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Abstract 

The purpose of this work is to determine filter characteristics for an arbitrary point of the 

basilar membrane. We will do this in a phenomenological way. Firstly, attention is paid to 

the equation of motion for the basilar membrane. It appears that the pressure in this 

equation has to fulfil a special boundary condition. This condition has the shape of a 

homogeneous mixed type boundary condition for the pressure in the surrounding fluid. 

We consider this condition as an equation at the real axis of the complex plane. In 
consequence of this, the solution can be given in an explicit way. Secondly. both the filter 

characteristics for an arbitrary point of the membrane and the corresponding impulse 

response are determined. The impulse response is a chirp-like signal. This corresponds to 

recent physiological observations. We changed the slopes in the amplitude characteristic 
of the filter. The result is that small variations of these slopes lead to responses which 

resemble the observed responses. 

1. Introduction 

Until the observations of Rhode (1971) or Rhode and Robles (1973), the common 

opinion on the motion of the basilar membrane as a result of pure tone stimulation, 

was the concept of a travelling wave along the membrane. According to that notion 

the motion of the membrane resembles a progressive wave which travels from the 

stapes to the helicotrema. During its travel the wave reaches a maximum in a small 

region of the membrane around the point of resonance. After that region the 

amplitudes of the wave rapidly diminishes; however the wave still travels. The 

concept of a travelling wave was introduced by von Bekesy ( 1928) after his early 

model observations . Later model studies and observations in preparations of the 

cochlea (von Bekesy, 1960) seemed to support this notion. 

Rhode showed that the concept of a travelling wave holds true as far as the point of 

resonance. After that point amplitudes of the membrane motion are almost negligibly 

small. Besides, after resonance the successive points of the membrane perform a 
motion in almost the same phase. 

In consequence of von Bekesy' s observations it is not surprising that even in early 

attempts to describe the motion of the basilar membrane the intention was present to 

model the pressure in the surrounding fluid, even beyond resonance, as a travelling 

wave. 
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Ranke (1931, 1942) was one of the first who introduced a travelling wave concept 

in a two dimensional model study. He noticed that the pressure in the cochlear fluid 

has to obey Laplace' s equation and pointed to the fact that the general solution of this 

equation can be written as the sum of two arbitrary functions, each of which depends 

on one of the complex conjugate co-ordinates z and z. Essentially, the shape of 

Ranke's solution is an expression of the kind exp(c(x + iy)) at the membrane axis 

y = 0 of the complex plane. The constant c is a complex quantity. His idea was to fit 
this constant so that for successive points of the membrane the pressure and the 

velocity at the membrane obey the definition of the local impedance. From his work 

follows that just after resonance the amplitude of the pressure strongly diminishes and 

that near resonance the local wavelengths are relatively short. 

Siebert (1974) re-investigated Ranke's question. He proposed a solution for the 

pressure in a two dimensional box-like model of the cochlea. Under the so called short 

wave assumption he arrived at solutions for the motion of the basilar membrane. The 

relevant part of the solutions shows a wave which travels at different sides of the point 

of resonance in opposite directions but always towards resonance. Apart from 

technical details of his analysis, the numerical implementation of these waves points 

to singular behaviour near resonance. 

In a review article on cochlear models Schroeder ( 1975) expresses his 

dissatisfaction on the short wave approximations with the sentence "This kind of 

modelling is out". Fortunately, de Boer (1979, 1984) studied the short wave case 

again. In addition to an improvement of Siebert's mathematical description, he 

pointed to the physical phenomenon that the point of resonance at the membrane 

locally acts as a 'sink' for the energy which is present both at the membrane and in its 

fluid-like environment. This is an indication that the influence of resonance at the 

membrane not only determines what happens at the membrane but dictates what 

happens in the surrounding fluid too. This corresponds to classical ideas from 

complex analysis that functional behaviour is determined by the presence of 

singularities. There is no reason at all to go away from those ideas and, what is more, 

some phase characteristics in recent observations (Ruggero et. al., 1997) seem to 

underline that indeed near resonance this effect is present in the motion of the basilar 

membrane. 

Near resonance behaviour takes place at and near the membrane. Then the question 

arises: is it really necessary to introduce boundary value problems for the whole 

cochlea in order to find this behaviour? The rhetorical character of this sentence 

includes the answer. In this chapter we will elucidate this. 

Here we again start with the observation that it is sufficient to determine the 

hydrodynamic pressure at the membrane. Once the pressure is known, the motion of 

the membrane readily follows. 

Let us consider a general shape for an oscillating pressure wave at the membrane. 

This wave can be written as p(x,t) = p(x,m)cos(mt + <p(x,m)). The amplitude of the 

wave is P(x,m) and <p(x,w) is the phase function. m is the frequency of the 

oscillations and x the length parameter along the membrane. Any undulatory 

behaviour follows from cp( x, w) . When the slope of this function is negative the wave 
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travels to the right. When the slope is positive the wave travels in the opposite 
direction. 

