
IFA Proceedings 24, 2001 125

Institute of Phonetic Sciences,
University of Amsterdam,
Proceedings 24 (2000-2001), 125-146.

ON THE PROBABILISTIC ORDERING OF
CONSTRAINTS

Louis ten Bosch

Abstract

In this paper, we will discuss a number of aspects related to the probabili stic orderings of
constraints. The developed model is referred to as Probabili stic Ranking Optimisation
(PRO). The treatment of ranking in Optimality Theory is taken as a starting point, but the
emphasis here will be on the mathematical properties of ranking solutions and the
connection with adaptive and sequential learning. While in Optimality Theory constraints
are (linearly) ranked along a one-dimensional continuum, the current exposition is not
constrained to a one-dimensional continuum, but can be applied in a more general setting.
A relation between the learnabilit y of constraints on the one hand and aspects of graph
theory on the other is established. The resulting PRO model enables to understand the
modelli ng power of ranking in terms of the number and structure of probabilit y properties
that have to be fulfill ed.

1 Introduction

This paper deals with orderings, and more specifically, a probabili stic model for
orderings. The model aims at a description of observed orderings of objects or events.
As the first example, we consider the following morning activities (example 1):

‘a’ = ‘wake up’
‘b’ = ‘ take a shower’
‘c’ = ‘eat bread’
‘d’ = ‘brush teeth’
‘e’ = ‘go to work’

Each of these activities is denoted by a symbol. The ordering of these activities on
five working days can be represented by a list:

L = { ‘abcde’ , ‘acbde’ , ‘adbce’ , ‘adcbe’ , ‘abcde’ }

In this form, L just describes five working days, but L can also describe the activities
over a longer time span, by e.g. allotting probabiliti es to each of its elements. In the
latter probabili stic interpretation, we may conclude that action ‘a’ and ‘e’ are ‘ li kely’
to be the first and last action, respectively, while the ordering of remaining actions is
less well specified and may actually differ from day to day.

126 IFA Proceedings 24, 2001

The ordering of the activities along a time axis is total, which means that on each
day, each activity ‘x’ is simultaneous with itself, any two activities ‘x’ and ‘y’ are
always comparable in the sense that ‘x’ occurs earlier than ‘y’ , simultaneous with ‘y’ ,
or later than ‘y’ , and there is transitivity: if ‘ x’ is earlier than ‘y’ and ‘y’ is earlier than
‘z’ , then ‘x’ is earlier than ‘z’ . In the example above, all activities on any day are
comparable with respect to their (time) ordering.

The symbols ‘a’ , ‘b’ , … may also refer to transformations, acting on an object,
rather than to activities. For example, when this object is a phonetic-phonological
representation of a pronunciation, a possible interpretation of four symbols reads
(example 2):

‘a’ = ‘devoice final obstruent if voiced’
‘b’ = ‘diphthongize vowel in final syllable’
‘c’ = ‘reduce penultimate syllable’
‘d’ = ‘apply vowel harmony in penultimate and final syllable’

The application of one or more actions on a certain representation will alter this
representation into another one. This resulting representation usually depends on the
ordering of the chosen actions. In general, many possibly different outcomes can be
generated from one input representation, by choosing another ordering of these
transformations. The following example shows the effect of the switch of two
transformations on the third singular form of ‘ praten’ (‘ talk’) en ‘raden’ (‘ guess’) in
Dutch.

Degemination: Delete one of two identical consonants.
Devoicing: Devoice an obstruent (in the coda).

Underlying representation:/pra:t+t/ /ra:d+t/
Devoicing [pra:t+t] [ra:t+t]
Degemination [pra:t] [ra:t]

The reverse ordering of these constraints produces a different result (which is
incorrect, at least for Dutch):

Degemination [pra:t] [ra:d+t]
Devoicing [pra:t] [ra:t+t]

This shows that a correct ordering of the transformations is essential to obtain
(explain, predict) the observed phonological surface forms.

If we assume that it is possible to figure out, given an output representation, the
ordering in which transformations have been applied to the underlying representation
to obtain the output representation, then we obtain a mapping from the output
‘surface’ representation to a sequence of symbols1. As a result, the list L ‘encodes’ the
probabili stic structure in the stream of incoming representations in terms of the

1 This is a substantial assumption. It can be related to the idea that each action can be modelled as a
transducer that maps the input representation to a sequence of ‘marks’ indicating the presence or
absence of a mismatch between the representation and the action. When certain restrictions are met,
ranking models can be interpreted as regular relations, which would simpli fy this mapping (see Frank &
Satta, 1998).

IFA Proceedings 24, 2001 127

transformations. If we assume that for each input representation all transformations
must be used in some order, the ordering is again total.

A slightly different interpretation of the symbols deals with properties or
constraints rather than with actions, such as in (example 3):

‘a’ = ‘ the final obstruent is unvoiced’
‘b’ = ‘ in the final syllable the vowel is long’
‘c’ = ‘ the penultimate syllable is reduced’

One can make several types of generalisations. One such generalisation is where the
ordering is partial rather than total. Example 4:

‘a’ = ‘wake up’
‘b’ = ‘ take a shower’
‘c’ = ‘ take a bath’
‘d’ = ‘eat bread’
‘e’ = ‘go to work’

L = { ‘abde’ , ‘acd’ , ‘aed’ , ‘adb’ , ‘ab’ }

In this li st, ‘b’ and ‘c’ seem mutually exclusive and therefore cannot be mutually
ranked (alternatively, it makes no sense to try to rank them, or there are no input data
available in which they are ranked). Furthermore, ‘d’ and ‘e’ is optional, and there
seems a tendency to first do ‘a’ and later ‘b’ or ‘c’ , while the ranking of ‘ d’ and ‘e’ is
not clear. We will see below how we can deal with this situation of partial ordering.

Terminology

In the examples mentioned above, we have been dealing with the ordering of actions,
properties, and transformations. To uniform the terminology, we will use the term
‘constraint’ in the sequel of this paper for the objects to be ordered on the basis of
input data.

2 Learning the ordering of constraints

The question now is, how the constraints can be organized in a hierarchy or
‘grammar’ such that this hierarchy (e.g. a linear ranking) optimally reflects the
observed orderings such as in the lists L above. The task for the learner (the
algorithm) is to deduce a grammar that explains the observed ordering in the input
data.

In Optimality Theory (OT), approaches are described to learn this ranking based on
incoming data (see e.g. Kager, 1999). In OT, it is assumed that a (fixed) set of
constraints is already available to the learner. In some of the approaches, one
stipulates that all possible output forms – not only the ones that are observed – are
available to the learner, together with violation marks for those constraints that render
them sub-optimal. Whether such sub-optimal forms are available for the learner, even
if they are not presented as such, is a topic of theoretical debate in OT.

