conditions as a function of the step size a. The formant frequency
data sets used to train and test the classifier are indicated by the pairs of M and
W symbols at the top of each subfigure. M and W denote the sets with formant
frequency values from 50 males and 25 females, respectively. For each value
of a in the blocked and the mixed speaker conditions each result displayed in
the figure is the average of 50 different random permutations of a data set (see

text).

11.3. Test with formant data 189

new block is full. The first item of the second new block will then be the first item
in the 13" old block, and so on. When we are at the end of block 50, at the second
vowel, we start again with the first speaker at the third item, and so on. In this way we
can always guarantee that the next item is from another speaker and each new block
contains all twelve vowels. Next, in the same way as discussed before, we randomly
permute these blocks and the items within a block. Of course, because of this last
permutation it occasionally may happen that the last item in a block and the first item
in the next block were equal. We have not explicitly excluded this possibility.

The fractions correct were determined in the following way. The data set for the
blocked speaker condition, in the way described above, were presented to the trained
classifier, after which its fraction correct classification was determined. Next the data
set for the mixed speaker condition, permuted in the way described above, were pre-
sented to the classifier, and again its fraction correct classification was determined.
These two measurements were repeated 50 times, every time with different permuta-
tions of the data set in the blocked and the mixed speaker condition, and the average
fractions correct were determined and collected in a table together with the value of
a. The step size a was first varied from 0.0 to 1.0 in small steps of 0.05, making a
total of 21 different values for the step size. This means that for each subfigure we
have performed 2100 = (21 x 50 x 2) random permutations of the test data set. We
note the following phenomena in the figures.

* If @ = 0, the adaptation is effectively non-existent and the results will be the
same as with the standard discriminant classifier. This fraction correct, the base-
line, is indicated with a dotted horizontal line in each figure. For example, in
part (a) of figure 11.2 the baseline is at 0.74 fraction correct.

* All subfigures (a)—(g) show a difference in fraction correct between mixed and
blocked speaker condition. The difference is small for small values of the step
size a but it increases when a increases. The blocked speaker condition al-
ways shows a higher fraction correct than the mixed speaker condition. This is
remarkable: the algorithm does not know anything about different speakers, it
does not know when a new speaker starts, it only knows its current reference
system and the current item it has to process. Nevertheless it is able to use the
blocked speaker context to its advantage to perform somewhat better than in a
mixed speaker condition. In this way it qualitatively reproduces the results of
human listeners who also perform somewhat better in a blocked speaker condi-
tion, as has been shown in chapter 2.

* We expect the difference between blocked and mixed speaker condition to be
small at small step sizes because, since we only have twelve vowel items for
each speaker, the maximum displacement that can be reached within these twelve
items is only small. For example, given that the displacement of the speaker
centroid of the current speaker has a distance of one unit to the centroid of
the previous speaker, then if @ = 0.01, the maximum movement after twelve
steps is 0.12 units into the direction of the current speaker’s centroid. Despite
the small displacements at small a-values, we still see fraction correct scores
somewhat above the baseline.

190 Chapter 11. Adaptive speaker normalization

» Adaptation helps a lot when training and test sets differ, i.e. in figures 11.2b and
11.2c where we have trained with the male and female data sets, respectively,
and tested with the female and male data sets, respectively (M-W and W-M),
we note a relatively large difference between the baseline and actual fractions
correct in the blocked and mixed speaker conditions. We see a sudden jump in
fraction correct from the baseline at @ = 0 to much higher values for a values
that differ from 0, even for very small a’s.

11.3.3 Visualisation of the dynamics

The workings of the adaptive algorithm given in the previous section can also be visu-
alised in a dynamic fashion. In the classification of one vowel datum, the adaptation
algorithm moves all references by the same vector. If for each vowel item we keep
track of this displacement vector, we can actually follow the whole process by draw-
ing this displacement vector for each classified vowel. If we were to show the dis-
placements of all vowel references, we would find twelve subdrawings with the same
relative movements. We therefore show the displacements only once, with respect to
the overall speaker centroid. This is done in figure 11.3 for four different values of a.
To avoid visual clutter, we have displayed the path for the first ten female speakers in
the blocked speaker condition. This path is constructed from 120 = 10 x 12 possible
displacement vectors for the individual vowel data. To be able to track the behaviour
of the individual speakers, we have drawn the speaker number at the position at the
path after all the twelve vowels of that speaker were processed. To get even more
insight in the movements of the individual speakers, we also show the centroid po-
sitions of the speakers, with respect to the overall centroid of the training data, with
larger numbers in grey. The overall centroid, averaged over the 50 males, is displayed
with a capital M, this is the starting position of the path. The relative position of the
overall female test data centroid is indicated with a capital W. The figures make very
clear that even for small values of «, the fractions correct are well above the baseline:
we see that the path roughly makes displacements in the direction of each speaker’s
centroid. The global effect of these local movements will be a movement in the direc-
tion of the overall centroid of the female speakers. In figure 11.3a we see that for the
small step size a = 0.025, the path is very smooth but the twelve items from the first
speaker are not sufficient to reach the goal. The algorithm needs the data of several
speakers to cover the distance from M to W. When the step size increases, the distance
from M to W can be mastered much faster, however at the cost of the path becoming
less smooth: much wilder jumps occur, as figures 11.3b, 11.3c, and 11.3d testify. We
are confronted here with a stability-plasticity tradeoff: larger values for @ make the
system more adaptive to a new speaker; however, the references move more wildly,
resulting in less stability.

11.3.4 Mixing male and female data

In order to investigate the effects of mixing male and female data, we have put the
adaptive algorithm to some further tests. The practice so far has always been to sep-

11.3. Test with formant data 191

(a) 0=0.025 (b) 0=0.05

%

(c) 0=0.1 (d) 0=0.2

Figure 11.3. The adaptation path for the first ten female speakers with respect
to the male reference space for different values of the step size a. The speaker
centroids for the ten female speakers are indicated in grey with the larger num-
ber symbols. The capital M and W are the averages of 50 male and 25 female
speaker centroids, respectively. The smaller numbers that occur on the path
show the relative reference position after the data for the twelve vowels of that
speaker have been processed.

arate male and female speaker groups and test with either the male or the female
speaker group. What will happen if we mix both data sets in the tests, i.e. in the
blocked speaker condition we still present the data for each speaker successively, but
now a female speaker might follow a male speaker and vice versa? We have done
this by appending the 50 males and 25 females data sets, making one data set with
75 speakers. We have taken the imbalance between the number of male and female
speakers for granted and the applied permutations in the blocked and mixed speaker
condition were just like the ones described.

The results of mixing the male and female data sets are displayed in figures 11.2g

192 Chapter 11. Adaptive speaker normalization

and 11.2h. The text at the top of these figures, M-MW and W-MW, indicates that the
difference between the two figures is the M and W data sets used for training. Both
figures make clear that also when mixing male and female data, the adaptive model
functions well. The fractions correct are above the baseline and the blocked speaker
condition always shows a better fraction correct than the mixed speaker condition.

11.3.5 Comparison with Procrustes transform

In section 9.3.3 we introduced the Procrustes transform, a structure-preserving trans-
form. ‘Structure preserving’ means that the transform is only allowed to rotate, reflect,
translate or scale the data. This transform is obviously very general and we can apply
it to formant data as well. Our adaptive algorithm has only a translation available to
adapt to another speaker (group). We expect that the Procrustes transform, which has
many more parameters to modify, constitutes the maximum that can be attained in
“adaptability”.

Figure 11.4 shows the mean vowel positions of Dutch vowels from male and fe-
male speakers before and after Procrustes transforms. The small and large symbols
show the vowel positions averaged over the 50 male and 25 female speakers, respec-
tively. The open endpoints of the solid lines show the vowel positions after a Pro-
crustes transform that optimally matches the female averages to the male averages.
The open endpoints of the dotted lines show the result of a matching where Procrustes
transforms were calculated for each individual speaker separately. The capital M and
W are the averages of 50 male and 25 female speaker centroids, respectively. Since
only three dimensions are involved now, we can try to analyze the parameters of the
Procrustes transform to interpret its behaviour. For the transform that tries to match
the female data to the male data, the matrix involved is almost diagonal, the smallest
element on the diagonal being 0.998. This means that rotations are very small and may
be ignored. The only parameters left are the translation vector and the scaling factor,
which are (0.56,0.35,0.31) and 0.86, respectively. The net effect of this Procrustes
transform is therefore: the female speakers’ centroid is put on the male speakers’ cen-
troid and the vowel space is shrunk by a factor of 0.86. This scaling operation is not
the same operation as a vocal tract length scaling because the latter operates from the
origin whereas our scaling operates from the centroid. In figures 11.2e and 11.2f the
fractions correct for the Procrustes transformed data are shown. Again each symbol
in the plot is the average of 50 random permutations of the corresponding data sets, a
procedure that was explained in section 11.3.2. If we compare results of the Procrustes
transformed data with the corresponding unprocessed data in figures 11.2c and 11.2b,
we see that the global behaviour is approximately the same but the baseline scores in
11.2e and 11.2f are higher, a clear indication that the Procrustes transform has really
helped to get the test data of the test speaker group closer to the reference group.

11.4 Test with bandfilter data

In this section we will put the adaptive model, which has been extensively tested
with formant frequency data in the previous sections, to a similar test but now with

11.4. Test with bandfilter data 193

3w
'y

2-8 T T T T T T
24 3.1

log Fy

Figure 11.4. Mean vowel positions of vowels from male and female speak-
ers before and after a Procrustes transform. The small and large symbols show
the vowel positions averaged over 50 male and 25 female speakers, respectively.
The open endpoints of the solid lines show the vowel positions after a Procrustes
transform that optimally matches the female averages to the male averages. The
open endpoints of the dotted lines show the result of a matching where a Pro-
crustes transform was calculated for each individual speaker separately.

bandfilter data. In order to test the adaptive behaviour, we want to limit the number
of vowel representations per speaker, i.e., we want maximal diversity but minimal
repetition. The summary data sets that were discussed in section 9.2, i.e. the data sets
with maximally 20 vowel means for each speaker, conform to this requirement. We
therefore use the male and female training sets M-L-S and F-L-S, respectively, to train
two discriminant classifiers. As test sets we used the corresponding male and female
test sets, M-T-S and F-T-S, respectively. We also performed tests in which we tested
with the whole opposite gender data sets, F-S and M-S, respectively.

For the blocked speaker condition we used the same randomization scheme as
was discussed above: we first randomly permuted the speaker data and then randomly
permuted the data for each speaker. The actual implementation of this permutation
scheme was somewhat more complicated than with the formant data because the

194 Chapter 11. Adaptive speaker normalization

blocks are not of equal size since not all speakers produced all 20 possible vowels.
For the mixed speaker condition we randomly permuted the data. The results of these
tests are displayed in figure 11.5, where we have indicated the blocked and mixed
speaker conditions with a ‘4’ and a ‘0’ symbol, respectively, just like we did in figure
11.2. Figures 11.5a and 11.5d, where training and test set belong to the same speaker
category behave just like the corresponding formant data sets, i.e. the blocked speaker
condition shows a higher fraction correct than the mixed speaker condition. When
training and test sets belong to different speaker categories, the fractions correct do
not show any improvement at all, as can be seen in figures 11.5b and 11.5c. Clearly, a
simple translation in bandfilter space cannot help to mask the differences in male and
female bandfilter spectra. One can see from figure 9.2 in the previous chapter, that a
translation of the female average bandfilter spectra does not make them equal to the
male average spectra.

In figure 11.5f we show the results of applying a Procrustes transform to the female
data set before we apply the adaptive algorithm. The transform in this case was the
one that optimally matches the female average spectra to the male spectra. In figure
11.5e we also applied a Procrustes transform, but now the one that matched the average
male data to the average female data. Although the fractions correct are lower than the
numbers obtained when test and training data sets belong to the same speaker category,
applying a Procrustes transform more than doubles the fractions correct compared to
not applying it.

A comparison of bandfilter data, figure 11.5, with formant frequency data, fig-
ure 11.2, shows that there is a noticeable effect in fraction correct for the mixed and
blocked speaker conditions. It seems that this effect is always present for formant
frequency data. For the bandfilter data, there is no effect when training and test sets
belong to different speaker categories, as figures 11.5b and 11.5¢ show. It is also
clear that when training and test sets belong to different speaker categories, the frac-
tions correct for the formant frequency data show much better scores. Clearly, the
formant representation is superior in this respect. As the speech material from which
the formants were extracted was very homogeneous we have only marginal variation
in formant frequency values.

11.4.1 Stressed vowels

In section 8.3.2 we have shown how to determine vowel stress from lexical stress by
means of a dynamic time warping algorithm, and in figure 8.2 we showed an example
of the result of applying this procedure. Stressed vowels, in general, are produced
more carefully than unstressed vowels (see for example ()). Stressed
vowels also tend to be longer in duration than unstressed vowels.” Because of these
facts, we might expect better machine classification for stressed vowels.

In table 11.2 we present results on classification with stressed vowels. We will
discuss this table in the next subsection. In table 11.1, set up in the same way as
table 9.1, we show the number of vowels associated with the different conditions.

2In TIMIT the average durations of the stressed and unstressed vowels are 0.110 s and 0.071 s, respec-
tively.

11.4. Test with bandfilter data 195

(@) MI-Mt i (b) MI-W

0.668% 068658558551 +xss,.