As has been noted by Ranke, the general solution of Laplace's equation can be 
written as the sum of two functions. Each of these functions depends on one of the 
complex conjugate co-ordinates z and z. Therefore, we shall conceive the travelling 
wave which obeys Laplace's equation at the membrane as a limiting function of two 
complex conjugate functions p1(z,t) and p2(z,t) so that 

(1) 

in which 

lim p1 (z, t) = p(x,m) exp(+ i(wt + cp(x,w )) ) 

y->0 

and 

lim p2 (z, t) = ,D(x,w) exp(- i( wt+ cp(x, w))) . 

y->0 

In (1) the function p , (z,t) depends on positive frequencies and p2 (z,t) on 
negative ones. Therefore, we may expect that p2(z,t) and p1(z,t) are complex 
conjugate. It will appear that, in order to obey this property, we have to distinguish 
between the upper plane approximation z = x + iO for p2 (z, t) and the lower plane 
approximation z = x- iO for p1 (z,t). In this article we will distinguish between both 
approximations. 

At first we will shortly derive the key of the problem, namely the basilar membrane 
condition as an equation for the pressure. Then, the solution in the place domain will 
be discussed. After that, filter functions of an arbitrarily point of the membrane will be 
discussed and compared with some experimental observations. 

2. A discontinuity as far as resonance 

In this section we shall pay attention to properties of the basilar membrane which 
directly foHow from the point of resonance as a mathematical singularity. Our starting 
point is the linear equation of motion 

a2u 2 2 
---"m"'-n + (t) U = __ p 

dt2 0 mn m (2) 

Here, umn is the deflection normal to the membrane and -2p is the pressure 
difference across the membranous strip and m the mass per unit of area. The normal 
at the membrane is denoted by n . At the membrane um,, coincides with the normal 
component u" of the fluid deflection and the pressure there equals the fluid pressure. 
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Then, both quantities have to obey the same Euler equation normal to the membrane. 
Therefore, in absence of additional forces, we have in the linear case the additional 
requirement 

a 2um11 __ J__J_p_ dt2 p an (3) 

The difference between (2) and (3) reads 

(4) 

and has the shape of an inhomogenous radiation condition. Because the membrane 
deflection equals the fluid deflection normal to the membrane it is superfluous to use 
special indices. For that reason the indices m and mn will be omitted. 

The present equations are linear. Then it is attractive to apply the technique of 
Laplace transforms. For the sake of convenience, we shall assume that we only deal 
with existing transforms (Spiegel, 1965). Moreover, we assume that all initial 
conditions are zero. In that case the transform of equation (2) is 

(5) 

m which u and p are the transformed deflection and pressure respectively. The 
transforms of (3) and (4) are 

and 

2- 1 Jp s u = -- - , p Jn 

l d p 2 _ 2-
- - -- p = ill u ' p Jn m 0 

respectively. 
The deflection u can be eliminated from the last two equations. This leads to the 

equation for the pressure in the shape 

(1 (O�)dp _ 2p _ 
+ -2 ---p. s Jn m 

The present equation will be the kernel of this section. It appears to be useful to 
rewrite this equation in the equivalent shape 
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a ln p ( 1 1 ) -- =µs + ---
Jn s + iw0 s -iW0 

in which the constant m is defined by 

µ=p_ 

m 

It is useful to make the substitution 

W= lS , 

(6) 

(7) 

(8) 

which maps the complex s-plane on the complex w-plane by a rotation of the s-plane 

over a quarter of a turn to the left. The frequency axis of the s-plane is mapped on the 

real axis in the w-plane. Positive values at this axis correspond to points at the 

negative frequency axis in the s-plane. The negative part of the real w-axis is the 

image of the positive frequency axis in the s-plane. As a result of this substitution (6) 
takes a shape which is rather convenient to work with. The equation has the shape 

_J1
_
n
_

p _ 
µ w

( 1 _ _ 1_) 
Jn W0 + w W0 - w 

(9) 

Now we are in a position to specify the place of the basilar membrane in the plane 

and to define w0 along the membrane. We assume that the basilar membrane falls 

together with the negative real axis of a complex z-plane. Its high frequency part starts 

at minus infinity and ends at the origin. The resonance frequency varies linearly 

according to - Qx. The positive constant Q can be met within time scaling. Therefore 

it is sufficient to put Q = 1 . so that 

w0 (x) =-x, -oo<x$;0 . (10) 

We first restrict ourselves to positive real values of w. Insertion of (10) in (9) yields 

olnp = µ
(
-

1 _ _ _ 
1_] ; -oo < x �o ' y =0 . on x x -+1 --1 

w w 

( 11) 

The right member of (11) possesses singular points at the real axis of the z-plane. The 

place of these points follows from 

x 
-=+l 
w 
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For our problem the singularity with the minus sign is of special importance 
because it represents the point of resonance at the membrane. At the left side of this 
point the stiffness dominates. Between resonance and the origin the stiffness is of 
secondary importance and there we could put a zero condition for the pressure. The 
problem which results from this assumption will be solved at the end of this section. 
Here, we will first look for some basic properties which follow from ( 11 ). 