128 IFA Proceedings 24, 2001

In this paper, we will not go into detail on this debate. We will just assume that
only the data that are presented are available as learning data, and will focus on and
discuss some of the mathematical properties of ranking solutions. Next, we will deal
with the question of how these solutions can be found by a sequential learning
algorithm, and point to a relation with graph theoretical notions. The result of this
exercise is a model that will be referred to as Probabilistic Ranking Optimisation
(PRO).

3 Towards a formal approach

We will abstract away from the interpretation of the symbols, and concentrate on the
structure of the list L in terms of the statistical properties of the ordering of the
constraints. So L can be either a finite list of string data, or be extended with
probabilities allotted to each string, or can be an infinite stream of data. It is further
assumed that the ordering of the constraints can be total or partial. We mention a
number of ways to describe the structure of L.

1. By (probabili stic) grammars. By interpreting L as a language with
sentences of words ‘a’ , ‘b’ , etc., L can be described or approximated by a
finite state grammar (FSG), a context-free grammar (CFG), or probabili stic
versions of these grammars (e.g. Charniak, 1993). A large number of
established algorithms exist to construct the grammar and to update the
probabiliti es of the grammar rules on the basis of L. It will be clear that the set
of grammar rules that represents L may become rather cumbersome. For li sts
with a more complicated ordering structure, the rules become as trivial as the
list L itself, for example the rule rewrite(S, ‘abde’ | ‘acd’ | ‘aed’ | ‘adb’ | ‘ab’)
or a probabili stic version, in the case of example 4. This rule states that the
formal sentence symbol S can be rewritten into one of the five strings. The
grammar approach is useful to factor out groups of constraints that behave as
‘mutually disjoint’ . We will address the probabili stic grammar approach
below.

2. By (probabili stic) ordering. Probabili stic ordering (ranking) is used in
recent developments in OT (for example in the Gradual Learning Algorithm
(GLA), see Boersma & Hayes, 2001). The basic idea is, for a totally ordered
ranking system, to have each action ‘x’ associated with a location pos(‘x’) on a
straight line, such that pos(‘a’) < pos(‘b’) means that ‘a’ is li kely to occur
before ‘b’ . The larger the distance between pos(‘a’) and pos(‘b’) , the more
likely ‘a’ occurs before ‘b’ , and reverse: if pos(‘a’) > pos(‘b’) , ‘a’ is li kely to
happen after ‘b’ . In the sequel, we will follow this approach and further
elaborate on it. In this paper, probabili stic ranking will be notated by the rule
rewrite(S, probabili stic ordering{ ‘a’ , …, ‘z’ }), meaning a rewrite of the
formal sentence symbol S into a probabili stic string using the symbols ‘a’ to
‘z’ , i.e. an probabili stic ordering on the constraints ‘a’ to ‘z’ . The statistics of
the ordering evidently depends on the model parameters such as pos(‘a’) , but
these parameters will be omitted here not to burden the notation.

One of the numerical models that implements probabili stic ranking makes use of
probabilit y distributions, such that each action ‘x’ corresponds with some probabilit y

IFA Proceedings 24, 2001 129

distribution D (in general, D will depend on x). D is a probabilit y distribution on the
set of real numbers. The probabilit y that ‘a’ occurs before ‘b’ – henceforth denoted
P(‘a’ < ‘b’) – is then modelled as

P(‘a’ < ‘b’) = P(X ‘a’ < X ‘b’ | X ‘a’ and X ‘b’ stochastic variables
associated with D‘a’ and D‘b’, resp.) (1)

This definition makes sense for all sorts of probabilit y distributions D. The two
distributions D‘a’ and D‘b’ need not be of the same ‘shape’ or from the same family of
distributions. When the two distributions do not overlap, e.g. when D‘a’ is entirely
located at the left side of D‘b’, then P(‘a’ < ‘b’) = 1, which means that ‘a’ always
occurs before ‘b’ (‘ a’ always outranks ‘b’) . The involved probabilit y evaluation takes
a particularly simple form in the case where the distributions have a simple
mathematical form, such as a triangle shape, a laplacian or a gaussian. The choice for
a particular form for the distributions can be based on additional knowledge about an
underlying evaluation model, or on arguments related to mathematical elegance. For
example, in the case of gaussians, the probabilit y P(‘a’ < ‘b’) will never completely
vanish, nor will it ever be exactly equal to 1, properties which may be attractive from
a probabili stic point of view and are often essential for learning.

In the sequel, we will use gaussian distributions to show a number of properties of
probabili stic ranking. In the gaussian case, the probabilit y P(‘a’ < ‘b’) can be
expressed just in terms of two means and two standard deviations. It can easily be
shown that, if the gaussian distribution G‘x’ is specified by its mean µ‘x’ and standard
deviation σ‘x’, eq. (1) is simpli fied to eq. (2):

P(‘a’ < ‘b’) = IN(-µ/σ), with
µ = µ‘a’ - µ‘b’ (2)
σ2 = σ‘a’

2
 + σ‘b’

2, σ positive or zero

where IN(x) denotes the integral from –infinity to x of the normal distribution.
Observe that IN(γ) + IN(-γ) = 1 for all values of γ. After reorganisation of eq. (2), eq.
(2a) follows:

(µ‘a’ - µ‘b’) = γ’ab’ sqrt(σ‘a’
2 + σ‘b’

2) (2a)

in which γ’ab’ denotes the unique solution such that P(‘a’ < ‘b’) = IN(-γ’ab’). In the case
where the variance is fixed to 1, (2a) simpli fies to (2b):

(µ‘a’ - µ‘b’) = γ’ab’ sqrt(2) (2b)

Observe that eqs. (2) and (2a) also hold in the more general case, in which the
distributions D’x’ are not necessarily gaussian. In such a general case, the relation
between γ’ab’ and P(‘a’ < ‘b’) is different from the gaussian case. In the case that D’x’

vanishes nowhere (which is true for gaussians and many more distributions), the
constant γ’ab’ is one-to-one related to the probabilit y P(‘a’ < ‘b’) via a more general
function F:

P(‘a’ < ‘b’) = F(-γ’ab’)

130 IFA Proceedings 24, 2001

in which F only depends on the general type of distributions.
Obviously, by varying the model parameters in the distributions, one can change

the mismatch between the observed orderings in the incoming data in L on the one
hand, and the predicted orderings (by using eq. 1) on the other. For example, if ‘ a’ is
always found to outrank ‘b’ , a model with µ‘a’ < µ‘b’ will yield a better match than a
model in which µ‘a’ > µ‘b’. For a given L, specific choices of the distributions will
yield an optimal match. The existence of such ‘optimal’ solutions when gaussians are
used, and the involved learnabilit y aspects, will be the focus of the next section.

4 Existence of rankings

Two constraints

In this section, we focus on the question whether ranking solutions exist in terms of
means and standard deviations for an arbitrary incoming data L. We will distinguish
two probabili stic ranking optimisation models: PRO-1 in which every D’x’ is
characterized by one parameter (the mean), and PRO-2, in which every D’x’ has two
parameters (mean and variance).