+ 4
0008656566

0.237% 6006006666 06000000600:

Fraction correct
Fraction correct

O T T T T T T T T T O T T T T T T T T T
0 0.5 1 0 0.5 1
Step size a Step size a
(c) WI-M (d) WI-Wt

9600003060009000000

O T T T T T T T T T 0 T T T T T T T T T

0 0.5 1 0 0.5 1
Step size a Step size a
(e) WI-M,, f MI-w,

Fraction correct
Fraction correct

0.5789 85583555755+ +rvsiy
4 000000000

Fraction correct
Fraction correct

O T T T T T T T T T O T T T T T T T T T
0 0.5 1 0 0.5 1
Step size a Step size a

Figure 11.5. Results of the adaptive vowel classifier for blocked (+) and mixed
(0) speaker conditions as a function of the step size . The bandfilter data
sets used to train and test the classifier are indicated by the pairs of M and W
symbols at the top of each subfigure. M and W denote the sets with bandfilter
values from subset from the 438 male and 192 female speakers, respectively.
For each value of a in the blocked and the mixed speaker conditions, each
result displayed is the average of 50 different randomly permutions of a data set
(see text).

The ‘+’ symbol marks stessed vowels. All numbers in the table are smaller than the
corresponding numbers in table 9.1 since the stressed vowels form a subset of the total
set of vowels. For instance, the last line in this table reads as follows. In the summary
data, collected for the stressed vowels, we have 10621 entries. The total number of
stressed vowels is 49562. These numbers were 11579 and 78374 in table 9.1. For the

196 Chapter 11. Adaptive speaker normalization

Table 11.1. Summary of the naming scheme for stressed vowels. For further
explanation see text.

Name Entries Name Entries Speakers Description

M-L-S+ 5500 M-L-A+ 25706 326 Males, training part
M-T-S+ 1926 M-T-A+ 8845 112 Males, test part

M-S+ 7426 M-A+ 34551 438 M-L-- 4+ M-T--
F-L-S+ 2268 F-L-A+ 10622 136 Females, training part
F-T-S+ 927 F-T-A+ 4389 56 Females, test part
F-S+ 3195 F-A+ 15011 192 F-L+F-T

MF-S+ 10621 MF-A+ 49562 630 M-:-+ + F---

summary data, the average number of vowels per speaker was reduced from 18.4 to
16.9 when selecting only stressed vowels (this is not shown in table 11.1).

11.4.2 Dynamic spectra

In order to investigate if we can improve the vowel recognition scores any further, we
tried to incorporate some of the dynamics of speech into the analysis. We have done
this by using three spectral representations per vowel segment rather than just one
from the middle of the vowel. As was described in section 8.6 three bandfilter spectra
were determined per vowel: at the centre of the vowel and 25 ms before and after
the centre position. In figure 11.6 we have plotted the relevant plots from a principal
component analysis on the 54-dimensional (dynamic) bandfilter data. To determine
the principal components for the joint male and female space, we have used the F-S
data set with summary data for the 192 female speakers, together with the data from
the first 192 speakers from M-S. In this way we have approximately the same amount
of male and female data to determine principal components from. This number of
speakers is large enough for a proper coverage of the most important characteristics
of the male speaker material. We could not apply the same procedure that we used
to produce figure 9.1. Using only 20 male and 20 female vowel centroids leads to an
underdetermined system of equations when the data vectors are 54-dimensional. We
therefore opted for principal components to reduce the number of dimensions. The
positions of the male and female vowel centroids in the principal component plane
as displayed in figure 11.6a are almost indistinguishable from the ones displayed in
figure 9.1a.

Concerning the cumulative fractional eigenvalues as displayed in figure 11.6c, we
notice that after the first three eigenvalues that explain a 0.74 fraction of the variance,
the variance explained by the rest of the eigenvalues seems to increase only slowly.
For example, the individual contributions of the first three eigenvalues are 0.44, 0.18
and 0.12 , respectively, while the next three eigenvalues explain fractions of only 0.05,

11.5. Discussion 197

0.04 and 0.02. To explain 0.95 fractional variance we need 13 principal components,
to explain 0.98 fractional variance we need eight components in addition for only a
0.03 added fractional variance. This may still lead to considerable data reduction since
the original vectors were 54-dimensional.

The possibility for data reduction is confirmed by the first two eigenvectors in
figure 11.6b: each eigenvector consists of three almost identical parts and each part is
very similar to the corresponding eigenvector that is displayed in figure 9.1b. This is
all very reassuring because it tells us that the static analyses that we have performed up
to this section, cover the character of the vowel very well. However, having two extra
frames of probably transitional information on a vowel may help in a classification task
because these two frames do contain extra information. () in a study on the
nature of acoustic information in the identification of coarticulated vowels observes
seven acoustic cues that may be exploited. Although he uses nine vowels in only three
VC and CV contexts, where V is one of /iy, ih, eh, ae, aa, ao, ah, uh, uw/ and C
is one of /b, sh, m/, his trajectories in the parameter space clearly show that vowel
identity is distributed all over the vowel’s durational interval.

We do not need 13 principal components to cover 0.95 fraction of the variance in
the single frame case as, figure 9.1c shows.

Table 11.2 shows that adding dynamic information for the TIMIT data significantly
increases the fraction correct of the discriminant classifier. For example, the first line
shows that training the classifier with the male dynamic data training set, M-L, and
testing with dynamic M-T, increases the fraction correct from 0.484 to 0.557 as com-
pared to the static case. For summary data the dynamic results are even more eminent.
Row three shows a fraction correct of 0.836 for dynamic data versus 0.668 for static
data. Limiting the data to only stressed data, i.e. the four bottom rows in the table,
shows distinct results depending on whether we use summary data or not. On the one
hand it seems to improve fractions correct somewhat if all the available data are used.
This can be seen by comparing the lines M-L and F-L for all the data with the lines
M-L+ and F-L+ for the stressed data. These results confirm our expectation. On the
other hand, the fractions correct worsen for the summary data. For example, compar-
ing the lines with M-L-S and M-L-S+ shows that when the static training and test sets
are different, the fraction correct for stressed summary data, 0.626, is actually some-
what lower than that for all the summary data, 0.668. A possible explanation for these
opposite tendencies is that because of the fact that stressed vowels are produced more
carefully, they show somewhat more within-speaker variation due to context. Table
11.2 also shows that the extrinsic speaker normalization procedure, subtracting the
difference between the average of a speaker’s vowels and the average of all the speak-
ers’ vowels in the male/female group, increased the fractions correct in all conditions.

11.5 Discussion

The algorithm presented in this chapter and tested both with formant frequency data
and bandfilter data was successful in adapting to different speakers. The algorithm

198 Chapter 11. Adaptive speaker normalization

(a) Principal component plane
220

150 T T T T T T T T T T
-190 pcl -80
(b) Eigenvectors 1 and 2
0.4 ; :

o 1 19 37 54
% Filter number

z (c) Eigenvalues

o) 1 SN

20 ++++++++++++++

O ++

= 4

[} +

.2 +

2 .

il

(0]

2 N

= 04 T : : r r
E 10 20 30 40 50
= Index

~
()

Figure 11.6. Characteristics of male and female vowel centroids in a common
PCA eigenspace.

(a) Vowel centroids. The average male vowel centroids are labelled. Each label
is the starting point of a solid line that ends at the female vowel centroid. The
points labelled ‘m’ and ‘w’ are the average male and female spectra, respec-
tively.

(b) The first and second eigenvectors drawn with a solid and a dotted curve,
respectively.

(c) The cumulative eigenvalues as fractions of the total sum of the eigenvalues.

11.5. Discussion 199

Table 11.2. Static and dynamic discriminant classification of TIMIT vowels
with bandfilter data. The first column indicates the vowel sets from which train-
ing and test sets are selected: ‘All’ 78374 vowels, the 11579 ‘Summary’ set,
the 49562 ‘Stressed’ vowels and the 10621 ‘Stressed summary’ (see also ta-
bles 9.1 and 11.1). The second column shows the selected training sets. The
next two columns show the classification scores on the training (L) and the
test (T) sets for static data, i.e. one bandfilter data frame per vowel. The last
two columns show the classification scores for the dynamic data. The numbers
within parentheses show the fractions correct after speaker normalization. This
normalization for each male/female speaker was done by subtracting the dif-
ference between the average of a speaker’s vowels and the average of all the
speakers’ vowels in the male/female group. For example, the last line in the
table reads as follows: a discriminant classifier trained with the (2268) stressed
female vowels in the training part of TIMIT shows a fraction correct of 0.610
when tested with the same set and 0.588 when tested with the (927) stressed
female vowels in the test part. When the three frames of bandfilter data are used
for training and testing these score are 0.828 and 0.777, respectively.

‘ Static test data ‘ Dynamic test data

Data Learn L T L T
All M-L 0.473 (0.503) 0.484 (0.506) 0.560 (0.584) 0.557 (0.581)
F-L 0.464 (0.493) 0.461 (0.486) 0.563 (0.590) 0.547 (0.571)
All M-L-S 0.659 (0.766) 0.668 (0.773) 0.844 (0.899) 0.836 (0.890)
Summary F-L-S 0.620 (0.739) 0.612 (0.736) 0.838 (0.887) 0.797 (0.866)
Stressed M-L+ 0.498 (0.530) 0.509 (0.537) 0.607 (0.631) 0.600 (0.627)
F-L+ 0.490 (0.519) 0.489 (0.513) 0.607 (0.635) 0.594 (0.623)
Stressed M-L-S+ 0.630 (0.734) 0.626 (0.733) 0.821 (0.872) 0.801 (0.856)
Summary F-L-S+ 0.610 (0.732) 0.588 (0.711) 0.828 (0.879) 0.777 (0.840)

actually shows a different performance when vowel data were presented in blocked
and mixed speaker conditions. This was remarkable because the classifier has no
concept at all of speakers, and therefore no information about any speaker was used.
These differences between the blocked and mixed speaker conditions were produced
by only presenting the data in different orders to the classifier. Clearly, there must be
(small) correlations within the vowel data of each speaker that can be exploited by the
classifier as they are exploited by human listeners. With formant frequencies as input,
the classifier was able to perform well even if male and female speakers were mixed.
For bandfilter data this was not the case.

An issue with any adaptive system is stability versus plasticity (,).
Stability was reached in our system because, first of all, we only allow small move-
ments of the references and, secondly, the input to the classifier did not contain very
noisy data. However, just like feedforward neural networks there is no internal protec-

200 Chapter 11. Adaptive speaker normalization

tion against deviant data and a carefully crafted data set can move the references in any
direction we want. Despite these objections the adaptive classifier performed well and
was able to explain differences between the blocked and mixed speaker conditions.
We do not claim that the adaptive classifier is the real model of vowel perception: a
real model has to be more flexible and cannot be restricted to vowel perception only.
A real model also has to cope with within-speaker variation, which as the study of

() showed, is even larger than the between-speaker variation that
our model tries to cope with.

11.6 Conclusion

In this chapter we have successfully tested a new speaker-adaptive normalization al-
gorithm. What makes this algorithm special is the fact that local differences can have
global effects: a small local difference can move the complete reference system in-
stead of just a single reference as in most other models. As the classifier does not use
any speaker-specific knowledge, it can only use the information present in the vowel.
By exploiting the small correlations within the vowels of each speaker when these
vowels are presented in succession, we showed that the algorithm performed better on
vowels presented in a blocked speaker condition than on vowels presented in a mixed
speaker condition. The algorithm therefore was able to reproduce, at least qualita-
tively, the results from listening experiments where stimuli were presented in mixed
and blocked speaker conditions.

s 12

Discussion and future research

Abstract

In this final chapter we present an overview of the results obtained. Furthermore, the
tools that have been developed and incorporated in the PRAAT program are summa-
rized. We will further discuss the different vowel identification, speaker normalization
and data parameterization methods that have been used in this thesis. We will end this
chapter by giving an outlook into the future.

202 Chapter 12. Discussion and future research

12.1 Introduction

In most daily-life situations speech communication seems to be straightforward and
we are barely aware of the robustness of our speech recognition capabilities. Large
variations exist in the physical realizations of linguistically identical utterances by
different speakers. A human being is capable of handling all these variations in a very
robust way. Exactly these large variations in the physical signal limit automatic speech
recognition systems, although in subdomains, when many sources of variation have
been eliminated, impressive results have been obtained.

In this study we have concentrated on the topic of vowel identification by humans
and machines. Many aspects that trouble the automatic recognition of speech also
come into play in the field of vowel identification. We investigated the vowel parts
in relatively noise-free read-aloud speech. Despite this limitation, several sources of
variability still exist in this material. First of all there is the variability in speaker
context, i.e. male and female speakers of different ages, including children. We have
used speech from two different languages, Dutch and American-English. The Dutch
databases were small in size. They were analyzed in several ways. We have used the
formant frequencies from 50 males and 25 females that were measured by

() and (). We have further used the formant frequencies
and bandfilter values from the speech of ten men, ten women and ten children that
were measured by (). These Dutch databases were very homogeneous

with respect to the vowel’s consonant context. They only contained vowels spoken
in isolation, in /h_t/ context and in /p_t/ context. By contrast the TIMIT American-
English acoustic database has a lot more variation in its acoustic data: first of all
the number of speakers was an order of magnitude greater, i.e. 630, of which 438
were males and 192 were females. Secondly, the variation within the language was
greater since it contained sentences from eight American-English dialect regions. In
the third place, there was more variation in the context of the vowels because they
were realized in different consonantal contexts in sentences. Furthermore, because
of the large number of speakers and dialect regions, intonation, speaking style and
spaking rate varied, which also influences vowel variation.