In ( 11) the abscissa which determines resonance comprises the weight 1 I w . This 
factor determines the actual place of resonance at the membrane as a function of the 
frequency. We shall assume that the unknown ordinate includes the same weight. In 
that case it is natural to replace the normal n by y I w. Therefore we put 

In consequence of this, the pressure p in ( 11) can be considered as a function at the 
real axis of a scaled z plane. We shall denote this plane as the s =; + iT] plane, so that 

z 
s=-w 

(12) 

Next we conceive p as the limiting case of a function of z, so that at real axis 
p(;, w) = p(�+iO, w) . Because at this axis 

a- d-
P . p 1= 0 () T/ = l de; ; - 00 < ':> < 00 , .,., = ' 

equation ( 11) can be integrated immediately. The result reads 

ilnf5(s)=µlns+l; -oo<;<oo , 17= 0 , 
s-1 (13) 

where we omitted for the sake of convenience the constant of integration. It is well 
known from classical applications (for instance Spiegel, 1964) that the right member 
of (13) represents an orthogonal co-ordinate system in the complex z-plane. This 
system determines the amplitude and phase of the pressure at the real axis of the z
plane. In order to find these quantities it is customary to express the right member of 
(13) in terms of local polar co-ordinates with respect to the points �= +l. Here we 
confine ourselves to write in ( 13) the logarithm as 

ln( ( + 1 J = ln ( + 1 
+ i arg( ( + 1 J . 

s--1 s--1 s-1 
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Then, curves which detennine amplitudes for the pressure belong to the family 

arg(�J=a , 
� -1 (14) 

in which a is a constant which varies from curve to curve. It appears that members of 

this family are the circles 

;1 + (17+cota)2 
= . � 

sm-a 

Curves which determine the phase constitute the family 

ln(�J=/3, 
� -1 (15) 

in which /3 is a constant which again varies from member to member of the family. 
This phase family consist of the circles 

(� -coth /3)2 
+TJ2= . 

1, . 
smh- f3 

Both families together constitute the well known meshwork of Apollonius which 

has been given in Figure 1. In this figure the heavy lines are the iso-amplitude curves. 

Dashed curves are curves of equal phase. In the upper half-plane the range of a is 

0$a$Jr. 
TJ 

-- -
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Figure 1. The classical co-ordinate system which is build up from circles of Apollonius 
and their orthogonal trajectories. This system determines the amplitude and phase of the 
pressure according to (13). The same system can be used as an intrinsic co-ordinate 
system in a boundary value problem which leads to an uneven behaviour of the pressure 
with respect to the membrane axis. 
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At the unit circle we have a = ;r I 2 . For a= ;r and a == 0 the corresponding circles 
have been degenerated and fall together with the real axis. In the under half-plane the 
range of a is -;r � a � 0 .  In this case too, both equal signs correspond to circles 
which have been degenerated and fall together with the real axis. The value 
a= -;r I 2 corresponds to the unit circle. The range of the phase f3 varies according 
-oo < f3 < +oo. In the left half-plane f3 is negative, whereas in the right half-plane its 
sign is positive. The imaginary axis represents the degenerated circle f3 = O. The 
points -1 and + l are the degenerated circles f3 = -oo and f3 == +oo , respectively. 

According to (13), (14) and (15) the pressure can be written as 

jj(a, f3) =exp(µ(a-if3)) , 

where a and f3 follow from Fig. 1. The negative real axis represents the basilar 
membrane. That part of. the membrane axis which extends from minus infinity up to 
and included the point of resonance, is a cut in the complex t; -plane. Across this cut 
the pressure is discontinuous. At the upper-side of this axis and near the point of 
resonance the amplitude of the pressure shows discontinuous behaviour. At the left 
side of resonance the amplitude equals exp(µrr) and diminishes suddenly to l at the 
other side of resonance. This implies that the difference between the amplitude levels 
before and after resonance equals 20µ;r loge dB. The constant µ is defined in (7). A 
typical value of this quantity is 20. Thus the difference between the levels exceeds 500 
dB. Ranke ( 1942) was the first who noticed this discontinuous behaviour. After him, a 
considerable better description of this phenomenon has been given by de Boer (1979, 
1984). 

The quantity - f3 is the phase of the pressure at the membrane. f3 tends to minus 
infinity as the distance to the point of resonance tends to zero. The slope of - f3 is 
positive at the left side of resonance and negative at the other side. In consequence of 
this, the pressure at both sides of resonance represents a wave which travels always to 
the point of resonance. Moreover, de Boer showed from this near resonance behaviour 
that the point of resonance actually models a 'sink· for the corresponding energy in the 
direct environment of the point of resonance. 