We will start by examining the simplest non-trivial case in which we have only 2
constraints to be ranked. In this case, there is only one probabilit y, viz. P(‘a’ < ‘b’) , to
be modelled. In PRO-2, the potential solution space is four-dimensional, since there
are two constraints, each having two model parameters. The modelli ng of P(‘a’ < ‘b’)
yields a non-trivial (non-linear) relation between the four parameters { µ‘a’, σ‘a’

2, µ‘b’,
σ‘b’

2}, which is specified by eq. (2a). This leaves three degree of freedom in the
solution space. Among these four parameters there are two additional but trivial
relations, one related to a shift of all the means and the second related to a common
scaling factor for the means and standard deviations. Taking away also these two
trivial degrees of freedom, one ‘genuine’ degree of freedom is left, which indicates
that, if we use means and variances for each gaussian, we end up with a one-
dimensional model space. This means that there is not a single solution but a one-
dimensional family of solutions: the solution in PRO-2 is underspecified by just
specifying P(‘a’ < ‘b’) . The result means that, if any solution exists, the genuine
solution space around that solution in general is one-dimensional.

The value of the dimension (viz. 1) itself is independent of the actual value of P(‘a’
< ‘b’) . This in turn means that a tracking of the ‘recent’ statistics in the input data is
possible but underspecified as well , since each neighbouring solution is also
embedded in its own solution space of dimension 1.

This ‘fr eedom’ in the solution space can be used to put more restrictions on the
solution – if one additional restriction is imposed, the solution becomes unique. In the
Gradual Learning Algorithm (GLA), Boersma & Hayes (2001) fix one of the means
and set both variances equal to one, thereby reducing the solution space to dimension
0 (i.e. exactly one solution, if it exists). This is actually the solution according to
PRO-1. In summary, it follows that in the two-constraints case, a ranking solution
(with or without fixed standard deviations) always exists, the solution in GLA or
PRO-1 being unique.

Three constraints

IFA Proceedings 24, 2001 131

PRO-2. When more than two constraints are involved, things get slightly more
diff icult. In the case of three constraints ‘a’ , ‘b’ , ‘c’ that are to be totally ordered, the
six parameters { µ‘a’, σ‘a’

2, µ‘b’, σ‘b’
2, µ‘c’, σ‘c’

2} are determined by up to three (3*(3-
1)/2) relations associated to the three observed probabiliti es P(‘a’ < ‘b’) , P(‘b’ < ‘c’)
and P(‘a’ < ‘c’) . If γ’ab’ is chosen such that P(‘a’ < ‘b’) = IN(-γ’ab’), and similarly for
γ’bc’ and γ’ac’ (these parameters γ are now uniquely determined), we obtain a system of
three equaliti es, each of them fully comparable with eq. (2a) but now corresponding to
the relation between ‘a’ and ‘b’ , ‘b’ and ‘c’ , and ‘a’ and ‘c’ , respectively:

(µ‘a’ - µ‘b’) = γ’ab’ sqrt(σ‘a’
2 + σ‘b’

2)
(µ‘b’ - µ‘c’) = γ’bc’ sqrt(σ‘b’

2 + σ‘c’
2) (3)

(µ‘c’ - µ‘a’) = γ’ca’ sqrt(σ‘c’
2 + σ‘a’

2)

These three relations leave three (6 – 3) degrees of freedom. As before, the remaining
three dimensions include two trivial degrees of freedom: a shift of the means and a
scaling factor for means and standard deviations, so there is only one genuine degree
of freedom left.

In this case, however, there is not always an exact solution in terms of { µ‘a’, σ‘a’
2,

µ‘b’, σ‘b’
2, µ‘c’, σ‘c’

2}. That means that there is a combination for P(‘a’ < ‘b’) , P(‘b’ <
‘c’) and P(‘a’ < ‘c’) that cannot be modelled by this probabili stic ranking approach. It
can be shown that an exact solution exists only in the following two cases (a) and (b):
(a) when the inner product

((γ’ab’ γ’bc’ γ’ca’)’ , P) (4)

takes different signs on the set { P} = { (1 1 0)’ , (1 0 1)’ , (0 1 1)’ }. In words: within the
set of three numbers { γ’ab’ + γ’bc’, γ’ab’ + γ’ca’, γ’bc’ + γ’ca’}, at least one must be strictly
positive and at least one must be strictly negative, in order to have an exact solution
for the ranking with the specified P(‘a’ < ‘b’) , P(‘b’ < ‘c’) , and P(‘a’ < ‘c’) .
(b) when all γ’s are zero, which means no preference for any symbol, i.e. P(‘a’ < ‘b’)
= P(‘b’ < ‘c’) = P(‘a’ < ‘c’) = ½. Modulo shift and scaling, the solution space is
essentially two-dimensional.

PRO-1. In the case when all variances are fixed to 1 in the 3-constraints case, it
follows from eq. (3) that there is no solution unless coincidentally γ’ab’ + γ’bc’ = γ’ac’

(or equivalently γ’ab’ + γ’bc’ + γ’ca’ = 0). In that case, the genuine solution space has
dimension 0 (apart from a trivial shift, all means are determined). In general however,
such an equation between the γ’s does not hold, since P(‘a’ < ‘c’) is not specified by
P(‘a’ < ‘b’) and P(‘b’ < ‘c’) . This can be easily inferred from table I. The table shows
that P(‘a’ < ‘c’) = #(‘a’ < ‘c’) /|L| can take any value between 0 and P(‘a’ < ‘b’) + P(‘b’
< ‘c’) , by appropriately defining the probabiliti es of the six strings ‘abc’ , …, ‘cba’ .

It follows that the probabili stic ranking using single gaussians per symbol is not
able to model all possible rankings between three symbols when the variances are
forced to 1. In the gradual learning algorithm (GLA) described by Boersma & Hayes
(2001), all variances are chosen equal to unity, despite the involved loss in
mathematical modelli ng power, and they give an argument to do so.

132 IFA Proceedings 24, 2001

Table I. By appropriately manipulation of the probabiliti es of the strings ‘abc’ to ‘cba’ in the input,
P(‘a’ < ‘c’) can take arbitrary values between 0 and P(‘a’ < ‘b’) + P(‘b’ < ‘c’).

#(‘a’<’b’) #(‘b’<’c’) #(‘a’<’c’)
abc * * *
acb * - *
bac - * *
bca - * -
cab * - -
cba - - -

Boersma & Hayes relate the variance of a constraint to a property of the (human)
evaluation system, rather than to the constraint itself. Their argument is that variances
reflect the noise inherent to the evaluation of the features that are input for the
probabilit y distributions, and since the evaluation phase precedes the decision, it must
be the same for each constraint.

In this paper, we do not adopt this view. Although part of the variance is related to
evaluation noise, we do not conclude that all variances must therefore be equal. More
precisely, evaluation noise refers to the fact that repeated presentation of the same
stimulus yields different perceptual effects (among the extensive literature see Ashby,
1992; Ashby & Alfonso-Reese, 1995), rather than to direct claims about the shape of
statistical distributions. Furthermore, with equal covariance matrices per class, the
boundaries between all classes would be linear, which is in general an unnecessary
strong assumption in classification theory.