In order to quantify the contributions of various identifiable sources of variation in
the TIMIT database, () performed a hierarchically structured anal-
ysis of variance (ANOVA) on a spectral representation with mel-frequency cepstral
coefficients. The main contributing factors to the total variance they found were “dif-
ferences between the phoneme units” with 34% explained variance, “difference within
phonemes due to different phonemic context” with 28% explained variance, “differ-
ence within phoneme due to dynamics” with 16.5% explained variance, and “differ-
ence within phonemes due to different speakers” with 12% explained variance. We
see from these numbers that the largest single contributing factor to the total variance
was the difference between the phonemes, as it should be. However, it is also clear
that phonetic context and dynamics contributed more than speaker variance. Another
ANOVA on individual phonemes confirmed the observation that contextual variation
within each individual phoneme dominated these other factors. This makes it clear that
the effect that we try to model, “difference within phonemes due to different speakers”

12.2. Human vowel identification 203

or in other words “between-speaker variability” is not the main player in the phoneme
variability field. Despite the fact that the amount of variation due to phonemic context
is greater than the amount of variation due to speaker context, enough between-speaker
variability remains to make it an interesting subject to study, especially since in our
study we have added the blocked versus mixed speaker conditions as an extra source
of variation.

12.2 Human vowel identification

As the introduction already noted, human speech and vowel recognition are very ro-
bust. Under normal listening conditions, humans hardly make any vowel identification
errors. The only way to force humans to make recognition errors is to make the task
more difficult. This can be done by adding noise, or, for example, by limiting the
durations of the vowel segments to 50 ms. In chapter 2, we have described eight lis-
tening experiments on vowel perception in a mixed and a blocked speaker condition.
The stimuli in seven out of eight experiments were vowel segments that were reduced
to 50 ms duration. The results of these experiments were summarized in table 2.2
and clearly show that the subjects, when presented with vowel-like stimuli from many
speakers, obtained better identification scores if they were familiar with the voice of
the speaker than if they were not. The differences in identification scores between
stimuli presented in blocked and mixed speaker contexts were between 3.2 and 8.5%.
The conclusion of this type of experiments must be that, in one way or another, sub-
jects are able to adapt to the vowels of each particular speaker. This adaptation to
a new speaker is relatively fast and of the order of a few syllables. ()
showed that within five-syllable Japanese stimuli subjects adapted to a new speaker.
Subjects are able to exploit correlations between vowels produced by the same speaker
by only hearing a few of them.

12.3 Machine recognition of vowel segments

In order to explain how subjects might exploit the correlations between vowels, we
have tested a number of data reduction, machine recognition and speaker adaptation
techniques. The techniques that we have used were introduced in the first chapter and
subsequently discussed and elaborated in later chapters. We will review them again
and discuss the results obtained.

12.3.1 Principal component analysis

The principal component analysis technique, PCA, has been used extensively in this
book. The mathematical techniques and its implementation in the PRAAT program
have been discussed in chapter 3. Its most valuable aspect in this thesis has been
the representation of multidimensional data in low-dimensional spaces since our main
interest is not in data reduction per se. For example, in the analyses of the TIMIT
vowel data our measurements consisted of 18-dimensional bandfilter spectra.

204 Chapter 12. Discussion and future research

By showing the first two principal components of these spectra we were able
to better grasp what goes on. In figure 8.8 we used PCA to represent, in a two-
dimensional space, the 18-dimensional bandfilter spectra of 20 vowels averaged over
326 male speakers. By making use of two distinct linear combinations of the 18
numbers in each spectrum the first two principal components account for 68% of the
variance in the data. The first principal component accounts for 52% of the variance,
while the second accounts for 16%. The figure shows that considerable overlap exists
between certain vowel categories.

By showing a principal component representation at three different moments in
time in the vowel, figure 8.9 demonstrates that some vowels show considerable varia-
tion over the time span of their duration. The three moments were at 25 ms before the
midpoint, at the midpoint itself and at 25 ms after the midpoint. This figure allowed
us to discuss the merits of some of the vowel subsets that were used for analyses in
the literature. PCA also enabled us to represent the differences between the bandfilter
spectra of vowels for male and female speakers very clearly. Figure 9.1 shows male
and female vowel centroids in a common eigenspace.

12.3.2 Procrustes transform

A Procrustes transform preserves the structure of a data set by leaving all relative
distances between the data points intact. This can be achieved by only permitting di-
lation, translation, rotation and reflection operations. By using a Procrustes transform
the spectral differences between male and female bandfilter spectra, as were displayed
in figure 9.1, could be reduced to a large extent.

12.3.3 Discriminant analysis

Discriminant analysis has proven to be an invaluable technique because it can func-
tion as a reference system in vowel segment classification. It constitutes the baseline
against which other classifiers can be compared. Given a labelled data set, we have im-
plemented in PRAAT a very fast, reliable and numerically stable algorithm that learns
how to optimally represent this data set. The mathematical techniques and the im-
plementation of discriminant analysis in the PRAAT program have been discussed in
chapter 3.

In chapter 9 we have used discriminant analysis to investigate differences in TIMIT
vowel classification between male and female speakers. We have shown that there are
substantial differences between the vowel spectra of male and female speakers and that
these differences could not be localized but were spread out along the entire frequency
axis, as figure 9.5 clearly demonstrates. As table 9.2 demonstrates, large differences
in classification performance result if the training and the test sets for discriminant
classification do not belong to the same speaker category. We also showed in section
9.3.3 that these differences could for a large part be overcome by applying a Procrustes
transform to the data of one speaker category to make them more similar to the data
of the other speaker category.

12.3. Machine recognition of vowel segments 205

12.3.4 Feedforward neural nets

In chapter 4 we discussed several classification aspects of feedforward neural nets and
in chapter 5 some cost functions for these nets. This type of neural nets is a valuable
addition to learning systems. We have first tested feedforward neural nets in chapter 6
in a vowel classification task based on formant frequency values. We learned that their
classification possibilities are somewhat superior to the baseline discriminant classifier
if a sufficient number of hidden nodes was used. This can easily be seen by comparing
the discriminant classifier entry W25, which stands for formant frequency data of 25
female speakers, in table 6.1 with the neural net classification results displayed in
table 6.2. An advantage of these nets when used as a classifier is that they can learn
on line by presenting one item to be learned at a time. This contrasts to a discriminant
classifier that needs all the data together in one batch. A slight disadvantage, however,
is the iterative learning process, which can take a long time.

We have also tried feedforward neural nets in order to model the blocked versus
mixed speaker condition effect by letting only biases adapt to a new speaker. The
rationale and the geometrical interpretation were given in sections section 6.2 and
section 6.3, respectively. This model was successful in classifying inputs that were
formant frequency values as well as bandfilter values. The results, before and after
adaptation, were shown in tables 6.3 and 6.4 for formant data, while for bandfilter data
results were shown in figure 9.10. Although successful for classification, the model
had several disadvantages, besides the ones already mentioned above, which makes
it inappropriate to function as a model for human (vowel) perception. First of all the
model is supervised during learning, and also during the adaptation process it stays
that way. We know that human perception definitely must be based on unsupervised
learning: the speech-learning child does not constantly have a little supervisor in her
head. Another drawback is that the adaptation process is too slow given the topology
of the feedforward neural nets that we have used. These nets basically need at least
one input exemplar for each vowel to adapt while also the vowel’s label needs to be
known. Therefore feedforward neural nets, although an interesting subject for study,
are not able to properly model human perception.

12.3.5 Canonical correlation analysis

Canonical correlation analysis quantifies correlations between two sets of measure-
ments on the same object. This technique was introduced in chapter 7. We have used
this technique in section 9.3.2 to investigate the relation between fundamental fre-
quency and the bandfilter spectrum in the same vowel spectrum. We saw that more
than 50% of the variance in the fundamental frequency could be explained by the
bandfilter spectrum.

12.3.6 CategoryART

Another type of neural network model that we have tested was based on adaptive
resonance theory. ART neural network models try to find a compromise between
stability and plasticity, i.e., on the one hand we want plasticity, a neural network that

206 Chapter 12. Discussion and future research

learns new events, on the other hand we want stability, a neural network that does not
forget what it has learned. Grossberg has coined this the stability-plasticity dilemma.

In chapter 10 we discussed our exemplar-based CategoryART implementation.
CategoryART appeared to be a very powerful learning machine for topologically com-
plex classes like the two spirals problem under noise-free conditions. It is also capable
of one-shot learning and therefore training times show off very favourable when com-
pared with feedforward neural nets. However, it appeared not to be a successful vowel
classifier: because of its lack of data compression it was oversensitive to noise. Its
strength, i.e. being able to classify a single item of a class in a cloud of items be-
longing to another class, turned out to also be its weakness. If vowel classes overlap,
category proliferation results and generalisation is poor. In real life vowel classes tend
to overlap, no matter what representation has been chosen.

12.3.7 Adaptive vowel normalization

The model that we have developed in chapter 11 was based on an adaptive discriminant
classifier and showed adaptive behaviour that at least qualitatively approximated hu-
man vowel perception results for the blocked versus the mixed speaker conditions. The
nice thing in this model was that better classification in the blocked speaker condition
was obtained than in the mixed speaker condition without any supervision, i.e. with
no information about speaker identity given to the classifier.

12.3.8 Comparison of vowel classification scores with the litera-
ture

In the present study a number of vowel classification experiments were performed.
We used two representations for the vowels, a formant frequency representation and a
bandfilter representation. The databases for these vowel representations differed con-
siderably. The formant frequency measurements that we used were obtained with op-
erator intervention from relatively small Dutch databases, as was already discussed in
section 12.1. We have used formant frequency values only to illustrate certain aspects
of the models and algorithms that we have discussed in this thesis. A representation of
vowels with formant frequencies is very intuitive because (a) it is a low-dimensional
representation and scatter plots of the first and second formant frequency look ap-
pealing, at least for most phoneticians; (b) most of the time formants have a simple
spectral analog; and (c) formants can easily be recognized in the oscillogram and in
the spectrogram, for many vowels.
For American-English the formant frequency measurements of

() are often used as a dataset in classification benchmark tests. We have done
no benchmarking on this dataset. We have measured formant frequency values for
all TIMIT vowels at the vowel centres by standard LPC means. We have plotted in
figure 12.1 the (medians of) the first and the second formant frequencies for the 20
vowel classes. Solid lines connect the median values of the same vowel for male and
female speakers. In section 12.4 we will discuss ways to improve automatic formant
frequency measurements.

12.3. Machine recognition of vowel segments 207

3.4

3.3 i

4.

3.2 /
~ /
LL
(@]
o
/ a
3.1 a/
u
0 a/
3_
2.9 T T T T
25 2.6 2.7 2.8 2.9 3
logF,

Figure 12.1. Scatter plot of first formant versus second formant frequency the
vowels in TIMIT. Male vowel formant frequency medians for 20 American-
English vowel categories are labelled. Female vowel formant frequency medi-
ans are at the endpoints of the lines that start at the labelled male vowel posi-
tions.

Most emphasis in our data presentation has been on bandfilter analysis, as all
vowels in TIMIT have been analysed in this manner. The TIMIT acoustic phonetic
corpus has served as a testing benchmark through the years for many scientists. A
great deal of new speech analysis, segmentation and recognition tools were tried on
this dataset first because of the availability of hand labelling at the phoneme level. This
makes it relatively easy to obtain percentage correct scores. We present in table 12.1
an overview of some of the classification scores that can be found in the literature. We
have not attempted to be complete in this respect but have selected a number of papers
that present landmark results.

() compare signal representations for phonetic classification of
13 vowels. They investigate whether there are any advantages in extracting acoustic
attributes by directly using the spectral information for classification or whether inter-
mediate sets of linguistic units like distinctive features are advantageous. The spectral
representations used in Meng & Zue’s study are based on the auditory model of

208 Chapter 12. Discussion and future research

Table 12.1. Overview of TIMIT classification results. For more details see text.