From the difference between the levels before and after resonance follows that the 
pressure is effectively zero between the point of resonance and the origin of the plane. 
When the pressure in that region should be zero indeed, we expect that the pressure at 
least in that region is (almost) uneven with respect to the membrane axis. The present 
solution for the pressure fails to describe this property even approximately. Direct 
inspection shows that the pressure is inverted when values of a and f3 at the lower 
side of the membrane axis are used. 

In order to solve this imperfection, we define a new boundary value problem in 
which a and f3 are considered as functions which determine a curvilinear co-ordinate 
system in the i;- -plane. At the left side of resonance we prescribe at the membrane the 
present shape of the solution for the pressure. Between resonance and the origin of the 
plane we put the new boundary condition p = 0 at the membrane axis. 
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Next, we reflect these boundary conditions with respect to the imaginary axis of the 
�-plane. Then we arrive at a boundary value problem which in terms of a and {3 
reads 

p = eJJJt (cos µ{3-i sin µ{3) 

p == 0 

The solution for this problem is 

O<a<rr, -oo<{J<+oo; 

a=rr' -oo</J<+oo; 

a==O, -oo</J<+oo. 

µtr 
p= . 

e sinhµa (cosµ{3-isinµf3) 
smhµrr 

(16) 

(17) 

It is easy to verify that this solution complies with the terms of problem (16). Let us 
extend the present solution over the whole a,{J-plane. Then, because a is uneven 
with respect of the line of symmetry a= 0 ,  it is readily seen that (17) has a second 
important property 

p( a,{3) = -p(-a,f3) , (18) 

which holds true even to the left-hand side of the point of resonance. Therefore, as a 
result of this kind of modelling, the pressure difference across the membrane in the 
region where the stiffness dominates is twice the pressure at the upper-side of the 
membrane too. This uneven behaviour, which includes the membrane as a 
discontinuity as far as resonance, leads to the possibility to apply the principle of 
reflection to construct a half infinite strip-like model so that the pressure vanishes at 
boundaries at a distance h from the basilar membrane. At this stage we will not carry 
out this process. For, the purpose of this work is primarily to model basilar membrane 
properties and not to construct complete cochlear models. 

Essentially , the present solution for the pressure follows from (l l). We studied this 
equation for positive real values of w. When w is negative - i.e. w =-I� - we expect 
that the pressure p which follows from this equation is the complex conjugate 
counterpart of (13). This requirement has only been satisfied when the pressure p at 
the negative real axis is conceived as a function of the complex conjugate co-ordinate 
�. In consequence of this we have to conceive the pressure p at the membrane for 
negative values of w as p(�, w) = p(�-iO, w) . Then, when the same way of 
reasoning of the first part of this section is followed, the ultimate result reads 

-ilnp{() = µln f + 1 , with ( = l�J z . 
�-1 'VJ 
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It can be shown that the pressure which follows from ( 1 9) is indeed complex 
conjugate to the pressure according to (13). We shall not work out a problem similar 
to ( 16) for the conjugate pressure. This is not necessary. For, when in ( 17) i is 
replaced by -i the complex conjugate counterpart is found immediately and possesses 
the required symmetry properties. 

3. Properties at a fixed point 

In section 2 we studied the pressure at the membrane as a function of the length 
parameter along the membrane for a fixed value of the frequency. In this section we 
will change the role of the fixed and varying quantity. The main contribution to the 
pressure at the membrane is determined by (13). We will make a start from this 
expression. Let us insert (12) in this formula. Then it appears that (13) takes the shape 

ilnp(w)=µln(x+ w) . 
x-w 

(20) 

The point x is the fixed place. Until now we only considered this formula for positive 
values of w. It can be shown that for negative values of w the pressure p(w) 
according to (20) is complex conjugate to its values for positive values of wand 
corresponds to ( 1 9) from the previous section. Therefore, in this section it is not 
necessary to distinguish between different expressions for positive and negative values 
of w .  At the membrane the resonance frequency equals w0 (x) = -x, - oo < x :::; 0 and 
according to (8) w =is. Then it is readily found that an equivalent shape for (20) at a 
fixed point at the membrane reads 

(s-iw0(x)J 
lnp(s)=iµln . 

() s + iW0 x 
(21) 

Next we scale the complex s - plane with w0( x) . In consequence of this, (21) takes 
the elementary shape 

(S-l) ln p( s) = iµ In -. 
S+l 

(22) 

In order to investigate this expression at the frequency axis of the s - plane we put as 

usual 

so that (23) reduces to 
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(23) 

At the m- axis of the s - plane, the first tenn of the right-hand side of (23) equals {µre for 

lnjp(m�= 
0 

for 

jmj < l 

!ml> 1 
(24) 

This expression determines the amplitude of the pressure. The imaginary part of (23) 
at the m- axis can be written as 

arg(p(m))=µln . l�-1 (1) + l 
(25) 

This argument determines the phase behaviour. The last two expressions are the 
normalised characteristics for the amplitude and the phase of the pressure respectively, 
according to (21) at an arbitrary point of the membrane. The next figure shows the 
plots of both characteristics. 
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Figure 2. Normalised amplitude and phase according to (22) for the pressure at an 
arbitrary point of the membrane. The solid line i s  the amplitude charac teristic. This line 
follows from (24). The dotted line is the phase as follows from (25). The sc aling factor is 
the resonance frequency of the point under c onsideration. In order to suppress the 
mathematical s ingular behaviour, the place of the singularities in the s - plane has been 
shifted over a small distance to the left. 