In addition, noise plays an essential role in the theory on decision rules and
perceptual representations (Maddox & Bogdanov, 2000), and it is a priori possible
that a certain constraint is more susceptible to noise than another constraint. We
therefore take the position that the variance can be regarded as a genuine, intrinsic
property of a constraint, which may include noise effects from the evaluation channel,
but which eventually fully specifies its vulnerabilit y among neighbouring constraints.
We however agree that, in the PRO-2 model, the variances are ‘overloaded’ in the
sense that they are used to both cover the intrinsic variation in the input data as well as
to model a noisy evaluation system.

Unequal variances are essential i f one wants to model

L = { ‘bac’ , ‘abc’ , ‘acb’ }

in which ‘a’ always outranks ‘c’ . (Boersma & Hayes provide a similar example). With
different variances, an exact modelli ng of this li st L is possible.

But even with unequal variances, the probabili stic model is not capable of
explaining the statistics of any list L with three constraints. For example, if L takes a
cyclic form { ‘abc’ , ‘bca’ , ‘cab’ } (with probabilit y 1/3 for each element), the solution
is degenerated to µ‘a’ = µ‘b’ = µ‘c’ = a constant. L is only a subset of patterns L’ that are
explained by the probabili stic ranking:

L’ = { ‘abc’ , ‘bca’ , ‘cab’ , ‘acb’ , ‘bac’ , ‘cba’ }

IFA Proceedings 24, 2001 133

with equal probabilit y (1/6) for each of the strings. So the probabilit y model accepts
many more patterns than it has observed. Mathematically, this ranking problem is
solvable when the probabili stic model would be extended to allow the ranking of
strings with unequal lengths, such as P(‘ab’ < c’) , P(‘a’ < ‘cb’) , etc. The gradual
learning algorithm (GLA) and the PRO models, however, do not take into account
these higher-order probabiliti es. (In section 9, the background of this ‘cyclic’ situation
is explained in a more geometrical way.)

We again emphasize that the present treatment deals with the existence of an exact
solution. In practice, ‘nearly optimal’ solutions will exist in many cases. These nearly
optimal solutions are easiest to derive in the PRO-1 model. For example, in the case
of three constraints only, we have to solve the following set of equations (5):

(µ‘a’ - µ‘b’) = γ’ab’ sqrt(2)
(µ‘b’ - µ‘c’) = γ’bc’ sqrt(2) (5)
(µ‘c’ - µ‘a’) = γ’ca’ sqrt(2)

where the γ’s are fully determined by the observed probabiliti es. If their sum equals 0,
the PRO-1 model can exactly match the observed ranking probabiliti es. However, if
the sum is not exactly equal to 0, the model can only approximate the observed
patterns, and in such a case it is essential to use a precise definition of ‘ approximate’ .
The literature on optimisation provides numerous methods to search a model that
maximizes a ‘match’ with the data (e.g. by optimising the likelihood of the data, by
least squares minimization, or by expectation maximisation), but the choice of the
optimisation is also a matter of elegance and feasibilit y with respect to the targeted
application domain (more about this in section 6).

Four and more constraints

PRO-2. In case of four constraints ‘a’ , ‘b’ , ‘c’ and ‘d’ that are totally ordered, the 6
probabiliti es P(‘x’ < ‘y’) lead to 6 equations of the same type as eq. (2a). The number
of variables is 8, which means that the remaining dimension is 2 (which include the
shift and the scaling). So, in essence, there is just one solution, if it exists. In the same
way as in the three-constraint case, it is possible to give a number of necessary
conditions for the existence of the solution, if one considers the case of total ordering.
These conditions are based on the 4 different cycles of length 3 in the complete graph
K4 with 4 vertices and 6 edges. If the vertices of this graph are labelled by ‘a’ , ‘b’ , ‘c’
and ‘d’ , the four 3-cycles read {‘a’ , ‘b’ , ‘c’ }, { ‘a’ , ‘b’ , ‘d’ }, { ‘a’ , ‘c’ , ‘d’ }, and {‘b’ ,
‘c’ , ‘d’ } (each to be considered cyclically). Within each of these subsystems, a set of
equations hold similar to eq. (3). When a solution of the entire system K4 exists, it
must at least hold on the 4 3-cycles, i.e. the four associated equations (4) must each
admit a solution.

PRO-1. The six probabiliti es P(‘x’ < ‘y’) lead to 6 equations of the same type as eq.
(2b). There are 4 free parameters, which have to satisfy 6 equations, which in general
means that there is no solution possible. Solutions exist in special cases, where γ’xy’ +
γ’yz’ + γ’zx’ = 0, where { x, y, z} run over all triangle vertices in the complete graph K4.
In that case, there is only one genuine solution.
Table 2. Overview of the results for PRO-1 (top) and PRO-2 (bottom). The assumed ranking is
totally ordered.

134 IFA Proceedings 24, 2001

n #var #condit. #dim genuine solution exists?
2 2 1 0 unique
N>2 N N(N-1)/2 <0 special cases only

n #var #condit. #dim genuine solution exists?
2 4 1 1 1-dim
3 6 3 1 1-dim
4 8 6 0 unique
N>4 2N N(N-1)/2 <0 special cases only

The results for totally ranked systems are summarized in Table 2.
When N is large enough, the dimension of the solution space becomes negative,

which implies that a general exact solution does not exist. However, a particular
exact ranking solution may exist for special choices for the probabiliti es P(‘x’ < ‘y’) .
This exact ranking solution turns into an approximate solution when the probabiliti es
deviate from the special setting. In section 9 we will discuss this ‘approximate’ case in
more detail .

Partial solutions

PRO-2. In general, when N constraints have to be totally ranked, then N(N-1)/2
equaliti es of the form of equation (2) have to be fulfill ed. Each of these equaliti es
subtracts one degree of freedom from the solution space (of which the dimension is
2N, twice the number of constraints, in the case of no ranking equations at all). If the
ranking is partial rather than total, then we do not have the full number of N(N-1)/2
equaliti es but just M of them (where M < N(N-1)/2).Taking into account the two
trivial degrees of freedom, we have for the eventual genuine dimension (dim) of the
solution space:

dim = 2N – M – 2 (6)

A non-negative value of dim does not guarantee the existence of a solution. It only
means that, if a solution exists, then the solution space around the solution has
dimension dim. Necessary conditions for the existence of solutions are cumbersome
to produce; see below.

As an example, we consider the case in which four constraints ‘a’ to ‘d’ are to be
ranked where only the probabiliti es along one 4-cycle { ‘a’ , ‘b’ , ‘c’ , ‘d’ } in K4 are
specified, i.e. we only know P(‘a’ < ‘b’) , P(‘b’ < ‘c’) , P(‘c’ < ‘d’) , and P(‘d’ < ‘a’) . In
this case N = 4 and M = 4, so

dim = 2*4 – 4 – 2 = 2

which means that the genuine solution space has dimension 2. If additionally P(‘b’ <
‘d’) and P(‘a’ < ‘c’) are specified, the dimension reduces to 0, as we have already seen
before.