Reference Method Specifics Set 9 Correct
Meng & Zue (1991) MLP Straight mz13 64.5
MLP Attributes mz13 64.1
MLP Att. + Features mzl13 63.6
MLP Features mz13 63.6
Cole et al. (1992) Humans isolation t16 54.8
context t16 65.9
prompt t16 55.3
Zahorian et al. (1993) MLP DCT-1 t16 53.5
BPP MLP DCT-2 72.4
Zahorian et al. (1997) MLP DCT-1 t16 53.5
Halberstadt et al. (1997) MGM DCT-2 + mod kflld+sv 743
MGM DCT-2 + mod kf139 79.0
Clarkson et al. (1999) BPP SVM 196 dim (3-4-3) kf139 76.3
Salomon et al. (2002) BPP SVM 195 dim 40 70.6
Chen et al. (2003) MLP/HMM TMLP kfl39 69.0
MLP/HMM TMLP+PLP kfl39 73.2
Gutkin et al. (2004) MLP Features kfi39 60.3
Choueiter et al (2005) diag. MGM Wavelets kfl14 69.5
kf139 76.8
Weenink CategoryART pc-9 + sum t20 52.0
Weenink discriminant ~ BF18+males+static t20 48.4
BF18females +static t20 46.1
BF18+males+dyn t20 55.7
BF18+females+dyn t20 54.7
mzl3: 13 vowel classes {1y, ih, eh, ey, ae, aa, ah, ao, ow, uh, uw, ux, er}, see
()
kfll14: 14 vowel classes iy, {ih, ix}, eh, ae, {ah, ax, ax-h}, {uw, ux}, uh, {aa, ao},
ey, ay, oy, aw, ow, {er, axr}, see ()

kfll4+sv: the 14 vowel classes in kfl14 + {{1, el}, r, w, y}

t16: 16 vowel classes iy, ih, eh, ae, aa, aw, ay, ah, ao, oy, ow, uh, ux, er, ax
kf139: clustering of 61 TIMIT phonemes into 39 classes, see ()
120: all 20 vowel classes

() and consist of three averaged 40 spectral mean-rate-response coefficients, at
half Bark distances apart, that characterize the start, centre and end third part of the
vowel. They use speaker normalization by shifting the spectrum down linearly by the
median pitch of a speaker. They show that this model has advantages over a Mel-
frequency cepstral coefficient representation, especially when tokens get corrupted by

12.3. Machine recognition of vowel segments 209

noise. To obtain acoustic attributes and features they use neural networks with one
hidden layer of 32 units. Neural networks are also used for all the classifications made
in their study. The acoustic attributes are intended to function as the acoustic corre-
lates of the distinctive features High, Low, Tense, Back, Round and Retroflex. Since
neither these acoustic correlates are known beforehand, nor their variability across
speakers and phonetic environments, the authors propose general property detectors
with free parameters that have to be determined by statistical and data-driven methods
that search the parameter space for optimal classification performance. Their most
important property detector is based on the spectral centre of gravity and its amplitude
within a specific frequency region. The free parameters in this case are the lower and
upper frequencies of this region. By splitting the data in a +feature and —feature part
they find these upper and lower limits by maximizing a measure of class separabil-
ity, i.e Fisher’s Discriminant Criterion (which is the quotient of the difference of the
two class means and the sum of the within-class variances). In the attribute extraction
procedure they perform speaker normalization by shifting spectra down linearly on
the Bark scale by an amount that depends on the speaker’s median pitch. The four
main classification tests in this study are all performed with neural networks. Straight
one-step classification from the spectral coefficients results in a 64.5% correct classi-
fication of the 13 vowels. The two-step process, first extracting acoustic attributes and
then classification, resulted in almost the same percentage correct, 64.1%. The three-
step process, using the acoustic attributes to calculate a distinctive feature represen-
tation followed by classification, results in 63.5% correct. Finally, the other two-step
process, extracting distinctive features directly from the spectral coefficients followed
by classification results in 63.6% correct. These results show that these 13 vowels
can be classified reasonably well and that using acoustic attributes did not weaken
the classification performance and needed only half the number of computations. The
authors hope that “the compactness and descriptive power of distinctive features may
enable us to describe contextual influence more parsimoniously, and thus to make
more effective use of training data”.

() examined the ability of human listeners to classify
vowel sounds into 16 different categories. For every one of the 168 speakers in the
test part of TIMIT, the 16 vowel sounds were excised from the sound files according
to the information in the label files, resulting in 2688 vowel sounds. A group of eight
subjects participated in ten one-hour sessions. In each session the subjects listened
to each randomly selected vowel as often as they wanted before giving a response by
moving the cursor on a computer screen over one of the 16 words with the vowel sound
and clicking the mouse. The subjects received feedback on the correct response and
had the option of listening to the sound again after making the response. On average,
subjects scored 54.8% correct. In a second experiment the vowel segment together
with preceding and following phoneme were presented to eight other subjects with an
identical experimental setup. The context improved the percentage correct to 65.9%
on average. In a third experiment investigated whether familiar-
ity with the speaker’s voice had any influence on the subject’s response. “Don’t ask
me” from the sa2-sentences was presented with a gap of 300 ms before the vowel
in isolation. A small increase to 55.3% correct was found. This experiment shows

210 Chapter 12. Discussion and future research

that the agreement between the expert labellers and listeners is not all 100% at the
segmental level. In their words “there is in fact no correct phonetic labelling of an
utterance. ...the same segment of speech is heard differently when presented with
different amounts of surrounding context; and knowledge of the speaker and the words
spoken influence phonetic labelling.”

() use two different representations of the vow-
els. In the first representation, labelled as DCT-1 in table 12.1, only one 20-ms analysis
frame at the centre of a vowel is used to obtain vowel phone parameters. DCT-1 con-
sists of the first 25 coefficients of the discrete cosine transform (DCT) of the logarith-
mically scaled Fourier magnitude spectrum, using log amplitude scaling and a bilinear
frequency warping that mostly resembles a Bark scale. Only spectral components be-
tween 75 and 6000 Hz were used in this computation. The obtained coefficients are
essentially cepstral coefficients. In the second representation, labelled as DCT-2 in
table 12.1, phones are represented by 300-ms length segments centred at the midpoint
of each labelled phone. For each of 30 equally-spaced frames of 20 ms duration the
first 15 DCT coefficient were calculated as outlined above. These 450 numbers were
further reduced by again applying a DCT but now in the time-domain instead of the
frequency domain. A special Kaiser-window time warping function was used to put
emphasis at the centre of the 300 ms segment. These 120 coefficients were further re-
duced to a set of 58 that showed the highest discriminative power. They obtain 53.5%
and 72.4% correct classification with a binary-pair partitioning (BPP) neural network.
Binary-pair partitioning is a special case of group partitioning. Instead of using one
big classifier to distinguish between M classes, it uses M (M — 1)/2 binary classifiers
to make an M-way decision. Each binary decision is made between a pair of classes.
Thus, there are M — 1 decisions relevant for each class in a set of M. For classifica-
tion, these decisions are combined to produce an overall decision. The purpose of this
type of partitioning is to improve accuracy and to reduce training time. In a single M-
class neural network classifier training time increases exponentially with the number
of classes while in a BPP training time increases only as 2logM.

() use a somewhat modified DCT-2 procedure
to classify all phonemes in TIMIT. The differences with the procedure described
above for DCT-2 is that they first apply a pre-emphasis on the sound segment with
a second-order filter that approximates the inverse of an equal-loudness contour. The
windowing function has changed from a Kaiser window to a Hamming window and
an 80 Hz wide spectral smoother is applied to the Fourier magnitude spectrum before
the frequency-domain DCT is calculated. The time step for the Fourier analyses was
reduced to two milliseconds. Zahorian et al. further significantly simplified the coeffi-
cient reduction step by using only twelve DCT coefficients to code the frequency do-
main in each of the analysis frames, and by using only 5 DCT coefficients to code these
twelve trajectories in the time domain, resulting in a very efficient 60-dimensional rep-
resentation for each phone. They do not report separate vowel classification scores but
overall on the kfl39 set they obtain an impressive 76.5% correct phoneme score. The
kfl39 phoneme set is a clustering of the 61 different phoneme classes that occur in
TIMIT into 39 classes, as was first described by ().

() also use a segment-based approach to speech recogni-

12.3. Machine recognition of vowel segments 211

tion and extend the analysing framework of () that was discussed
above. First of all they added duration and average pitch to the measurements, mak-
ing a 62-dimensional parameter vector for vowel and semivowel measurements. This
resulted in a 74.3% correct classification on vowels/semivowels. Instead of using this
homogeneous feature set by applying the same analysis and feature extraction proce-
dure for all phonemes, they argue that differences between phoneme classes also im-
ply differences in the parameter extraction process. For example, the time resolutions
needed to differentiate a stop from a nasal are significantly different. In their study they
use analysis window lengths of 10.0 and 28.5 ms for these broad classes, respectively.
This increases the score with 0.8% to 85.2% correct for nasals. Other modifications
were also made such as, for example, adding time derivatives for stops. They achieved
a final result of 79.0% correct for the kfl39 phonemes on the core test set. The authors
used a mixture Gaussian classifier with maximally twelve full-covariance kernels per
phone. Simply stated, mixture models use more than one combination of an average
vector and a covariance matrix to model one phone. The mixture is obtained through
a combination of supervised and unsupervised learning. Supervision is provided by
the class labels. A quadratic discriminant classifier as was discussed in chapter 3 uses
one vector of averages and one covariance matrix for each class. In our usage of this
classifier we have always split the data into male and female speakers, i.e. we used a
mixture model where the mixing was predetermined. A mixture model with two ker-
nels per phone would do this modelling by an iterative unsupervised training method.

() reach error rate reductions up to 12% by a process
they call aggregation, and others call voting. Train a number of independent classifiers
on the same problem and aggregate their outputs by averaging or by using some kind

of majority vote system (,).
() use binary-pair partitioning Support Vector Machines
(SVM, see ()). An SVM is a binary classification machine that tries to op-

timally separate two classes with a hyperplane. In order to cope with the kfl39 set with
39 phoneme classes, they have to use 741 (= 39 x (39 —1)/2) binary SVM’s as a clas-
sification front-end in a one-versus-one scheme. To encode the variable length phone
segments they partioned a phone into a start, middle and end segment with relative du-
rations of 0.3, 0.4 and 0.3, respectively. For each segment they used a 39-dimensional
vector. Each representative was obtained by averaging the 39-dimensional analy-
ses vectors in each segment. An analysis vector was obtained by calculating every
10 ms the 13-dimensional Mel-frequency cepstral coefficients plus their first and sec-
ond derivatives of a 25.5 ms Hamming-windowed part of the sound. Two additional
vectors were added that represented 40-ms windows centred at the start and the end
of a phone. The log-duration of the phone was also added, adding up to one 196-
dimensional representation for each variable length phone. Non-linear separation can
be obtained by mapping the data to higher-dimensional spaces. Kernel functions can
realize these mappings very elegantly. By using a Gaussian kernel function they ob-
tained a 76.3% correct score on the kfl39 set.

SVM'’s were also used in the study of (). How-
ever, unlike the study above, in which entire phonemes were classified, their system
operates in a frame-wise manner. The SVM’s in this study are used in a hybrid sys-

212 Chapter 12. Discussion and future research

tem as the front end to estimate the posterior phone conditional probability density
function (pdf) over the phone set on a frame-by-frame basis. This pdf is then decoded
into a word sequence. The input for the SVM’s consists of 13 Mel-frequency cep-
stral coefficients with first and second derivatives and two context frames on each side
summing to (13 + 13 + 13) = (2 + 1 + 2) = 195 components. In a BPP scheme they
report a 70.6% framewise accuracy for 40 phones.

() use a combination of neural networks and Hid-
den Markov Models (HMM) to incorporate temporal and contextual information. The
neural networks provide likelihoods for the HMM recognizer. In contrast to the stan-
dard approach of making spectral cross-sections in time, they also use an approach
pioneered by () in which they analyse long stretches of
speech, i.e. of the order of 0.5 to 1 s, for patterns within individual critical bands. They
obtain a 69% correct score on the kfl39 set. By combining the traditional approach,
spectral cross-sections in time by means of perceptual linear prediction (,

), with the new approach by using frame-wise posterior multiplication, they ob-
tain an even better 73.2% correct score on kfl39.

() use five multi-valued features in order to devise a structural
representation of speech. Their approach is motivated by the fact that a symbolic space
is well suited for capturing and exploiting structural properties of speech that other
models like HMM'’s fail to capitalize on. This could be an advantage since a struc-
tural description is very efficient for phenomena like assimilation: structural models
do not need an enumeration of cases. Gutkin & King use the following 5 multi-valued
features: front-back, place of articulation, manner of articulation, roundness and voic-
ing. The total number of values for all features in their system sum up to 25. Neural
networks are trained to discover the features. Their output is quantized to obtain a
structural representation with symbols: the number of symbols for a feature value de-
pend on the quantization level. The speech sound is transformed into 20 streams of
symbols. Clustering of the templates is done by a variant of k-means and distances

between strings like the Levenshtein distance (s). Gutkin & King obtain
60.3% correct classification on the kfl39 set.
() use a wavelet and filterbank framework for context-

independent phonetic classification. They use specially designed filterbanks with
wavelet filters whose bandwidths are similar to critical bands and whose centre fre-
quencies are equally spaced on a Mel scale. For classification they use diagonal Gaus-
sian mixture models with a maximum of 96 models per phone. They obtain 69.5%
correct for the kfl14 vowels and 76.8% correct for the total kfl39 set.

The above results show that significant results have been obtained on the TIMIT
classification benchmark. Our own classifications do not show as impressive results
for several reasons. First of all, our view of the vowel was rather static, most of the
time we used the results from a single analysis frame for classification. In the second
place, we only used a simple linear discriminant classifier, i.e. we did not use vowel-
specific covariance matrices in our classification process. By reducing the number of
vowels we could have obtained a few percentages higher score. The emphasis in our
investigation has not been on obtaining high recognition scores per se but on using
simple classifiers as an illustration of our ideas on speaker normalization.

12.4. Tool development motivation 213

12.4 Tool development motivation

A substantial part of this thesis has been concerned with the analysis of vowel data.
In the course of these analyses a number of tools have been developed and integrated
into the PRAAT program. We have implemented the possibility to read TIMIT sound
and label files. Tools, such as principal component analysis, discriminant analysis
and canonical correlation analysis are of course also part of statistical packages like
R (s) and SPSS (s). However, we have tried to make these
analyses more user-friendly by representing the results of these analyses as real ob-
jects in the PRAAT program. By representing the results as visible objects, the user can
select the object and, by the way PRAAT’s user interface is organized, can immediately
see what are possible further options with these results. Some examples may clarify
this. Obtaining principal components in PRAAT is the result of a two-step process. In
the first step the user selects the dataset and chooses the To PcA command. A new PcA
object appears. This object contains the new directions, i.e eigenvectors, in the rotated
coordinate space that are optimal with respect to variance projection. In the second
step the user selects the pca object and the dataset together and chooses the command
to actually calculate the principal components of the dataset. Representing the result
of the analysis as a separate object with no bindings to the dataset, has an additional
advantage: we can re-use the object to project another, properly dimensioned, dataset
into the same space. In this way two datasets can be more easily compared by visu-
alizing them in a low-dimensional space. We have used this, for example, in figure
9.1, where we showed characteristics of male and female vowel centroids in the same
principal component space. This separation of data and data analysis has also been
used for discriminant analysis, canonical correlation analysis and for neural networks
and turned out to be very intuitive.