The singular behaviour of (22) at s = ±i is the cause of che discontinuity for the 
amplitude of the pressure and the weak singular behaviour of the phase. This extreme 
behaviour has never been observed in measurements. Therefore, in the next section we 
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shall suppress these 'undesired' effects in a rather pragmatic way. At this stage we 
again note that near resonance the 'drop-shot' of the amplitude is rather large. In 
correspondence to the behaviour of the pressure in the place domain, the jump of the 
pressure amplitudes corresponds to a factor exp(µn) and equals a difference of 
20µrc loge dB between the levels just before and after resonance. In a numerical sense 
this means that after resonance the pressure is negligible. Therefore, in practice it is 
allowed to restrict ourselves to frequencies lwl < I . 

From (24) and (25) the normalised impulse response can be calculated. We applied 
straightforwardly the inversion formula for Fourier transforms. Here it is sufficient to 
restrict ourselves to the result. This is shown in the next figure. 
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0,05 ----·-· ·- . 
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Figure 3. Impulse response of the filter described by the characteristics (24) and (25). In 
this figure the time axis has been scaled with the resonance frequency at the point of 
consideration. 

Inspection of this response shows that it is as if we deal with a causal signal which 
has been delayed over a well defined time T. However, according to the 'time-shift' 
rule from Laplace transforms (Spiegel, 1965) the expected shape of (22) would be 

p(s) = exp(- rs)q(s) 
where q(s) tends to zero ass tends to infinity. Apparently this is not the case. For, it is 
easy to verify from (22) that when s tends to infinity, in the limiting case p(s) equals 
1. This limit for p(s) points to the presence of a delta function at the origin of the 
time scale. Because p(s) is regular in the right hand side of the s-plane but does not 
tend to zero for large values of s, we therefore conclude that the impulse response 
starts with a low level delta function at the time t = 0. 
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We determined the delay time of the filter. Quite formally, the delay time r of a 
filter is defined as (see for instance: Papoulis, 1987) minus the rate of change of the 
phase at (I) = 

0
. Thus 

. d arg(p(m )) 
1:=-lim----� 

W--+0 dm 

Then follows from (25) that r = 2µ. This formal expression for the delay time 
resembles the delay of the front of the impulse response of the system. 

Next we shall show that this delay time can be considered as a pseudo front delay 
and is approximately present in the transform (22). In order to do that, we first note 
that for Is I ii � l and Is I ii 1: ± 1 the following series expansion holds true 

(26) 

Then follows from (22) and (26) that p( s) within the region of convergence of this 
expansion can be written as 

in which 

This shape is restricted to the range over which the series expansion (26) can be 
justified. However, this range detennines the main contribution of the spectrum at the 
frequency axis. Therefore, in an approximate sense the quantity r = 2µ can be 
considered as the delay of a pseudo front. After re-scaling of the s - plane, the pseudo 
front delay time takes the shape 

2µ 
r(x) = ( ) (l)0 x 

(27) 

The constant µ is defined by (7). When µ is inserted in (27) we arrive at an 
equivalent reading for the pseudo front delay time at the point x of the membrane in 
the shape 

r(x) = 2 � p 
mK"(x) 
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The next figure is from Van Dijk (1990) and shows -r(x) according to (27) with 
µ = 20 and cochlear nerve delay times for the chinchilla after Ruggero and Rich 

( 1987) . 
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Figure 4. Cochlear nerve delay times as a function of the frequency according to 

measurements from Ruggero and Rich (1987). Dots are results of measurements. The 
straight line represents the pseudo front delay according to (27) with µ = 20 . 

In the next section we will develop approximate filters which are applicable in 

practice and constitute a filter bank for the basilar membrane as a pre-processor. 

4. Approximate filters 

In the previous section we pointed to the unnatural behaviour of the pressure near 

resonance. In Fig. 2 the frequency characteristics at resonance show the extremely 

abrupt behaviour for the amplitude and a phase function which is singular. Both 

effects can be suppressed when a small amount of damping is introduced in the 

system. This is accomplished when the singular points s:::::: ±i are shifted over a small 

distance to the left in the s - plane. However, this only results in typical local effects 

such as a small rounding at the edges of the amplitude characteristic and local 

suppression of the singular behaviour of the phase. Despite these positive effects all 

global characteristics remain conserved and remain therefore still unnatural. Another 

way to control these effects is to replace the singular functions with functions which 

approximate this singular behaviour. This can be done in the following way. In the s -
plane the relative change of rate of the pressure p(s) is found after differentiation of 

(24). The result is 

dln p(s) = iµ( -l-. __ 1_. ) 
ds s-1 s+z 

74 

(28) 
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The points s = ± i are first order poles of the right member of (28). These poles 
essentially are the cause of the discontinuity of the amplitude and the singular 
behaviour of the phase at resonance. In order to suppress these effects, we propose to 
replace both terms between the brackets in (28) by functions which approximately 
simulate similar singular behaviour. 