PRO-1. In case of N constraints, the genuine solution space without any imposed
equations of the form (2b) has dimension N – 1. Each equation of the form (2b)
decreases the dimension by 1. However, by doing so, we discount too much for
cycles, and in order to correct that we must increase the dimension by 1 for every face

IFA Proceedings 24, 2001 135

except for the default ‘unbounded face’ when embedding G in the plane (see section 7
for details). With M equations to be satisfied, the resulting genuine dimension reads

dim = N – 1 – M + (F – 1)
= F – M + N – 2 (7)

Optional constraints

A special case occurs if we have optional constraints in the data. We will briefly
discuss this situation without going into detail here. In example (4), we deal with 5
symbols of which ‘b’ and ‘c’ are incomparable, and in which ‘c’ , ‘d’ and ‘e’ are
optional (see figure 1).

Figure 1. Ranking of five constraints, ‘b’ and ‘c’ mutually independent.

The top in figure 1 shows the lattice associated to example 4. The five constraints
do not move along one line, but ‘b’ and ‘c’ move independently – i.e. without mutual
ranking limitations – along parallel paths. The structure of the lattice follows from the
fact that all symbols can be simultaneously in an element of L, except for ‘b’ and ‘c’ .
That means, that of the 10 possible relations (similar to eq. 2), only 9 are effective
(figure 1 bottom right). But in this example, we have to take optionality into account,
since ‘b’ and ‘c’ are not mandatory. This can be modelled as follows (compare eq. 1):

P(‘a’ < ‘b’) = P(X ‘a’ < X ‘b’ | X ‘a’ and X ‘b’ stochastic variables
associated with D‘a’ and D‘b’ | both ‘a’ and ‘b’ are produced)

* P(‘a’ & ‘b’) (8)

where P(‘a’ & ‘b’) denote the a priori probabilit y of the applicabilit y of both the
constraints ‘a’ and ‘b’ in an arbitrary input datum. So, the probabilit y of ‘ a’
outranking ‘b’ now has become conditionally dependent on the applicabilit y of ‘ a’ and

136 IFA Proceedings 24, 2001

‘b’ . The probabilit y P(’a’ & ‘b’) can be trained from the input data. (The problem of
estimating these probabiliti es resembles the estimation of hidden parameters in hidden
markov modelli ng, which is part of standard missing data theory, in which the
statistics of not directly observable states is dealt with.) Further simpli fying, one
might reduce the probabilit y P(‘x’ & ‘y’) into two factors P(‘x’) and P(’y’) ,
representing the probabiliti es of observing the individual constraints ‘x’ and ‘y’ in the
input. Evidently, such a factorisation is only correct in the case of independence of the
occurrences of ‘ x’ and ‘y’ .

In OT, one has introduced the notion of ‘ strata’ , i.e. collections of constraints
without internal ranking, to deal with incomparable constraints. The difference
between the notion of ‘ stratum’ and the present treatment is that, although ‘b’ and ‘c’
are mutually incomparable (in example 4), both constraints can be compared e.g. to
‘a’ , with possibly different outcomes. So, although ‘b’ and ‘c’ cannot be mutually
compared, their ranking behaviour towards a third constraint is different.

5 Towards a combination of a probabilistic grammar and
probabilistic ranking

So far, we considered ranking of symbols in a lattice, of which the structure is
determined by the set of equations (3). Each of these equations is based on a
constraint-to-constraint comparison. In certain cases, this is evidently not a satisfying
way to describe the structure of L. For example, consider the two lists

L1 = { ‘abcd’ , ‘bacd’ , ‘abdc’ , ‘abdc’ , ‘abdc’ }
L2 = { ‘cdeab’ , ‘abcde’ , ‘cdeab’ , ‘abcde’ , ‘abcde’ }

The structure of L1 can be described (to a very good approximation) by a total ranking
of the four constraints, i.e. by a grammar

rewrite(S, probabili stic ordering { ‘a’ , ‘b’ , ‘c’ , ‘d’ })

but it makes sense to consider an alternative description such as (A and B denoting
non-terminals):

rewrite(S, ‘A B’)
rewrite(A, probabili stic ordering { ‘a’ , ‘b’ })
rewrite(B, probabili stic ordering { ‘c’ , ‘d’ })

L2 cannot be properly described by rewrite(S, probabili stic ordering { ‘a’ , ‘b’ , ‘c’ , ‘d’ ,
‘e’ }) since any of such rankings would incorrectly explain ‘cabde’ , ‘cdabe’ or ‘acdeb’
with positive chance. The use of a CFG yields a correct description, as follows:

rewrite(S, probabili stic ordering { ‘A’ , ‘B’ })
rewrite(A, ‘ab’)
rewrite(B, ‘cde’)

From these examples, it follows that a combined use of a probabili stic finite state
grammar (PFSG) or a probabili stic context free grammar (PCFG) and probabili stic
ranking can provide a powerful tool to describe the statistical properties in L. All the

IFA Proceedings 24, 2001 137

involved probabiliti es can be learned from data: the probabiliti es in a PCFG can be
trained on the basis of the data in L by the inside-outside algorithm (Charniak, 1993),
while the parameters of the probabili stic ordering can be learned by GLA or a similar
soft-ranking algorithm.

This type of combined description leads to the question what the differences are
between the following two descriptions D1 and D2:

D1:
rewrite(S, probabili stic ordering { ‘A’ , ‘B’ , ‘C’ , …’Z’ })
rewrite(A, probabili stic ordering { ‘a1’ , …, ‘aNa’ })
rewrite(B, probabili stic ordering { ‘b1’ , …, ‘bNb’ })
…
rewrite(Z, probabili stic ordering { ‘z1’ , …, ‘zNz’ })

and

D2:
rewrite(S, probabili stic ordering { ‘a1’ , ‘a2’ , ‘aNa’ , ‘b1’ , …, ‘zNz’ })

The answer is, that if the constraint groups { ‘ai’ } and {‘bj’ } do not interlace (so, all
‘a’s rank out all ‘b’s, or vice versa), and idem for all other combinations of constraint
groups, then D2 can be put in the form of D1. The outranking is never strict since there
might always be a small probabilit y – depending on the form of the probabilit y
distributions used – of observing an extremely rare ordering, so theoretically the
disjunction of constraint groups is never entirely satisfied. However, in these cases, D1

and D2 can be practically equivalent. Conversely, if in D1 the rule

rewrite(S, probabili stic ordering { ‘A’ , ‘B’ , ‘C’ , …’Z’ })

practically outputs a fixed ordering of ‘A’ , …, ’Z’ , then D1 can be put in the form of
D2. In general, however, D1 and D2 model different types of statistics in L. The
training of D2 can be performed via the soft-ranking algorithm, while the training of
D1 involves a nesting of soft rankings.