Tool development will continue and new tools will be implemented in the PRAAT
program in the near future. As part of a STEVIN programme we will add several new
possibilities to PRAAT. We mention the following planned additions:

Klatt synthesizer A very high quality formant-based speech synthesizer that is used
for generating artificial speech. The synthesis is determined by a parameter file
in which at regular time intervals the values for, among others, fundamental
frequency, formant frequencies and bandwidths are given (,).
The Klatt synthesizer is often used as a reference synthesizer

Sound-follows-mouse For didactic and demonstration purposes, a straightforward
vowel generator of the type sound-follows-mouse is needed. By moving around
the pointer in the plane formed by the first two formants, a sound with the for-
mant frequencies at the current pointer position will be generated whenever the
left mouse button is pressed. The positions of the Dutch vowels could be dis-
played as a background for the plane in which the pointing device moves.

Formant and bandwidth manipulation For developing theories about speech per-
ception and synthesis, accurate manipulation of speech parameters is necessary.
A graphical formant frequency and bandwidth editor in which the user can di-

214 Chapter 12. Discussion and future research

rectly manipulate the needed parameters to generate speech has distinctive ad-
vantages.

Improved formant frequency measurements Many phoneticians rely on formant
frequency measurements for their investigations. Formant frequencies and band-
widths are very hard to measure in real speech. Ongoing efforts are put into new
analysis and tracking methods. See recent articles by among others

(2004), (2006),
(2006), (2006), (2006)

and (). The current formant frequency measurements
in PRAAT are based on LPC-analysis performed by standard algorithms avail-
able in the literature. The formant frequencies derived by these LPC-analysis
algorithms are not always reliable. As () state: “...formant
frequencies, which are obtained through heuristic methods and can lead to catas-
trophic measurement error.” However, these measurements could be improved
by incorporating knowledge gained from robust statistics (Lce,). Our own
preliminary tests indicate substantial improvements in formant frequency and
bandwidth accuracy on artificially generated signals plus significantly less vari-
ation in these measurements with varying analysis window position. Of course,
this does not immediately guarantee large measurement stability improvements
for real speech signals. However, if we can improve significantly the preci-
sion of the formant frequency and bandfilter measurements on test signals, this
mere fact should give us more confidence in the newer robust analysis method
as compared to the standard methods. No known methods exist that always
give the “correct” formant frequency values. Therefore making some of the
current methods more robust with respect to analysis window position, has high
priority. This is useful in all research where formant frequencies are used. Es-
pecially for high-pitched voices this is potentially very interesting, because it
can be used, for instance, in basic phonetic research on the development of
vowel spaces for young children (

,). Another improvement in formant frequency estimation that we will
try to implement is based on combining formant frequency measurements with
bandfilter data. This would operate with predetermined anchor points for which
both types of measurements are accurately known. Then by means of canonical
correlation analysis, or by a more predictive variant, redundancy analysis (

s), we establish predictive relationships between these two
measurements.

The plans discussed aboved clearly show that tool development is an ongoing pro-
cess and that we will continue to implement new tools in the PRAAT program. We
will serve not only our current user group of speech investigators, we like to make
our tools useful also to students of language. In the project “Speak good Chinese” the
PRAAT program will provide automatic feedback to humans in the process of learning
the tone system of Mandarin.

Summary

In this thesis we describe a model for speaker-adaptive vowel identification.

In a series of listening experiments we have investigated how well listeners rec-
ognize vowels presented in a mixed and in a blocked speaker condition. In the mixed
speaker condition, with each vowel, the listener is confronted with the voice of a ran-
dom speaker; in the blocked speaker condition, the listener tries to recognize a series
of vowels produced by the same speaker. The experiments show that listeners identify
vowels better in the blocked speaker condition. The adaptation to a speaker typically
happens fast, within approximately five stimuli.

If we want to simulate the listeners’ behavior, we need algorithms that also adapt
fast. Standard adaptation algorithms are too slow because they adapt only locally,
i.e. they need at least one example for each vowel class. The algorithm that we have
developed adapts globally. Based upon for example formant frequencies each vowel
has a unique position in the vowel system of a language. Instead of modifying one
vowel reference at a time, our algorithm modifies the complete system by translating
the reference positions of all vowels over the same distance and in the same direction.

Our speaker-adaptive vowel identification algorithm proceeds as follows. A mean
reference system is set up on the average positions of the vowels of a large number
of speakers. For each vowel that is presented, the vowel class is determined through
checking which reference position is closest. The new vowel is accepted as being of
the same class as its closest reference. Next a confidence measure is calculated based
on the distance between the reference position and the new input. This distance is a
vector. If the confidence level is high enough, the system will be adapted. Adaptation
means that all current references are shifted parallel to the distance vector. A shift
parameter determines by how much the newly classified vowel modifies the reference
system. This parameter is important: too large a shift makes the system unstable. For
the next input the algorithm will use the adapted reference system.

In a blocked speaker condition, the mean reference system will eventually approx-
imate the reference system of our speaker. Identification of vowels of the speaker will
occur more accurately after only a small number of inputs.

The algorithm treats the vowel systems of different speakers as shifted versions
of one underlying vowel system. Measurements indicate that a speaker does indeed

216 Summary

have a set structure in his vowel system. Speakers of the same language have a similar
structure in the reference positions of their vowels.

Incorporation of our algorithm in a standard discriminant classifier, makes the
classifier show a better vowel-identification score in a blocked speaker context than
in a mixed speaker context without any knowledge of speakers at all. The classifier
reproduces the trend of the listening experiments described above.

Samenvatting

In dit proefschrift verkennen we een model voor klinkerherkenning dat zich kan aan-
passen aan de spreker en dan beter scoort.

In een serie luisterexperimenten hebben we onderzocht hoe goed luisteraars klin-
kers herkennen als ze worden aangeboden van verschillende sprekers door elkaar of
per spreker. In de eerste situatie wordt de luisteraar per klinker geconfronteerd met
de stem van een willekeurige spreker; in de tweede situatie probeert de luisteraar een
reeks klinkers te herkennen van een en dezelfde spreker. De experimenten tonen aan
dat luisteraars klinkers beter identificeren als ze per spreker worden aangeboden. Deze
aanpassing aan de spreker gebeurt gewoonlijk snel, na ongeveer vijf stimuli.

Als we het gedrag van een menselijke luisteraar willen nabootsen, hebben we ver-
werkingsstappen nodig die snel kunnen leren. Standaard algoritmes voor aanpassing
zijn te langzaam omdat ze eerst van elke klinkerklasse een voorbeeld nodig hebben:
ze passen lokaal aan. Wij hebben een algoritme ontwikkeld dat globaal aanpast. Op
basis van bijvoorbeeld formantfrequenties heeft elke klinker een eigen positie binnen
het klinkersysteem van een taal. In plaats van elke keer de verwijzing naar een en-
kele klinker te wijzigen, kan ons algoritme het complete systeem aanpassen door de
posities van alle klinkers te verplaatsen over dezelfde afstand en in dezelfde richting.

Dit zijn in grote lijnen de verwerkingsstappen in ons algoritme bij de herken-
ning van klinkers. Als uitgangspunt wordt een klinkersysteem gehanteerd dat is opge-
bouwd uit de gemiddelde posities van de klinkers van een groot aantal sprekers. Van
een nieuwe stimulus wordt de klasse bepaald door de klinker te vergelijken met de al
aanwezige posities. De nieuwe klinker krijgt de klasse toegedicht van de positie die
het dichtst in de buurt ligt. Er wordt een zekerheidsmaat berekend op basis van de
afstand tussen deze naaste positie en de nieuwe input. Die afstand heeft een lengte
en een richting, het is een vector. Als het zekerheidsniveau hoog genoeg is, wordt
het klinkersysteem aangepast. Aanpassing houdt in dat alle aanwezige klinkerposities
worden verschoven parallel aan de afstandsvector. Een verschuivingsparameter be-
paalt de mate waarin het systeem wordt gewijzigd. Deze parameter is belangrijk: een
te grote verschuiving maakt het systeem instabiel. Voor een volgende input gebruikt
het algoritme het aangepaste klinkersysteem.

Bij een aanbod per spreker, zal het uitgangssysteem gaan lijken op het systeem

218 Samenvatting

van de spreker. De klinkers van de spreker worden beter herkend na slechts enkele
voorafgaande stimuli.

Het algoritme behandelt de klinkersystemen van verschillende sprekers als ver-
schoven versies van een onderliggend klinkersysteem. Metingen wijzen uit dat een
spreker inderdaad een vaste structuur kent in zijn klinkersysteem. Sprekers van de-
zelfde taal hebben eenzelfde structuur in de posities van hun klinkers.

Na de inbouw van ons algoritme scoort een standaard klassificeermachine beter
in klinkerherkenning bij een aanbod per spreker dan bij een gemengd aanbod zonder
enige kennis van de sprekers. De machine bereikt ongeveer hetzelfde resultaat als de
mensen in de hierboven beschreven luisterexperimenten.

Curriculum Vitae

David Weenink (1953) graduated in physics in 1981 at the Katholieke Universiteit
Nijmegen, now Radboud University. He entered the field of phonetics in that same
year, first as assistant investigator and later as assistant professor at IFA, the Institute of
Phonetic Sciences of the University of Amsterdam. Recently, he founded the company
SpeechMinded dedicated to speech processing by computer. The research presented in
this thesis started with a grant of ZWO, the Dutch organisation for Scientific Reseach.

Appendix

Formant frequencies from 10
men, 10 women and 10 children

The following tables show the first three formant frequencies for ten men, ten women
and ten children. This dataset was described in chapter 2. These formant frequency
values are also made public in the PRAAT program.

222 Chapter A. Formant frequencies from 10 men, 10 women and 10 children

Table A.1. Formant frequency values of ten male speakers.

Vowel F, F F F, 23 F3
u 335 748 2332 308 709 2222
a 787 1372 3313 758 1244 2658
o 488 911 2362 510 907 2532
a 671 1005 2822 645 1004 2604
[0] 472 1585 2344 454 1388 2308
i M1 314 2149 3215 M2 303 1984 2835
y 293 1791 2177 314 1620 2111
e 454 1982 2673 460 1748 2442
Y 396 1624 2374 449 1489 2279
€ 502 1902 2632 580 1679 2383
o} 435 669 2886 461 760 2632
1 393 2120 2694 429 1888 2502
u 343 719 2107 322 590 2146
a 850 1328 2299 818 1333 2312
o 532 937 2044 489 845 2157
a 721 1135 2077 708 1126 2302
0] 481 1438 2203 422 1518 2116
i M3 275 2081 2882 M4 268 2189 2950
y 270 1705 2068 298 1581 2162
e 464 1949 2536 420 2075 2495
Y 390 1307 2177 406 1505 2133
€ 645 1854 2488 550 1905 2383
o) 519 818 1975 438 703 2392
I 377 2044 2638 400 2151 2870
u 282 656 2355 275 560 2397
a 732 1356 2562 696 1262 2778
o 482 797 2531 419 831 1824
a 723 1036 2456 674 1113 2455
[0] 466 1484 2139 422 1599 2319
i M5 255 2390 2787 M6 281 2324 3124
y 271 1642 2154 291 1585 2160
e 441 2020 2392 426 2174 2786
Y 454 1516 2178 419 1493 2242
€ 601 1858 2315 560 1941 2722
o} 462 662 2852 395 705 2802
1 353 2114 2507 358 2269 2936
u 315 703 2304 361 730 2256
a 807 1478 2390 921 1409 2909
(@] 471 838 2391 495 961 2405
a 713 1218 2466 642 988 2308
[0] 504 1520 2268 505 1546 2443
i M7 302 2255 2887 M8 285 2288 2817
y 341 1738 2246 341 1705 2291
e 400 2198 2551 492 2102 2778
Y 467 1639 2227 451 1482 2657
€ 587 2024 2516 628 1777 2903
o} 531 837 2338 500 714 2782
I 379 2183 2614 364 2126 2907
u 358 700 2672 277 592 2493
a 855 1311 2701 753 1306 2617
o 557 856 2727 392 692 2512
a 685 1075 2677 642 991 2707
[0] 502 1385 2112 357 1675 2105
i M9 318 2252 2846 M10 258 2280 3350
y 348 1504 2129 248 1846 2117
e 509 1941 2732 357 2163 2624
Y 499 1496 2725 388 1570 2175
€ 582 1920 2773 581 1865 2572
2 524 759 2784 490 718 2757
1 422 2186 2816 367 2129 2731

223

Table A.2. Formant frequency values of ten female speakers.