Let us assume for a moment that the origin of the s-plane is a first order pole in the 
s-plane. Then we can profit from the approximation that for sufficiently small values 
of c holds 

_!_ == _1_ 1n s+ic 
s 2ic s- ic (29) 

The meaning of (29) is that the pole at the origin can be conceived as the derivative 
of a dipole which has been !ocated at the frequency axis. The distance between the 
internal poles of the system is 2c. The idea of (29) can be applied to both terms 
between the brackets in (28). This yields the approximation 

d lnp(s) 
= £..(in 

s-s2 -In 
s-s4 ) , 

ds 2c s-s1 s-s3 

in which 

s1 = i(l+c) s2 = i(l-c) 
s3 =-i(l-c) s4 =-i(l+c) 

Then, integration overs leads straightforwardly to 

In p(s) = - :c ( (s-s1 ) ln(s - s1 )- (s -s2 ) ln(s -s2 ) 
- (s-s3 ) ln(s-s3 ) + (s- S4 ) In(s-s4 )} , 

(30) 

(31) 

For the sake of convenience the constant of integration has been neglected. Inspection 
of (31) shows that indeed the singular behaviour has been suppressed. For, essentially 
(31) has been composed of terms of the kind s ln s and it is known from analysis that 
when s tends to the origin every positive power of s tends faster to zero than ln s 
tends to infinity near that point. 

In order to develop the amplitude and phase characteristics at the frequency axis, 
we express as usual the terms s -s i in local polar co-ordinates. Thus 

Then, as follows after some calculations, the amplitude frequency characteristic for 
the pressure obeys the expression 
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Injp( m � = 1:_ ( ( m - m1 )cpl - ( m -m2 )<P2 2c 
-( m -m 3 )cp 3 + ( m -w 4 )cp 4 ) • 

where 

and 

7r for m>wi 
2 

cp j = 
7r 

for m<mj 
2 

w,= l+c m2= 1-c 
m3=-l+c C04=-l-c 

J=l,. .... , 4 

The phase characteristic which folk)ws from (31) reads 

arg(p(w )) = -(co-co1 )ln!co-co1I + (m-w2)ln!co-co2I 

+ (co-co3)I�m-m3j-(co-w4 )lnjco-co4j 

The next figure is a plot of (32) and (33). 
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Figure S. Normalised amplitude and phase characteristics for the pressure at points of the 
basilar membrane. The solid line is the amplitude characteristic as follows from (32). The 
dotted line is the phase according to (33). The well defined slope near resonance is the 
result of an approximation in which the first order poles in the relative change of the 
pressure (28) have been replaced by dipoles. The dipole distance is a 'free' parameter and 
controls the 'high frequency' stope near resonance. 

(32) 

(33) 
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Let us compare Fig. 2 and Fig. 5 with each other. It appears that the jump at 
resonance has been replaced by a linear decreasing function between the poles of the 
dipole. The steepness of the slope depends on the distance 2c between the poles of 
the dipole. If this distance is sufficiently small, the amplitude behaviour resembles the 
original discontinuity. We shall conceive the dipole distance 2c as a 'free' parameter 
which can be used to simulate a certain amount of damping. 

In the dipole construction singular behaviour is suppressed. In consequence of this, 
the phase according to (33) is continuous at every point of the frequency axis. The 
range over which the phase changes again depends on the dipole distance 2c. The next 
figure shows the response according to the dipole approximation of the pressure for a 
moderate value of 2c . 
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Figure 6. Impulse response of the filter described by the characteristics (32) and (33) and 
Fig. 5 at a small value for the damping. The pseudo front delay time according to (27) 
remains clearly visible. 

The front delay time which is observable in the response corresponds to (27). Just 
after this front, the time difference between the first two peaks is relatively large. The 
time difference between successive peaks diminishes as the time proceeds. Thus, this 
signal models a chirp-like sound. This response is the stimulus for the local filter at a 
point of the membrane. Because this last filter responds according to the well known 
characteristics of a second order mass spring system, the ultimate response resembles 
the response in Fig. 6 closely. Therefore, at this stage we shall not yet pay attention to 
this last response. In Fig. 6 the magnitude of the large peaks just after the front is 
mainly determined by the low frequency components in the spectrum of the pressure 
(Fig. 5). When the slope in the amplitude spectrum before resonance is varied from 
the present zero value to positive values, the high peaks near the front are suppressed 
and the response tends to resemble actually measured low level characteristics for the 
velocity according to Ruggero et al. (I 992). The next figure shows these responses 
according to the present approximation and results of measurement. 
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Figure 7. Impulse responses of the velocity for three different values of the damping 
according to the present approximation and results of measurements from Ruggero at al. 
(1992). 