6 Learnability

Suppose a set of input ‘surface’ f orms and a set of constraints are given. What
strategies can the learner use to discover the proper ranking of the constraints? The
study about learnabilit y of ranking is initiated by Tesar & Smolensky (1993). Their
hard-ranking learning algorithm (recursive demotion) demotes rankings in such a way
that the highly ranked constraints become less violated. For each underlying
representation, a ‘module’ GEN generates an infinite number of output surface
realisations (candidates). These candidates are evaluated against a set of constraints
(by the module EVAL). In the standard OT, constraints are assumed to be universal
(language-independent) and specified by some universal grammar. Constraints are
ranked in a language-specific hierarchy (a grammar). The winning ranking is the one
with the least serious violations with respect to the data. The ultimate goal is to

138 IFA Proceedings 24, 2001

discover a general (universal) set of constraints shared by all l anguages. The question
whether a universal set of constraints exists is not settled.

The hard-ranking algorithm demonstrates that it is possible to deduce rankings of
constraints on the basis of incoming surface data. It is based on a number of
assumptions. First, it is assumed that all data presented to the learner are
grammatically correct. Also it is alleged that the learning algorithm can access the
correct underlying representation, besides the raw surface form: the hypothesised
underlying forms are to be deduced from the surface form and the constraint
hierarchy. The observed violations produce the crucial information for updating the
constraint ranking, since constraints that are violated must be strictly outranked by
some other constraint. About the totality of the ranking, Prince & Smolensky (1993, p.
51) observe that this is not an a priori assumption of OT.

The soft-ranking model implemented in e.g. the Gradual Learning Algorithm
(GLA) shows that the probabilistic ranking of constraints is possible using the same
type of structured data. The initial state in most of these algorithms is one in which all
constraints are unranked with respect to one another. Boersma (1997) has shown that
the GLA is able to reflect the statistics found in the training data, for a large number
of different phonological patterns.

Learnability from a mathematical viewpoint

We now consider learnabilit y from a more mathematical perspective. In a
probabili stic ranking model, the locations of the probabilit y distributions specify the
probabilit y of observing the strings ‘abcd’ , ‘dcab’ etc. For example, if all four
distributions have equal means, all 24 4-character strings are equally probable (each
having a probabilit y1/24), regardless the standard deviations. And if µ‘a’ < µ‘b’ < µ‘c’ <
µ‘d’, ‘abcd’ is preferred over all other orderings. So, by manipulating the distributions
(by altering the model parameters, i.e. the means and standard deviations), one can
minimize the statistical mismatch between the predicted distribution of strings (on the
basis of the probabili stic model) on one hand and the observed string distribution in
the list L on the other. This can be formulated as the optimisation of the likelihood
P(L | M) of observing L given the model M, where M = M(λ) depends on a parameter
set (denoted by λ). The maximum likelihood solutions can be found in a number of
numerical ways, of which so-called Expectation Maximization (EM) algorithms are a
well -known family (e.g. Dempster et al., 1977; Lee & Gauvain, 1996). EM
algorithms, which are commonly used in the training of Hidden Markov Models in
automatic speech recognition, consist of two steps (an E-step and a subsequent M-
step) which are iterated a number of times until convergence takes place. In general,
EM algorithms have a sequential variant in which the learning data are presented in
the form of a stream and the model parameters are updated after each input datum so
as to optimise a running maximum likelihood criterion. There is a massive amount of
literature on adaptive learning algorithms that update the model parameters for each
incoming input datum such that some target function is minimized on the long term.
The target function expresses the mismatch between the statistics generated by the
model and the observed ‘most recent’ statistics in the input stream (well documented
examples of such learning algorithms are: sequential learning, reinforcement learning,
Q-learning, the Palo-algorithm; see Kearns & Vazirani, 1994; Greiner, 1996; Cowel et
al., 1996). As with all optimisation algorithms, there is no general guarantee to avoid
being stuck in a local optimum.

IFA Proceedings 24, 2001 139

In principle, sequential learning algorithms start with a random distribution and,
after a number of input data from the input stream, they ‘ tune in’ on the actual
distribution in the stream. A number of learning algorithms assume that it is possible
– at least in principle – to access and update all model parameters on the basis of one
input datum. Other learning algorithms modify the model more locally: only certain
parameters are updated per input datum. In the one-dimensional GLA, this means that
the ‘ local’ type of algorithms demote (= shift to the right) one or a few non-matching
distributions (‘violation’) , or promote the location of one or a few matching
distributions (‘satisfaction’) . Seen from the mathematical point of view, it is evident
that the ranking by e.g. soft-ranking algorithms can describe the recent statistics in the
input, since that is a general property of an extensive family of learning algorithms to
which soft-ranking algorithms – as far as they are interpreted as maximum likelihood
optimisation techniques – belong.

The question which type of learning (soft-ranking, or other variants) applies in a
certain case is a matter of the plausibilit y of a model embedding into a certain
paradigm, rather than a matter of statistical matching qualiti es alone. For example, for
issues in phonology, where issues concerning acquisition of phonological patterns
play a role, the structural complexity of the learning algorithm is a matter of concern.
These embedding issues – which are related to interpretation of the model – are not
addressed in this paper.

Speed of convergence to optimality.

Optimality is usually an asymptotic result, and so convergence speed itself is a poorly
defined measure. More interesting are the speed of convergence to near-optimality and
the shape of the learning curve. This learning behaviour is studied in a more general
setting which is called the Probably Approximately Correct (PAC) framework (e.g.
Haussler, 1990). The PAC framework takes as a starting point that a leaner is
equipped with a class of possible classifiers (e.g. decision trees, or multiplayer
perceptrons). A number of labelled training instances is presented to the learner; the
learner uses these training data to identify a certain specific classifier from the given
class. Each classifier in the class will show an error (the probabilit y to incorrectly
classify the input). For certain classes of classifiers it is possible to guarantee that the
classifier found by the learner will have – with high probabilit y – a small error. PAC
also provides information about the minimal length of the learning period in order to
have a probabili stic guarantee on a certain performance on a (independent) test set.
Optimisation algorithms show in general a trade-off between the speed of training and
the performance on a test set. Another useful performance measure (known as regret)
is the expected decrease in performance on a test set, due to the execution of the
learning algorithm instead of behaving optimally directly from the start.

7 Relations with graph theory

There exists an interesting relation between constraint ranking and graph theory. To
explain this relation, we need two concepts related to a graph, face and genus.