Vowel F B F F B F
u 305 842 2366 307 738 2529
a 938 1580 2953 841 1504 2712
0 606 1090 2422 524 1067 2510
a 819 1327 2819 902 1183 2603
@ 579 1630 2501 443 1754 2607
i w1 201 2540 3225 W2 277 2439 3407
y 312 2065 3737 303 1762 2460
e 559 2245 2846 484 2044 2593
Y 503 1826 2518 464 1655 2556
€ 770 2137 2919 495 2296 3204
B 557 986 2677 505 938 2641
I 506 2270 3040 490 2371 3198
u 309 627 3029 327 586 2463
a 1028 1498 2715 692 1382 2432
0 600 948 2684 540 956 2599
a 893 1136 2844 596 1023 2750
@ 536 1799 2601 512 1674 2458
i w3 275 2664 3174 W4 271 2299 3260
y 282 1391 2520 291 1737 2236
e 506 2482 2846 471 2057 2729
Y 501 1746 2529 397 1658 2422
€ 783 2027 2606 593 2122 2779
) 785 918 2956 520 690 2828
I 511 2320 2882 369 2263 2903
u 448 830 2687 325 737 2290
a 890 1574 2965 833 1333 2256
0 595 1109 2686 577 944 2651
a 806 1386 2591 674 1084 2851
@ 502 1529 2716 502 1546 2326
1 ws 374 2580 3181 W6 337 2060 2841
y 436 2134 2626 289 1669 2169
e 484 2323 3025 491 1950 2674
Y 482 1900 2710 427 1708 2346
€ 595 1897 2865 548 2071 2727
B 570 1010 2614 462 764 2600
I 494 2323 2989 416 2217 2769
u 313 578 2457 334 729 3332
a 1047 1578 2848 1008 1573 2932
0 608 904 2724 521 935 2760
a 890 1294 2732 964 1246 3112
@ 508 1747 2799 487 1799 2393
i w7 268 2873 4075 W8 296 2597 3571
y 287 1982 2793 306 1781 2415
e 489 2529 3111 490 2642 3494
Y 549 1728 2844 509 1887 2596
€ 606 2078 2980 787 2326 2992
) 549 855 2793 629 864 3024
I 440 2590 3090 425 2636 3314
u 322 661 2721 324 730 2644
a 898 1628 2770 966 1695 2890
0 457 857 2582 534 954 2542
a 801 1260 2911 820 1256 3064
@ 456 1671 2381 480 1917 2670
1 w9 276 2495 3372 W10 290 2648 3176
y 283 1779 2211 291 1981 2701
e 435 2363 2866 469 2406 3008
Y 463 1630 2306 484 1753 2718
€ 637 2130 3029 693 2128 2991
B 580 821 2729 636 923 2757
I 440 2385 3007 501 2358 3058

224 Chapter A. Formant frequencies from 10 men, 10 women and 10 children

Table A.3. Formant frequency values of ten child speakers.

Vowel Fy F F F F F3
u 353 758 3269 359 682 2948
a 1129 2249 3404 1006 2166 3263
o 663 1017 3075 688 1135 2930
a 964 1576 3186 746 1135 1926
[0) 636 2083 3328 570 2015 3155
i C1 337 2960 3595 C2 346 3069 3573
y 357 2389 3185 324 2025 3104
e 621 2839 3614 611 2770 3648
Y 650 2336 3284 632 1990 3042
€ 765 2755 3636 893 2639 3566
o] 627 976 3256 631 795 3537
1 586 2833 3595 636 3025 3709
u 414 828 2908 315 812 3357
a 1150 2116 3205 954 2010 3291
o 659 1201 3015 604 1179 3659
a 890 1303 3003 981 1701 3374
[0] 534 1997 3009 613 1991 3392
i C3 330 3010 3746 C4 326 3235 3935
y 398 2298 2940 331 2099 3096
e 551 2786 3442 613 2763 3710
Y 537 1968 3032 581 2085 3288
€ 641 2662 3410 622 2459 3616
o] 609 936 3139 621 960 3701
I 547 2965 3673 547 2747 3618
u 417 981 3610 380 798 3316
a 1122 1930 3068 1154 1920 3519
O 741 1302 3381 656 1118 3296
a 1028 1611 2973 1031 1690 3163
[0) 628 1929 3197 679 2035 3683
i C5 363 3235 4069 C6 361 3082 3782
y 384 2255 2992 374 2042 3206
e 643 2603 3382 646 2820 3970
Y 608 2105 3177 604 2162 3603
€ 712 2351 3498 706 2785 3942
o] 697 1017 3077 456 759 3321
1 527 2698 3458 499 2899 3934
u 339 850 4356 354 1085 3082
a 914 2090 3113 1192 1792 2922
o 576 1156 3681 822 1180 2931
a 865 1567 3326 993 1424 2941
[o] 580 2146 3340 608 1817 2909
i C7 313 3090 4039 C8 323 3169 3625
y 330 2431 3032 358 2138 3160
e 577 2589 2778 608 2707 3369
Y 589 2150 3208 444 2170 3044
€ 616 2448 3856 718 2479 3627
o] 619 919 3570 617 990 3027
I 539 3015 3905 499 2831 3465
u 363 1050 3239 352 979 2988
a 1163 1707 3188 1060 2079 2706
O 830 1289 3145 753 1174 3005
a 963 1293 3046 884 1432 2806
[0] 673 2339 3167 644 1775 3005
i C9 346 2729 3370 C10 326 2807 3612
y 345 2344 3103 329 2082 2791
e 677 2561 3320 569 2415 3239
Y 580 2191 3234 592 2069 2889
€ 897 2463 3338 709 2460 3314
o] 666 1094 3269 596 973 2690
1 541 2568 3297 561 2612 3330

Bibliography

Adank P. (2003): Vowel normalization: A perceptual-acoustic study of Dutch vowels,
Ph.D. thesis, Katholieke Universiteit Nijmegen.

Adank P., Van Hout R. & Smits R. (2004): “An acoustic description of the vowels of
Northern and Southern Standard Dutch”, J. Acoust. Soc. Am. 116, 1729-1738.

Amari S. (1990): “Mathematical foundations of neurocomputing”, Proc. IEEE 78,
1443-1463.

Anderson E. (1935): “The irises of Gaspé peninsula”, Bulletin of the American Iris
Society 59, 2-5.

Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Du Croz J.,
Greenbaum A., Hammarling S., McKenney A. & Sorensen D. (1999): LAPACK
users’ guide, 3rd edn., Society for Industrial and Applied Mathematics, Philadel-
phia, PA.

Assmann PF., Nearey T.M. & Hogan J.T. (1982): “Vowel identification: Ortho-
graphic, perceptual, and acoustic aspects”, J. Acoust. Soc. Am. 71, 975-989.

Bai Z. & Demmel J.W. (1993): “Computing the generalized singular value decompo-
sition”, SIAM J. Sci. Comput. 14, 1464—1486.

Boersma P. (1993): “Accurate short-term analysis of the fundamental frequency and
the harmonics-to-noise ratio of a sampled sound”, Proc. Institute of Phonetic Sci-
ences University of Amsterdam 17, 97-110.

Boersma P. (1998): Functional Phonology: Formalizing the interactions between ar-
ticulatory and perceptual drives, Ph.D. thesis, University of Amsterdam.

Boersma P., Escudero P. & Hayes R. (2003): “Learning abstract phonological from
auditory phonetic categories: An integrated model for the acquisition of languag-
specific sound categories”, in Proc. ICPhS, Barcelona, Spain, pp. 1013-1016.

226 BIBLIOGRAPHY

Boersma P. & Weenink D.J.M. (2006): “Praat: doing phonetics by computer (version
4.3.31)”, [Computer program], URL http://www.praat.org/.

Borg I. & Groenen P. (1997): Modern multidimensional scaling: Theory and applica-
tions, Springer Series in Statistics, Springer.

Bourlard H. & Wellekens C.J. (1989): “Speech pattern discrimination and multilayer
perceptrons”, Computer Speech and Language 3, 1-19.

Buiting HJ.A.G. (1986): “SESAM, Speech Editing System AMsterdam”, IFA report
nr. 70.

Carpenter G.A. & Grossberg S. (1987a): “ART 2: Stable self-organization of pattern
recognition codes for analog input patterns”, Applied Optics 26, 4919-4930.

Carpenter G.A. & Grossberg S. (1987b): “A massively parallel architecture for a self-
organizing neural pattern recognition machine”, Computer Vision, Graphics, and
Image Processing 37, 54-115.

Carpenter G.A. & Grossberg S. (1990): “ART 3: Hierarchical search using chemical
transmitters in self-organizing pattern recognition architectures”, Neural Networks
3, 129-152.

Carpenter G.A. & Grossberg S. (eds.) (1991): Pattern recognition by self-organizing
neural networks, The MIT Press.

Carpenter G.A., Grossberg S., Markuzon N., Reynolds J.H. & Rosen D.B. (1992):
“Fuzzy ARTMAP: A neural network architecture for incremental supervised learn-
ing of analog multidimensional maps”, IEEE Trans. on Neural Networks 3, 698—
712.

Carpenter G.A., Grossberg S. & Reynolds J.H. (1991a): “ARTMAP: Supervised real-
time learning and classification of non-stationary data by a self-organizing neural
network”, Neural Networks 4, 565-588.

Carpenter G.A., Grossberg S. & Rosen D.B. (1991b): “Fuzzy ART: Fast stable learn-
ing and categorization of analog patterns by an adaptive resonance system”, Neural
Networks 4, 759-771.

Carpenter G.A., Milenova B.L. & Noeske B.W. (1998): “Distributed ARTMAP: A
neural network for fast distributed supervised learning”, Neural Networks 11, 793—
813.

Carpenter G.A. & Tan A.H. (1995): “Rule extraction: From neural architecture to
symbolic representation”, Connection Science 7, 3-217.

Chen B., Chang S. & Sivadas S. (2003): “Learning discriminative temporal patterns
in speech: Development of novel TRAPS-like classifiers”, in Proc. Eurospeech, pp.
853-856.

http://www.praat.org/

BIBLIOGRAPHY 227

Choueiter G.F. & Glass J.R. (2005): “A wavelet and filter bank framework for pho-
netic classification”, in Proc. ICASSP, pp. 933-936.

Clarkson P. & Moreno P. (1999): “On the use of support vector machines for phonetic
classification”, in Proc. ICASSP, pp. 585-588.

Cole R.A. & Muthusamy Y.K. (1992): “Perceptual studies on vowels excised from
continuous speech”, in Proc. ICSLP 1992, vol. 2, pp. 1091-1094.

De Wet F., Weber K., Boves L., Cranen B. & Bourlard H. (2004): “Evaluation of
formant-like features on an automatic classification task™, J. Acoust. Soc. Am. 116,
1781-1792.

Dechovitz D. (1977): “Information conveyed by vowels: A confirmation”, Haskins
Laboratory Status Report SR-51/52, 213-219.

Dehon C., Filzmoser P. & Croux C. (2000): Robust methods for canonical correlation
analysis, Springer-Verlag, Berlin, pp. 321-326.

Den Os E.A., Boogaart T.I., Boves L. & Klabbers F. (1995): “The Dutch polyphone
corpus”, in Proc. Eurospeech, vol. 1, Madrid, pp. 825-828.

Deng H., Ward R.K., Beddoes M.P. & Hodgson M. (2006): “A new method for obtain-
ing accurate estimates of vocal-tract filters and glottal waves from vowel sounds”,
IEEE Trans. on Audio, Speech, and Language Processing 14, 445-455.

Deng L. & Acero A. (2006): “Tracking vocal tract resonances using a quantized non-
linear function embedded in a temporal constraint”, IEEE Trans. on Audio, Speech,
and Language Processing 14, 425-434.

Diehl R.R., McCusker S.B. & Chapman L.S. (1981): “Perceiving vowels in isolation
and in consonantal context”, J. Acoust. Soc. Am. 69, 239-248.

Dusan S. (2005): “On the nature of acoustic information in identification of coarticu-
lated vowels”, in Proc. Interspeech 2005, Lisbon, pp. 2449-2452.

Elman J.L. & Zipser D. (1988): “Learning the hidden structure of speech”, J. Acoust.
Soc. Am. 83, 1615-1626.

Fisher R.A. (1936): “The use of multiple measurements in taxonomic problems”’, Ann.
Eugenics 7, 179-188.

Fujisaki H. & Kawashima T. (1968): “The roles of pitch and higher formants in the
perception of vowels”, IEEE Trans. on Acoustics, Speech, and Signal Processing ,
73-717.

Fulop S. & Fitz K. (2006): “Algorithms for computing the time-corrected instanta-
neous frequency (reassigned) spectrogram, with applications”, J. Acoust. Soc. Am.
119, 360-371.

228 BIBLIOGRAPHY

Furui S. (1986): “On the role of spectral transition for speech perception”, J. Acoust.
Soc. Am. 80, 1016-1025.

Gazor S. & Rashidi R. (2006): “Adaptive maximum windowed likelihood multicom-
ponent AM-FM signal decomposition”, IEEE Trans. on Audio, Speech, and Lan-
guage Processing 14, 479—491.

Golub G.H. & Reinsch C. (1970): “Singular value decomposition and least squares
solutions”, Numer. Math. 14, 403—-420.

Golub G.H. & Van Loan C.F. (1996): Matrix computations, 3rd edn., The Johns Hop-
kins University Press.

Gray Jr A.H. & Markel J.D. (1976): “Distance measures for speech processing”, IEEE
Trans. on Acoustics, Speech, and Signal Processing 24, 380-391.

Grossberg S. (1976): “Adaptive pattern classification and universal recoding, I: Paral-
lel development and coding of neural feature detectors”, Biological Cybernetics 23,
121-134.

Grossberg S. (1980): “How does a brain build a cognitive code?”, Psychological Re-
view 87, 1-51.

Grossberg S. (1986): “The adaptive self-organization of serial order in behavior:
Speech, language and motor control”, in E. Schwab & H. Nusbaum (eds.), Pat-
tern Recognition by humans and machines, Volume I: Speech perception, Academic
Press, Inc., pp. 187-294.

Grossberg S. (1991): “Nonlinear neural networks: Principles, mechanisms, and archi-
tectures”, in (), pp. 35-109.

Grossberg S. (1998): The link between brain learning, attention, and consciousness,
Tech. Rep. CAS/CNS-TR-97-018, Boston University.

Gusfield D. (1997): Algorithms on strings, trees and sequences: Computer science
and computational biology, Cambridge University Press.

Gutkin A. & King S. (2004): “Structural representation of speech for phonetic classi-
fication”, in Proc. International Conference on Pattern Recognition, pp. 438—441.