There are several objections against the direct applicability of the present 

characteristics. 

First of all, the analytical approach of the present and previous sections mainly 

models near resonance behaviour. This follows directly from equation ( 1 1  ). Therefore, 

the question concerning the influence of different stiffness functions on the responses 

is still an open one. 

Secondly, in order to 'force' a solution of equation (9) we even scaled the normal 

in this equation with respect to the frequency so that an analytical solution could be 

found. This can have an influence on quantitative properties of the characteristics 

which are not negligible. 

Thirdly, until now we neglected the constant of integration in the solution of the 

first order equation (9) for the famous reason of 'convenience'. However, this constant 

can be used to relate the behaviour of a point of the basilar membrane to a prescribed 

pressure at the stapes. 
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5. Discussion and conclusions 

In section 2 we studied some properties of the membrane condition in the lossy case. 
This condition can be written in the shape (6) or (9). Then it is clear that the normal 
derivative of the logarithm of the pressure has two poles. These poles are the 
singularities of the problem and determine the points of resonance in the place 
domain. 
In mathematics it is common knowledge that the behaviour of a solution for a problem 
in which singularities are present follows from the characteristics of the problem near 
those points. This is an indication to restrict ourselves to only those singular points 
which are close to the basilar membrane. In consequence of this, we paid attention to a 
simplified version of the problem, so that the properties which follow from the point 
of resonance near the membrane can be easily found. This approximation corresponds 
to the notion that these' points are the physically relevant points of resonance of the 
problem. 

The place of a point of resonance near the membrane depends on both the 
frequency and the damping. This last parameter is responsible for the distance of the 
mathematical point of resonance to the basilar membrane. However, the sign of the 
frequency under consideration determines whether the point of resonance is found at 
the upper side of the membrane or at the lower side. Therefore, in order to study near 
resonance effects adequately in the place domain, we have to distinguish between 
positive and negative frequencies and in consequence of this to an upper-plane or a 
lower-plane approximation to the problem. In the lossless case the points of resonance 
coincide at the membrane axis. However, because the lossless case is the limiting case 
of the lossy one, the distinction between an upper- and a lower-plane approximation 
must remain conserved. The upper-plane and the lower-plane approach to the 
membrane axis yield expressions for the complex amplitudes for harmonic vibrations 
proportional to exp( +i(J)() and exp(-imt) . The respective amplitudes are indeed 
complex conjugate to each other. This is an indication that the proposed distinction is 
the only correct way to reach this goal. 

In the main part of this section we considered the membrane condition for the 

pressure as an equation in the lossless case. Nevertheless, we reckoned systematically 
with the necessary distinction between positive and negative frequencies. As far as we 
know no other authors paid attention to this point. 

It appeared that along the membrane the distance from the stapes to the point of 
resonance is mainly determined by the scaled length parameter. Here, the scaling 
factor is the frequency under consideration. When the normal to the membrane near 
the point of resonance is chosen in agreement with this behaviour, it follows that the 
membrane condition can be integrated straightforwardly. 

In the last decades, only Siebert (1974) and De Boer (1979; 1984) paid attention to 
properties of the basilar membrane condition which are related to the present 
approach. Siebert (1974) started to study this problem, partially in a numerical way. 
De Boer ( 1979) considered the lossless case. After the application of some analytical 
means, he argued that in the direct vicinity of the point of resonance the solution for 
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means, he argued that in the direct vicinity of the point of resonance the solution for 
the pressure represents a wave which must travel towards the point of resonance. This 
property is present in all solutions of this chapter too. 

There is no clear evidence whether the pressure after resonance must represent a 
wave which travels towards the point of resonance or not. In general, the levels of the 
membrane motion after the point of resonance are extremely small. In consequence of 
this, it is almost impossible to make hard decisions on this question. Nevertheless, 
after the present current opinion, points of the basilar membrane perform a motion in 
almost the same phase. In that case it is as if the solutions of this work bear the 
intrinsic imperfection of a travelling wave after resonance. There are arguments to 
suppress or to remove this property from the present solutions. For, at the derivation 
of the membrane condition we assumed that the pressure difference across the 
membrane consists of two terms which are an uneven reflection of each other. This 
assumption reduces the difference to only one term which is twice the pressure at the 
upper-side of the membrane. It is unlikely that this property is a true natural 
characteristic. According to our opinion near symmetrical physical laws govern nature 
rather than pure symmetrical ones. However, symmetry often points to an essential 
feature of the law and frequently leads to a description of main characteristics of a 
problem under consideration. When in our problem the pressure difference across the 
membrane consists of two terms characterised by a broken symmetry, there must be an 
additional term which has been neglected until now. This term must originate from the 
difference between two terms which are not exactly anti-symmetrical. However, 
because in our opinion the anti-symmetrical parts lead to the main contribution of the 
pressure difference, the magnitude of the remaining term cannot be overwhelming. As 
a rough local guess which might be true near resonance we shall assume that the 
difference must be extended with a small constant. This is sufficient to suppress the 
travelling wave character of the solution after resonance at the favour of a membrane 
motion with the same phase. 