If a graph G is drawn on (‘embedded in’) a surface, the V vertices and E edges
decompose the surface into F polygonal regions. The surface can be the plane, the
sphere, a torus (the surface of a donut), etc. (the embedding in a plane or in a sphere is
not essentially different). The surface can always be chosen such that there are no

140 IFA Proceedings 24, 2001

ill egal crossings of edges (‘self-crossings’) and furthermore that every region is a face.
A face is a region that is simply connected, i.e. it can be continuously shrunk to a
single point without leaving the surface. As an example we consider the complete
graph K3, which consists of three vertices connected by three edges. Three edges is the
maximum number to connect three vertices, hence the adjective ‘complete’ . This
graph K3 embedded in the plane or the sphere has two faces: the ‘ inside’ and the
‘outside’ . The graph K4 embedded in the sphere has 4 faces (see figure 2). The graph
K4 + K4 (the graph that consists of two graphs K4 that are connected with one single
edge) on the sphere has 7 faces. The complete graph K5 cannot be embedded in the
plane without self-crossings (in jargon: the graph is not planar), but it can be properly
embedded on the torus in which case it has 5 faces (see figure 3).

Figure 2. The complete graph K4 embedded in the plane (or on a sphere).

The genus of a graph, usually denoted by Γ, is the minimum number of ‘ handles’
attached to the sphere that are necessary to embed the graph without any self-
crossings. Graphs such as K3 and K4 can be drawn on the sphere (in the sphere)
without self-crossings: both Γ(K3) and Γ(K4) are therefore equal to 0. Since the torus
is essentially a sphere with just one ‘handle’ and the graph K5 can be drawn on a torus
without self-crossings, Γ(K5) = 1.

The number of components of a graph is (loosely speaking) the number of parts of
the graph that are not connected with one another. For example, the number of
components of the graph consisting of just k vertices is k. When the graph is
connected, the number of components equals 1.

Let the graph G now be defined by the constraints as the vertices and the imposed
comparabilit y relations as the edges. Then the dimension of the genuine solution
space of the ranking problem in PRO-2 depends on the structure of G as follows. We
define the following parameters (# denotes ‘number of’) :

#N: the number of vertices in G
#EC: the number of components of G, minus one

IFA Proceedings 24, 2001 141

(i.e. the number of ‘ extra components’)
#F: the number of faces of G
#E: the number of edges of G

Then the genuine dimension of the ranking solution reads:

dim = #N + #EC – #F – 2Γ(G) (8)

In words, eq. (8) states the following. Every vertex (i.e. each constraint) increases the
dimension by one. Every additional graph component also increases the dimension by
one. Contrary, every face reduces the dimension by one; and handles are penalized by
a reduction of 2. In short:

Constraints and components facilitate solutions;
Faces and handles hamper solutions.

The equation (8) can be derived from Euler’s polyhedral equation. For a planar graph
this equation takes the simple form:

#F – #E + #N = 2

For a general, non-planar not-connected graph without self-crossings, one obtains
(e.g. Coxeter, 1969)

#F – #E + #N = 2 – 2Γ(G) + #EC (9)

From eq. (9), it follows that,

#N – #E – 2 = – 2Γ(G) + #EC – #F

Combining this result with eq. (6), one gets

dim = 2#N – #E – 2
= #N + (#N – #E – 2)
= #N – 2Γ(G) + #EC – #F
= #N + #EC – #F – 2Γ(G)

We give a few examples. G = K4 implies #N = 4, #EC = 0 (there is just one
component), #F = 4, #H = 0, which yields dim = 0, as observed earlier.

In the same way, we can deal with K5. We already know that in general K5 cannot
be ranked. This also follows from eq. (8). Because Γ(K5) = 1, we get:

dim = 5 + 0 – 5 – 2 = -2 < 0

Two isolated copies of K4 yield dim = 8 + 1 – (3+3+1) – 0 = 2 > 0. These remaining
dimensions are precisely the shift and scaling for the second group of constraints, after
choosing them for the first K4.

142 IFA Proceedings 24, 2001

Figure 3. The complete graph K5 on the torus T without self-crossings. The dashed elli pse
represents one of the axes of the torus.

K4 + K4 (the graph that consists of two copies of K4 connected with one single edge)
yields a dimension of

dim = 8 + 0 – (3+3+1) – 0 = 1 > 0

PRO-1. Let G denote the graph corresponding to the N constraints and M equaliti es.
The genuine solution space without any imposed equations of the form (2b) has
dimension N – 1. As observed earlier, each equation of the form (2b) decreases the
dimension by 1. Due to the linear dependencies in the left hand side of eq. (5), which
correspond to the faces of G, we discount too much by doing so. Therefore dim is
increased by 1 for every face except for the default ‘unbounded face’ when embedding
G in the plane. Therefore the resulting genuine dimension reads

dim = N – 1 + M + (F – 1)

We can simpli fy this equation by using Euler’s polyhedral equation (9), which leads
to

dim = F – M + N – 2 = – 2Γ(G) + #EC

In words: components facilitate solutions; handles hamper solutions. If the number of
extra components #EC equals 0, then the solution, if it exists, is unique. For N
constraints without any restrictions on the probabiliti es, Γ(G) = 0 and therefore dim =
#EC = N – 1. (This is also obvious without reference to graph theoretic notions.) If G
consists of T trees, then dim = #EC = T – 1.

IFA Proceedings 24, 2001 143

8 Sufficient conditions for the existence of solutions

We will deal with conditions for the existence of a solution in the case of PRO-2. It is
possible to derive suff icient conditions for the existence of a ranking solution for each
cycle with Q constraints { ‘a’ , …’z’ } in the subgraph G in KN. Starting point is the
system of equations as in eq. (3):

(µ‘a’ - µ‘b’) = γ’ab’ sqrt(σ‘a’
2 + σ‘b’

2)
(µ‘b’ - µ‘c’) = γ’bc’ sqrt(σ‘b’

2 + σ‘c’
2)

…
(µ‘z’ - µ‘a’) = γ’za’ sqrt(σ‘z’

2 + σ‘a’
2)

(Q equations). In a cycle, with the constraints in a circular order, the sum of the left-
hand sides equals 0. That means that the inner product of the vector Γ

Γ = (γ’ab’, …, γ’za’)
t

with

(sqrt(σ‘a’
2 + σ‘b’

2), …, sqrt(σ‘z’
2 + σ‘a’

2))t

equals zero. Solutions for the variances precisely exist if the inner product (Γ, P)
attains different signs when P runs over the set of the Q column vectors of the
following form:

1 1 0 0 0 … 0 0
0 1 1 0 0 … 0 0
0 0 1 1 0 … 0 0
0 0 0 1 1 … 0 0
…
0 0 0 0 0 … 1 1
1 0 0 0 0 … 0 1

The number of vectors in this set, as well as their dimension, equals the number of
constraints.