Halberstadt A.K. & Glass J.R. (1997): “Heterogeneous acoustic measurements for
phonetic classification”, in Proc. Eurospeech, Rhodes, pp. 401-404.

Hampshire J.B. & Waibel A.H. (1990): “A novel objective function for improved
phoneme recognition using time-delay neural networks”, IEEE Trans. on Neural
Networks 1, 216-228.

Hazen T. & Halberstadt A.K. (1998): “Using aggregation to improve the performance
of mixture Gaussian acoustic models”, in Proc. ICASSP, pp. 653-656.

BIBLIOGRAPHY 229

Hermansky H. (1990): “Perceptual linear predictive (PLP) analysis for speech”, J.
Acoust. Soc. Am. 87, 1738-1752.

Hermansky H. & Sharma S. (1999): “Temporal patterns (TRAPS) in ASR of noisy
speech”, Proc. ICASSP , 289-292.

Hillenbrand J., Getty L.A., Clark M.J. & Wheeler K. (1995): “Acoustic characteristics
of American English vowels”, J. Acoust. Soc. Am. 97, 3099-3111.

Hotelling H. (1936): “Relations between two sets of variates”, Biometrika 28, 321-
377.

Hrycej T. (1992): Modular learning in neural networks: A modularized approach to
neural network classification, John Wiley & Sons, Inc.

Huang J., Georgiopoulos M. & Heileman G.L. (1995): “Fuzzy ART properties”, Neu-
ral Networks 8,203-213.

Hult G. (1989): “Some vowel recognition experiments using multilayer perceptrons”,
STL-QPSR 1, 125-130.

Johnson D.E. (1998): Applied multivariate methods for data analysts, Duxburry
Press.

Jones R.D., Lee Y.C., Qian S., Barnes C.W., Bisset K.R., Bruce G.M., Flake G.W.,
Lee K., Lee L.A., Mead W.C., O’Rourke M.K., Poli M.K. & Thode L.E. (1990):
Nonlinear adaptive networks: A little theory, a few applications, Tech. Rep. LA-
UR-91-273, Los Alamos National Laboratory.

Juang H.B. & Katagiri S. (1992a): “Discriminative learning for minimum error clas-
sification”, IEEE Trans. on Speech Proc. 40, 3043-3054.

Juang H.B. & Katagiri S. (1992b): “Discriminative training”, J. Acoust. Soc. Jpn (E)
13, 333-339.

Kakehi K. (1992): “Adaptability to differences in Japanese monosyllabic percep-
tion”, in Y. Tokhura, E. Vatikiotis-Bateson & Y. Sagisaka (eds.), Speech perception,
speech production, and linguistic structure, Tokyo, OHM, pp. 135-142.

Kamm C.A., Kane-Esrig L.A. & Burr D.J. (1989): “Comparing performance of spec-
tral distance measures and neural network methods for vowel recognition”, Com-
puter Speech and Language 3, 21-34.

Kidmmerer B.R. & Kiipper W.A. (1990): “Experiments for isolated-word recognition
with single and two-layer perceptrons”, Neural Networks 3, 693-706.

Klatt D.H. & Klatt L.C. (1990): “Analysis, synthesis, and perception of voice quality
variations among female and male talkers”, J. Acoust. Soc. Am. 87, 820-857.

Komori T. & Katagiri S. (1992): “GPD training of dynamic programming-based
speech recognizers”, J. Acoust. Soc. Jpn (E) 13, 341-349.

230 BIBLIOGRAPHY

Koopmans-van Beinum F. (1980): Vowel contrast reduction. An acoustic and percep-
tual study of Dutch vowels in various speech conditions, Ph.D. thesis, University of
Amsterdam.

Kurinami K. & Sujiyama M. (1992): “An optimization technique for speaker mapping
neural networks using minimal classification error criterion”, J. Acoust. Soc. Jpn (E)
13, 419-427.

Ladefoged P. & Broadbent D.E. (1957): “Information conveyed by vowels”, J. Acoust.
Soc. Am. 29, 98-104.

Lamel L.F, Kassel R.H. & Seneff S. (1986): “Speech database development: Design
and analysis of the acoustic-phonetic corpus”, in Proc. DARPA Speech Recognition
Workshop, pp. 100-109.

Lamel L.F. et al. (1994): “The translanguage English database (TED)”, in Proc. IC-
SLP 1994, pp. 1795-1798.

Lang K.J. & Witbrock M.J. (1988): “Learning to tell two spirals apart”, Proc. Con-
nectionist Models Summer School , 52-59.

LeCun Y., Bottou L., Orr G.B. & Miiller K.R. (1998): “Efficient backprop”, in G.B.
Orr & K.R. Miiller (eds.), Neural networks: Tricks of the trade, vol. 1524 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 9-53.

Lee C.H. (1988): “On robust linear prediction of speech”, IEEE Trans. on Acoustics,
Speech, and Signal Processing 36, 642—649.

Lee K.F. & Hon H.W. (1989): “Speaker-independent phone recognition using hidden
Markov models”, IEEE Trans. on Acoustics, Speech, and Signal Processing 317,
1641-1648.

Lindblom B.E.F. (1963): “Spectrographic study of vowel reduction”, J. Acoust. Soc.
Am. 35, 1773-1781.

Lippmann R.P. (1987): “An introduction to computing with neural nets”, IEEE ASSP
Magazine 4, 4-22.

Macchi M.J. (1980): “Identification of vowels spoken in isolation versus vowels spo-
ken in consonantal context”, J. Acoust. Soc. Am. 68, 1636—-1642.

Makhoul J., Schwartz R. & El-Jaroudi A. (1989): “Classification capabilities of two-
layer neural nets”, in Proc. ICASSP, Glasgow, Great Brittain, pp. 635-638.

McCulloch N. & Ainsworth W.A. (1988): “Speaker independent vowel recognition
using a multilayer perceptron”, Proc. of Speech’88 , 851-857.

Meng HM. & Zue V.W. (1991): “Signal representation comparison for phonetic clas-
sification”, in Proc. ICASSP, Toronto, Canada, pp. 285-288.

BIBLIOGRAPHY 231

Minsky M. & Papert S. (1969): Perceptrons: an introduction to computational geom-
etry, MIT Press.

Mirchandani G., Cao W. & Bosworth B. (1989): “Efficient implementation of neural
nets using an optimal relationship between numbers of patterns, input dimension
and hidden nodes”, in Proc. ICASSP, Glasgow, Great Brittain, pp. 2521-2523.

Molau S. (2003): Normalization in the acoustic feature space for improved
speech recognition, Ph.D. thesis, Rheinish-Westfilischen technische Hochschule
Aachen, URL http://www-1i6.informatik.rwth-aachen.de/PostScript/
InterneArbeiten/Molau_NormAcousticFeatureSpaceImprovedSR_
Dissertation_14Feb2003.pdf.

Morin T.M. & Nusbaum H.C. (1990): “Perceptual learning of vowels in a neuromor-
phic system”, Computer Speech and Language 4, 79-126.

Mustafa K. & Bruce 1.C. (2006): “Robust formant tracking for continuous speech
with speaker variability”, IEEE Trans. on Audio, Speech, and Language Processing
14, 435-444.

Nearey T.M. (1989): “Static, dynamic, and relational properties in vowel perception”,
J. Acoust. Soc. Am. 85, 2088-2113.

Nearey T.M. (1997): “Speech perception as pattern recognition”, J. Acoust. Soc. Am.
101, 3241-3254.

Niles L., Silverman H., Tajchman G. & Bush M. (1989): “How limited training data
can allow a neural network to outperform an ’optimal’ statistical classifier”, in Proc.
ICASSP, Glasgow, Great Brittain, pp. 17-20.

Nocedal J. & Wright S.J. (1999): Numerical optimization, Springer Series in Opera-
tions Research, Springer-Verlag.

Nooteboom S.G. & Doodeman G.J.N. (1980): “Production and perception of vowel
length in spoken sentences”, J. Acoust. Soc. Am. 67, 276-287.

Peterson G.E. & Barney H.L. (1952): “Control methods used in a study of the vow-
els”, J. Acoust. Soc. Am. 24, 175-184.

Pols L.C.W,, Lyakso E., Van der Stelt].M., Wempe T.G. & Zajd6 K. (2006): “Vowel
data of early speech development in several languages”, in Proc. ISCA Tutorial
and Research Workshop on Multilingual Speech and Language Processing, URL
http://www.unistel.co.za/multiling2006.

Pols L.C.W., Tromp H.R.C. & Plomp R. (1973): “Frequency analysis of Dutch vowels
from 50 male speakers”, J. Acoust. Soc. Am. 53, 1093-1101.

Pols L.C.W., Van der Kamp L.J.T. & Plomp R. (1969): “Perceptual and physical space
of vowel sounds”, J. Acoust. Soc. Am. 46, 458—467.

http://www-i6.informatik.rwth-aachen.de/PostScript/InterneArbeiten/Molau_NormAcousticFeatureSpaceImprovedSR_Dissertation_14Feb2003.pdf
http://www-i6.informatik.rwth-aachen.de/PostScript/InterneArbeiten/Molau_NormAcousticFeatureSpaceImprovedSR_Dissertation_14Feb2003.pdf
http://www-i6.informatik.rwth-aachen.de/PostScript/InterneArbeiten/Molau_NormAcousticFeatureSpaceImprovedSR_Dissertation_14Feb2003.pdf
http://www.unistel.co.za/multiling2006

232 BIBLIOGRAPHY

Press W.H., Teukolsky S.A., Vetterling W.T. & Flannery B.P. (1996): Numerical
Recipes in C: The Art of Scientific Computing, 2nd edn., Cambridge University
Press.

R-project (2006): URL http://www.r-project.org/.

Rakerd B., Verbrugge R.R. & Shankweiler D.P. (1984): “Monitoring for vowels in
isolation and in a consonantal context”, J. Acoust. Soc. Am. 76, 27-31.

Rumelhart D.E., Hinton G.E. & Williams R.J. (1986): “Learning internal representa-
tions by error propagation”, in J.A. Anderson & E. Rosenfeld (eds.), Neurocomput-
ing: Foundations of Research, MIT Press, pp. 675-695.

Salomon J., King S. & Osborne M. (2002): “Framewise phone classification using
support vector machines”, in Proc. ICSLP, pp. 2645-2648.

Schldfli L. (1950): Gesammelte mathematische Abhandlungen, vol. 1, Birkhéuser,
Basel.

Schroeder M.R. (1977): “Recognition of complex acoustic signals”, in T.H. Bul-
lock (ed.), Life Sciences Research Report 5 (Dahlem Konferenzen), Abakon-Verlag,
Berlin, pp. 323-328.

Sekey A. & Hanson B.A. (1984): “Improved 1-Bark bandwidth auditory filter”, J.
Acoust. Soc. Am. 75, 1902—1904.

Senef S. (1988): “A joint synchrony/mean rate model of auditory speech processing”,
Journal of Phonetics 16, 55-76.

Shikano K. & Itakura F. (1992): “Spectrum distance measures for speech recogni-
tion”, in S. Furui & M.M. Sondhi (eds.), Advances in Speech Signal Processing,
Marcel Dekker, Inc., pp. 419—452.

Slawson A.W. (1968): “Vowel quality and musical timbre as functions of spectral
envelope and fundamental frequency”, J. Acoust. Soc. Am. 43, 87-101.

SPSS (2006): URL http://www.spss.com/.

Stevens K.N. & House A.S. (1963): “Perturbation of vowel articulations by conso-
nantal context: an acoustic study”, J. Speech Hear. Res. 6, 111-128.

Strange W. (1989): “Evolving theories of vowel perception”, J. Acoust. Soc. Am. 885,
2081-2087.

Strange W., Verbrugge R.R., Shankweiler D.P. & Edman T.R. (1976): “Consonant
environment specifies vowel identity”, J. Acoust. Soc. Am. 60, 213-224.

Sulter A.M. & Schutte H.K. (1994): “Groningen corpus”, Speech Processing Exper-
tise Centrum (SPEX), Leidschendam, The Netherlands.

http://www.r-project.org/
http://www.spss.com/

BIBLIOGRAPHY 233

Sun D.X. & Deng L. (1995): “Analysis of acoustic-phonetic variations in fluent speech
using TIMIT”, in Proc. ICASSP, Detroit, USA, pp. 201-204.

Van Alphen P. (1992): HMM-based continuous-speech recognition: systematic eval-
uation of various system components, Ph.D. thesis, University of Amsterdam.

Van Bergem D.R. (1986): “The influence of acoustic context on the identification of
vowels in pVt utterances. A study on speaker normalization”, IFA report nr. 88.

Van Bergem D.R. (1995): Acoustic and lexical vowel reduction, Ph.D. thesis, Univer-
sity of Amsterdam.

Van Bergem D.R., Pols L.C.W. & van Beinum F.J.K. (1988): “Perceptual normaliza-
tion of the vowels of a man and a child in various contexts”, Speech Communication
7, 1-20.

Van den Wollenberg A.L. (1977): “Redundancy analysis: an alternative for canonical
correlation analysis”, Psychometrika 42, 207-219.

Van Heuven V. & Van Houten E. (1985): “De klinkers in het Nederlands van Turken”,
Forum der Letteren , 201-213.

Van Nierop D.J.PJ., Pols L.C.W. & Plomp R. (1973): “Frequency analysis of Dutch
vowels from 25 female speakers”, Acustica 29, 110-118.

Van Son R.J.J.H. & Pols L.C.W. (1990): “Formant frequencies of Dutch vowels in a
text, read at normal and fast rate”, J. Acoust. Soc. Am. 88, 1683-1693.