The validity of these considerations can be justified, since it is allowed to add an 
arbitrary constant to the pressure in our problem. At this place it is sufficient to note 
that when p is the pressure which obeys the membrane condition, the same holds true 
for the pressure in the shape p + const . Because the additional constant must be very 
small, it is not very interesting to look for numerical consequences. 

The solution of the membrane condition shows that after the point of resonance the 
level of the pressure is extremely small. This behaviour can be approximated 
effectively when we take the pressure between the point of resonance and the 
helicotrema as a vanishing one. In that case it is impossible to express the pressure 
both at the membrane and in the plane in terms of analytical functions. This is a 
necessary consequence of the principle of analytical continuation (see for instance 
Spiegel, 1965). 
In section 2 we solved this problem in terms of 'almost' analytical functions. As an 
important additional result, it appeared that the non-analytical solution is uneven with 
respect to the y -direction of the problem. This property is sufficient to construct strip
er box-like models for the cochlea with two scalae with hard walls. Then, as a result 
of the way in which those models can be constructed, the pressure is an uneven 
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function with respect to the membrane. We will not carry out the construction of those 

models. 

The main reason for this is that in this kind of extensions, the shape of the pressure in 

this chapter is always the main contribution to the pressure difference across the 

membrane. 

The present approach is appropriate to describe scaled amplitude and phase 

characteristics for an arbitrarily point of the membrane. We first derived an explicit 

expression for the pressure at the membrane. In this expression the complex frequency 

s has been scaled with respect to the resonance frequency a>0(x) at the point x of the 

membrane. In the resulting expression the singular points are found at the frequency 

axis of the complex s -plane. In the lossy case these points have been shifted over a 

small distance to the left. In consequence of this, there are no singular points in the 

right half-plane. Then, it holds that the function under consideration belongs to the 

class of minimum phas.e functions. De Boer ( 1997) and De Boer and Nuttal (1996) 
argued that reponses from points of the basilar membrane can be matched by 

responses from minimum phase filter functions. 

We determined the impulse response from the characteristics which directly follow 

from the analytical approach. It is as if the response at a point x has been delayed 

over a characteristic time r(x) . This time is proportional to the density of the fluid 

and inversely proportional to the square of the mass of the membrane and the 

stiffness. When typical parameters are used, this time corresponds to the cochlear 

nerve delay time as has been measured by Ruggero ( 1 987). 
A better analysis shows that the delay time which follows from the model, can be 

conceived as the front delay time for the pressure wave at the membrane. At this place 

we point to the property that the time difference between a click at the eardrum and 

the response in the shape of a resulting echo as has been measured by several authors 

(for instance: Kemp, 1978; Wit and Ritsma, 1980). It appears that these measurements 

can be predicted very well by the present pseudo front delay time -r(x) . This 

corresponds to the notion that once the travelling wave has reached the point under 

consideration, outer hair cells are stimulated. Then, as follows from the 

incompressibility of the fluid, effects as a result of this must be observable almost 

immediately at the entrance of the system. 

The impulse response for the deflection or the velocity which has been calculated 

directly from the frequency characteristics has been composed of frequency 

components with frequencies up to the resonance frequency of the point. Inspection of 

this impulse shows that it  actually represents a chirp-like 'sound' . When this response 

is compared with results of measurements (Ruggero, 1992), it appeared that the 

theoretical response resembles responses measured at high stimulus levels better than 

low level responses. From this last responses follows that in the theoretical spectrum 

of the impulse response, the amplitudes of low frequency components are too large 

compared with amplitudes of components near the resonance frequency. When in the 

theoretical spectrum amplitudes are weighted artificially, so that the near resonance 

components are favoured with respect to the low frequency ones, the resulting chirp

Iike response resembles measured responses. The present model does not give an 

explanation of this effect.  In literature several proposals are found which suggest that 
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there are additional forces - presumable caused by outer hair cell activity - which 
contribute to the well defined sharp low level response. De Boer (1983) proposed that 
the sharpening of this response is caused by an effective lowering of the damping, 
especially in a region near the point of resonance. Mammano and Nobili ( 1993) 
argued that the physical background of this lowering effect can be caused by outer hair 
cell activity which tends to diminish the influence of the internal viscosity of the organ 
of Corti. Both from a physical point of view and from reasons for modelling, the 
incorporation of outer hair cell activity in models of the cochlea is still an interesting 
unsolved question. 
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