9 The approximate case

Until now, we have dealt with the model in an analytic way, without paying attention
to cases in which an exact solution does not exist, but in which an approximate
solution may exist. This is especially interesting when, according to the PRO model,
the dimension of the solution is less than zero. In such a case, a general exact solution
does not exist, unless the probabiliti es P(‘x’ < ‘y’) are chosen in a special way to
allow the existence of a solution of an over-determined system. (This situation is
comparable to the solution space of the linear equation Ax = b where rank(A) is not

144 IFA Proceedings 24, 2001

maximal.) If the probabiliti es deviate from this special set, the exact solution
disappears, but it may still be possible to define the ‘best possible’ solution. This ‘best
possible’ solution minimizes the mismatch between the observed probabiliti es on the
one hand and the predicted probabiliti es on the other. One appropriate approach is to
define the ‘best possible’ model M to maximize the following likelihood:

P({ P(‘x’ < ‘y’ < …)} x, y, … | Μ)

For systems with N constraints, this li kelihood can be evaluated in a numerical way
(the involved calculation is straightforward but tedious, it reduces an involved integral
to an integral of a gaussian over a higher-dimensional octant (where all coordinates
are non-negative). Figure 4 shows the situation for dimension 3. The three lines
determine the boundary between 6 regions in 3 dimensional space, and the associated
probabilit y P(‘x’ < ’y’ < ’z’) is the integral of a certain gaussian function over the
corresponding V-shaped region. The very same principle holds in higher dimensions
(but is more diff icult to show in a figure).
The involved analysis shows that more complicated ranking schemes can be treated in
this manner. This more complex modelli ng goes beyond the scope of this paper.

10 Implications for ranking in OT

In this paper, the ranking of constraints on the basis of input data, as dealt with in
recent approaches in OT, was taken as a starting point. We investigated aspects of this
ranking from a mathematical perspective. The results that were thus obtained can be
translated back to OT in the following way.
Given a set of observed data of which the ordering of the constraints is to be
modelled, it is possible to assert beforehand which combinations of pair-wise
orderings can be modelled by a soft-ranking model and which combinations can not.
The model that we investigated in this paper associates each constraint with a
gaussian with two free model parameters (mean and variance). With each combination
of imposed pair-wise ranking probabiliti es, a unique graph G has been associated.
Whether this combination of probabiliti es can be modelled or not fully depends on the
graph structure of G. This graph structure is expressed in terms of number of vertices,
its number of components and faces, and the genus of G. The results, formulated as
the dimension of the solution space, can eventually be summarized as: constraints and
components facilitate solutions; faces and the genus hamper solutions.

The higher the dimension of the solution space, the more freedom exists to follow
the ‘recent statistics’ in the input data. This means that the model is better capable to
follow (i.e. explain, reproduce) fluctuations in the statistics of the incoming data,
considered as a stream of input data.

For applications on the phonological domain, the results imply that the ranking of
four or fewer constraints is in general straightforward, while in the case of more than
four constraints the existence of an exact solution is coincidental – as a consequence,
the solution is in general necessarily an approximation. The existence of (exact)
solutions fully depends on the structure of the graph that is determined by the
linguistic constraints.

IFA Proceedings 24, 2001 145

Figure 4. Evaluation of P({ P(‘x’ < ‘y’ < ‘z’)} x, y, z | Μ). This figure depicts the situation for
three constraints { ‘a’ , ‘b’ , ‘c’ } . For example, the probabilit y of observing the order ‘a’-‘ b’-‘ c’ is
given by the integral of a gaussian distribution (which is related to the model Μ - here
represented by an elli pse) over the associated V-shaped part at the right side of the figure. The
depicted model favours ‘c’ to be the winning constraint. Seen from this point of view,
constraint ranking is a soccer game playing with the location (and shape) of the green elli pse to
find an optimal location (and shape) that maximally matches all the probabiliti es P(‘x’<’y’<’z’)
(specified beforehand). Observe that the three vectors (indicated by ‘‘ x’ wins’) span a 3 – 1 = 2
dimensional subspace, and that the angle between one another is exactly 120 degrees. In the
case of equal variances, the elli pse turns into a circle, and evidently the room to model the
different probabiliti es will decrease accordingly.

Acknowledgments

We thank Paul Boersma and Louis Pols for their comments on an earlier version of
this paper.

References

Ashby, F. G. (Ed.) (1992). Multidimensional models of perception and cognition. Hill sdale, NJ:
Lawrence Erlbaum Associates, Inc.

Ashby, F. G. & Alfonso-Reese, L. A. (1995). “Categorization as probabilit y density estimation.”
Journal of Mathematical Psychology, 39, 216-233.

Boersma, P. (1997). “How we learn variation, optionality, and probabilit y.” Proceedings of the
Institute of Phonetic Sciences of the University of Amsterdam, 21, 43-58.

Boersma, P. & Bruce H. (2001). “Empirical tests of the Gradual Learning Algorithm.” Linguistic
Inquiry, 32, 45-86.

Charniak, E. (1993). Statistical language learning. MIT Press, Cambridge, Mass.

146 IFA Proceedings 24, 2001

Cowel, R, Dawid, A, & Sebastiani, P. (1996). “A Comparison of Sequential Learning Methods for
Incomplete Data.” Journal of Bayesian Statistics, 5, 581-588.

Coxeter, H.S.M. (1969). Introduction to geometry. John Wiley & Sons.
CYK algorithm, see http://www.cse.ucsc.edu/classes/cmps130/Fall00/CYK.html
Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). “Maximum likelihood from incomplete data via the

EM algorithm.” Journal of the Royal Statistical Society B, 39, 1-38.
Frank, R. & Satta G. (1998). “Optimality theory and the generative complexity of constraint

violabilit y.” Computational Linguistics 24(2), 307-315. (Also ROA-228-1197; http://www.xrce
.xerox.com/publis/mltt/pto/frank+satta1998).

Greiner, R. (1996). “PALO: A Probabili stic Hill -Climbing Algorithm.” Artificial Intelligence, 84 (1-2),
177-208.

Haussler, D. (1990). “Probably Approximately Correct (PAC) Learning.” In: Proceedings of the 8th
National Conference on Artificial Intelligence. Boston, Massachusetts, July-August 1990, 1101-
1108.

Kager, R. (1999). Optimality Theory. Cambridge University Press.
Kearns, M.J. & Vazirani, U.V. (1994). An introduction to computational learning theory. MIT Press.
Lee, C.H. & Gauvain, J.L. (1996). “Bayesian adaptive learning and MAP estimation of HMM.” In:

Automatic Speech and Speaker Recognition (Lee, C.H. et al, eds.) pp. 83-108.
Maddox, W. Todd & Bogdanov, S.V. (2000). “On the relation between decision rules and perceptual

representation in multidimensional perceptual categorization.” Perception & Psychophysics, 62,
984-997.

Prince, A. & Smolensky, P. (1993). “Optimality Theory: Constraint interaction in generative grammar.”
Technical Report nr. 2, Center for Cognitive Science, Rutgers University.

Prince, A. & Smolensky, P. (1997). “Optimality: From neural networks to universal grammar.” Science,
275, 1604-1610.

Tesar B. & Smolensky, P. (1993). “The learnabilit y of Optimality Theory: An algorithm and some
basic complexity results.” Technical Report. Dept. of Computer Science, University of Colorado,
Boulder. (ROA-2).