Van Son R.J.J.H. & Pols L.C.W. (2001): “Phoneme recognition as a function of task
and context”, Proc. Institute of Phonetic Sciences University of Amsterdam 24, 27—
38.

Vapnik V. (1995): The Nature of Statistical Learning, Springer, N.Y.

Verbrugge R.R., Strange W., Shankweiler D.P. & Edman T.R. (1976): “What infor-
mation enables a listener to map a talker’s vowel space?”, J. Acoust. Soc. Am. 60,
198-212.

Waibel A., Hanazawa T., Hinton G., Shikano K. & Lang K.J. (1989): ‘“Phoneme
recognition using time-delay neural networks”, IEEE Trans. on Acoustics, Speech,
and Signal Processing 37, 328-339.

Watrous R.L. (1991): “Context-modulated vowel discrimination using connectionist
networks”, Computer Speech and Language 5, 341-362.

Watrous R.L. (1993): “Speaker normalization and adaptation using second-order con-
nectionist networks”, IEEE Trans. on Neural Networks 4, 21-30.

Weenink D.J.M. (1985): “Formant analysis of Dutch vowels from 10 children”, Proc.
Institute of Phonetic Sciences University of Amsterdam 9, 45-52.

234 BIBLIOGRAPHY

Weenink D.J.M. (1986a): “The identification of vowel stimuli from men, women, and
children”, Proc. Institute of Phonetic Sciences University of Amsterdam 10, 41-54.

Weenink D.J.M. (1986b): “QQ, een programma voor analyse, resynthese en herken-
ning van klinkersegmenten”, IFA report nr. 82.

Weenink D.J.M. (1991): “Aspects of neural nets”, Proc. Institute of Phonetic Sciences
University of Amsterdam 15, 1-25.

Weenink D.J.M. (1993): “Vowel classification with neural nets: a comparison of cost
functions”, Proc. Institute of Phonetic Sciences University of Amsterdam 17, 1-11.

Weenink D.J.M. (1996): “Adaptive vowel normalization and the TIMIT acoustic pho-
netic speech corpus”, Proc. Institute of Phonetic Sciences University of Amsterdam
20, 97-110.

Weenink D.J.M. (1997): “Category ART: A variation on adaptive resonance theory
neural networks”, Proc. Institute of Phonetic Sciences University of Amsterdam 21,
117-129.

Weenink D.J.M. (1999): “Accurate algorithms for performing principal component
analysis and discriminant analysis”, Proc. Institute of Phonetic Sciences University
of Amsterdam 23, 77-89.

Weenink D.J.M. (2001): “Vowel normalizations with the TIMIT acoustic phonetic
speech corpus”, Proc. Institute of Phonetic Sciences University of Amsterdam 24,
117-123.

Weenink D.J.M. (2003): “Canonical correlation analysis”, Proc. Institute of Phonetic
Sciences University of Amsterdam 25, 81-99.

Weenink D.J.M. & Pols L.C.W. (1999): “Multi-speaker vowel classification with
adaptive neural networks”, in Proc. ICPhS, vol. 3, San Francisco, USA, pp. 1633—
1636.

Weenink D.J.M. & Wempe T.G. (1986): “Communicatie tussen een Apple Ile en vier
Commodore Vic 20’s”, IFA report nr. 83.

Wendahl R.W. (1959): “Fundamental frequency and absolute vowel identification”, J.
Acoust. Soc. Am. 31, 109-110(A).

Zahorian S.A., Nossair Z.B. & Norton C.A. (1993): “A partitioned neural network
approach for vowel classification using smoothed time/frequency features”, in Proc.
Eurospeech, pp. 1225-1228.

Zahorian S.A., Silsbee P. & Wang X. (1997): “Phone classification with segmental
features and a binary-pair partitioned neural network classifier”, in Proc. ICASSP,
pp- 1011-1014.

Zue V.W. & Seneff S. (1988): “Transcription and alignment of the TIMIT database”,
Proc. Second Meeting on Advanced Man-Machine Interface through Spoken Lan-

guage .

Index

Adank et al. (2004), 2, 5

Adank (2003), 2, 82

Amari (1990), 43

Anderson et al. (1999), 31

Anderson (1935), 69, 75

Assmann et al. (1982), 8, 15, 16, 18, 20,
82

Bai & Demmel (1993), 30

Boersma & Weenink (2006), 3, 32, 95,
122

Boersma et al. (2003), 164

Boersma (1993), 131

Boersma (1998), 164

Borg & Groenen (1997), 115

Bourlard & Wellekens (1989), 66

Buiting (1986), 10

Carpenter & Grossberg (1987a), 84, 165

Carpenter & Grossberg (1987b), 165

Carpenter & Grossberg (1990), 165

Carpenter & Grossberg (1991), 169

Carpenter & Tan (1995), 66

Carpenter et al. (1991a), 165, 172, 173

Carpenter et al. (1991b), 165

Carpenter et al. (1992), 172, 173,211

Carpenter et al. (1998), 179

Chen et al. (2003), 212

Choueiter & Glass (2005), 212

Clarkson & Moreno (1999), 211

Cole & Muthusamy (1992), 162, 209

Dechovitz (1977), 82

Dehon et al. (2000), 116

Deng & Acero (2006), 214

Deng et al. (2006), 214

Den Os et al. (1995), 122

De Wet et al. (2004), 214

Diehl et al. (1981), 8

Dusan (2005), 197

Elman & Zipser (1988), 42, 64

Fisher (1936), 75

Fujisaki & Kawashima (1968), 9, 17

Fulop & Fitz (2006), 214

Furui (1986), 9

Gazor & Rashidi (2006), 214

Golub & Reinsch (1970), 26

Golub & Van Loan (1996), 26, 27, 30, 99

Gray & Markel (1976), 82

Grossberg (1976), 84, 164

Grossberg (1980), 164, 199

Grossberg (1986), 164, 166

Grossberg (1991), 43

Grossberg (1998), 5, 166

Gusfield (1997), 212

Gutkin & King (2004), 212

Halberstadt & Glass (1997), 141, 142, 144,
210

Hampshire & Waibel (1990), 70

Hazen & Halberstadt (1998), 211

Hermansky & Sharma (1999), 212

Hermansky (1990), 212

Hillenbrand et al. (1995), 141

Hotelling (1936), 97

Hrycej (1992), 69, 70, 77,78

Huang et al. (1995), 171, 177

Hult (1989), 42

Johnson (1998), 103

Jones et al. (1990), 58, 66

236

INDEX

Juang & Katagiri (1992a), 69, 70, 74, 75,
77

Juang & Katagiri (1992b), 70

Kammerer & Kiipper (1990), 42

Kakehi (1992), 203

Kamm et al. (1989), 42

Klatt & Klatt (1990), 213

Komori & Katagiri (1992), 70

Koopmans-van Beinum (1980), 2, 9, 16

Kurinami & Sujiyama (1992), 70

Ladefoged & Broadbent (1957), 82

Lamel et al. (1986), 2, 118

Lamel et al. (1994), 122

Lang & Witbrock (1988), 173

LeCun et al. (1998), 65, 159

Lee & Hon (1989), 141, 142, 144, 208,
210

Lee (1988), 214

Lindblom (1963), 9, 16

Lippmann (1987), 43, 54, 66

Macchi (1980), 8, 15, 18, 20, 82

Makhoul et al. (1989), 47

McCulloch & Ainsworth (1988), 42

Meng & Zue (1991), 142, 144, 207, 208,
214

Minsky & Papert (1969), 49, 66

Mirchandani et al. (1989), 47

Molau (2003), 155, 162

Morin & Nusbaum (1990), 42

Mustafa & Bruce (2006), 214

Nearey (1989), 8

Nearey (1997), 8

Niles et al. (1989), 65

Nocedal & Wright (1999), 73

Nooteboom & Doodeman (1980), 15

Peterson & Barney (1952), 93, 206

Pols et al. (1969), 144

Pols et al. (1973), 2, 5, 6, 15, 23, 32, 35,
39, 81, 85, 86, 88-90, 101-103,
116, 144, 202

Pols et al. (2006), 214

Press et al. (1996), 26, 27

R-project (2006), 213

Rakerd et al. (1984), 8

Rumelhart et al. (1986), 62, 64, 71

SPSS (2006), 213

Salomon et al. (2002), 211

Schlifli (1950), 47

Schroeder (1977), 88

Sekey & Hanson (1984), 136

Senef (1988), 207

Shikano & Itakura (1992), 82

Slawson (1968), 9

Stevens & House (1963), 9, 16

Strange et al. (1976), 8, 15, 20, 82

Strange (1989), 3, 8

Sulter & Schutte (1994), 122

Sun & Deng (1995), 200, 202

Van Alphen (1992), 6, 145

Van Bergem (1986), 9

Van Bergem (1995), 194

Van Bergem et al. (1988), 82

Van den Wollenberg (1977), 214

Van Heuven & Van Houten (1985), 2

Van Nierop et al. (1973), 2, 5, 6, 15, 36,
69, 75-78, 81, 85-90, 92, 144,
202

Van Son & Pols (1990), 2

Van Son & Pols (2001), 8

Vapnik (1995), 211

Verbrugge et al. (1976), 8, 20, 82

Waibel et al. (1989), 42

Watrous (1991), 42

Watrous (1993), 88, 93

Weenink & Pols (1999), 81

Weenink & Wempe (1986), 13

Weenink (1985), 2, 5,9, 11, 85, 86

Weenink (1986a), 2, 3, 7, 81, 202

Weenink (1986b), 11

Weenink (1991), 41

Weenink (1993), 69

Weenink (1996), 117, 143

Weenink (1997), 163

Weenink (1999), 23

Weenink (2001), 183

Weenink (2003), 95

Wendahl (1959), 17

Zahorian et al. (1993), 210

Zahorian et al. (1997), 210, 211

Zue & Seneff (1988), 120

	Introduction
	The identification of vowel stimuli from men, women, and children
	Introduction
	Speech material
	Further processing of the speech material
	Preparation of stimulus tapes
	Subjects
	Listening conditions
	Stimuli for the experiments
	Results and discussion

	Principal component analysis and discriminant analysis
	Introduction
	Principal component analysis
	Discriminant analysis
	The generalized singular value decomposition
	Discriminant analysis in the praat program
	Introduction
	How to perform a discriminant analysis
	Measuring the correlation between the variables
	Projecting data on the discriminant space
	Drawing concentration ellipses
	Classifying the data

	Conclusion

	Aspects of neural nets
	Introduction
	Context and outline
	Terminology
	Topology

	Capabilities of one node
	Capabilities of one-layer nets
	Capabilities of two-layer nets
	Introduction
	Number of cells formed by a two-layer net
	Permissible logical combinations of two-layer nets
	Decision regions of two-layer nets

	Three-layer nets
	Other aspects of neural nets
	The nonlinearity
	Level coding
	Training a neural net

	Discussion
	Possible decision regions and topology
	Coding the inputs
	Coding the outputs
	Why neural nets?

	Conclusions

	Comparison of cost functions
	Introduction
	The relation between cost function and weights
	The cost function by Juang & Katagiri
	Tests with actual data

	The cost function by Hrycej
	Tests with actual data

	Discussion on cost functions

	Speaker normalization and bias adaption
	Introduction
	The model
	Geometrical interpretation
	The test data sets
	The number of parameters
	Frequency scales
	Test of the adaptation model
	Discussion

	Canonical correlation analysis
	Introduction
	Mathematical background
	Derivation of the canonical correlation analysis equations
	Solution of the canonical correlation analysis equations
	Solution from covariance matrices
	Solution from data matrices
	Solution summary

	A canonical correlation analysis example
	Finding correlations between formant frequencies and levels
	Using the correlations for prediction

	Principal components and auto-associative neural nets
	Introduction
	The auto-associative neural net
	Data preprocessing
	Training the neural net
	The comparison
	Procrustes transform
	Summary

	Discussion

	Accessing the timit speech corpus
	Introduction
	File formats
	Audio files
	Label files

	Accessibility of the material
	A phoneme database
	Obtaining stress information

	Phoneme statistics
	Characteristics of the vowel material
	Analysis of the vowels
	Fundamental frequency analysis
	Filter bank analysis

	Selection of the vowel material
	Conclusion

	Normalizations on bandfilter data from timit
	Introduction
	Data set nomenclature
	Characteristics of the vowel material
	Classifying a spectrum as male or female
	Relation between bandfilter values and fundamental frequency
	Procrustes normalization

	Bias adaptation
	Introduction
	Data reduction
	Neural net parameters
	Test procedure
	Results

	Discussion

	categoryart
	Introduction
	Basic features of art systems
	fuzzyart algorithm
	Preprocessing
	Category choice
	Learning

	categoryart algorithm
	Simulation: Learning to tell two spirals apart
	A real-world test
	Conclusions

	Adaptive speaker normalization
	Introduction
	An adaptive speaker normalization procedure
	Test with formant data
	Introduction
	Blocked versus mixed speaker condition
	Visualisation of the dynamics
	Mixing male and female data
	Comparison with Procrustes transform

	Test with bandfilter data
	Stressed vowels
	Dynamic spectra

	Discussion
	Conclusion

	Discussion and future research
	Introduction
	Human vowel identification
	Machine recognition of vowel segments
	Principal component analysis
	Procrustes transform
	Discriminant analysis
	Feedforward neural nets
	Canonical correlation analysis
	categoryart
	Adaptive vowel normalization
	Comparison of vowel classification scores with the literature

	Tool development motivation

	Summary
	Samenvatting
	Curriculum Vitae
	Formant frequencies from 10 men, 10 women and 10 children
	Bibliography
	Index

