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Abstract 

In this paper we describ� Category ART, a variation on the adaptive resonance theory 
(ART) neural network models. Category ART is a predictive ART architecture because it 
incorporates an ART module to be able to learn to predict a prescribed category given a 
prescribed n-dimensional input vector a. In contrast to ARTMAP, Category ART 
contains only one ART module and the map field algorithm has been simplified. The 
remaining ART module in a Categoty ART can be either Fuzzy ART or ART2-A. Its 
performance is demonstrated on a benchmark neural network test, the two spiraals 
problem. 

1. Introduction 

Category ART is a neural network topology whose dynamics are based on 
Adaptive Resonance Theory (ART). ART was developed by Grossberg (1976a, 1986) 
as a theory of human cognitive information processing. It was the result of an attempt 
to understand how biological systems are capable of retaining plasticity throughout 
life, without compromising the stability of previously learned patterns. Somehow 
biologically based learning mechanisms must be able to guard stored memories 
against transient changes, while retaining plasticity to learn novel events in the 
environment. This tradeoff between continued learning and buffering of old memories 
has been called by Grossberg the stability-plasticity dilemma. This poses special 
design problems, since, for example, in (supervised) feedforward networks, which are 
the most popular neural networks nowadays, new information gradually washes away 
old information, and therefore, feedforward networks cannot be made stable in a 
changing environment. 

To be able to mimic biological behaviour, the emphasis of ART neural networks 
lies at unsupervised teaming and self-organization. Unsupervised learning means that 
the network learns the significant patterns on the basis of the inputs only, there is no 
feedback. There is no external teacher that instructs the network to which category a 
certain input belongs. Other types of learning are reinforcement learning and 
supervised learning. In reinforcement learning the net receives only limited feedback, 
like "on this input you performed well" or "on this input you have made an error". In 
supervised mode a net receives for each input the correct response. Unsupervised 
learning is the substrate on which the other types of learning are based. Learning in 
biological systems always starts as unsupervised learning, for the newly born hardly 
any pre-existing categories exist. A system that can learn in unsupervised mode can 
always be adjusted to learn in the other modes, like reinforcement mode or supervised 
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mode. However, a system specifically designed to learn in supervised mode can never 
perform in unsupervised mode. Needless to say that in unsupervised mode we cannot 
have a separate training and performance phase because this implies the presence of a 
homunculus that knows when to alter phases. Self-organization means that the system 
must be able to build stable recognition categories in real-time. 

These design constraints have led to a series of real-time ART neural network 
models for unsupervised category learning and pattern recognition. Model families 
include ART l ,  which can stably learn to categorize binary inputs presented in an 
arbitrary order (Carpenter & Grossberg, 1987b); ART 2, which can stably learn to 
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Fig. 1. Block diagram of a supervised ARTMAP system. Two ART modules are 
linked by an inter-ART module called the map field. The map field forms 
predictive associations between categories of the ART modules and realizes a 
match tracking rule. If ART a and ARTb were disconnected each module would 
self-organize category groupings for their respective input sets. 

categorize either analog or binary data (Carpenter & Grossberg, 1987) and ART 3, 
which can carry out parallel search of distributed recognition codes in a multilevel 
network hierarchy (Carpenter & Grossberg, 1990). The Fuzzy ART model (Carpenter 
et al., 1991) is based on fuzzy logic computations and incorporates the ARTl model 
since computations from fuzzy set theory reduce to binary computations when the 
fuzzy variables become binary valued. 

Besides the networks described above, which are based on unsupervised learning, 
supervised network architectures like ARTMAP have been developed that incorporate 
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one or more of the unsupervised ART modules given above (Carpenter et al., 199la). 
Figure 1 shows a block diagram of such a system. In supervised mode mappings are 
learned between input vectors a and b. A familiar example of supervised neural 
networks are feedforward networks with backpropagation of errors (BP networks, 
Weenink, 1992). Supervision is, however, their only similarity with ARTMAP 
networks. ARTMAP networks are self-stabilizing while in BP networks new 
information gradually washes away old information. A consequence of this is that a 
BP network has separate training and performance phases while ARTMAP systems 
perform and learn at the same time. Besides, ARTMAP networks are designed to 
work in real-time, while BP networks typically are designed to work off-line, at least 
during their training phase. Another difference is that while ARTMAP systems can 
learn both in a fast as well as in a slow match configuration, BP networks can only 
learn in slow mismatch configuration. This means that an ARTMAP system learns, 
i.e., adapts its weights, only when the input matches an established category, while 
BP networks learn when the input does not match an established category. In BP 
networks there is always the danger of the system getting trapped in a local minimum 
while this is impossible for ART systems. However, in systems based on ART 
modules learning may depend upon the ordering of the input patterns. 

Category ART, that we herewith introduce, is a specialized fast algorithmic variant 
of the ARTMAP class of neural network architectures and performs incremental 
supervised learning of recognition categories in response to input vectors presented in 
arbitrary order. Under supervised learning conditions, Category ART's internal 
control machanisms create stable recognition categories by maximizing predictive 
generalization while minimizing predictive error, just like the ARTMAP architectures 
do. 

Category ART differs from the figure 1 ARTMAP architecture in several ways: 
there is only one ART module present and the map field has disappeared. Instead a 
simpler algorithm replaces the dynamics of both components. The dynamics of the 
network, however, are still based on Adaptive Resonance Theory . 

Originally all learning equations in ART systems are written in the language of 
real-time systems, i.e., differential equations. In our implementation, as in most 
algorithmic variants discussed above, steady state approximations are used that 
capture the essence of these dynamic equations. Hence we do not have to use 
integration methods nor will we use differential equations in the formulation of the 
dynamics of Category ART. 

2. Basic features of ART systems 

The basic features of Adaptive Resonance Theory and its relation to perception are 
layed out in a great number of articles by Grossberg and his associates (see for 
example Grossberg 1986 for an overview). A block diagram for a typical ART system 
is displayed in figure 2. The main components are the attentional subsystem and the 
orienting subsystem. The attentional subsytem consists, among others, of two fields 
of neurons, F 1 and F2, where each field may consist of several layers of neurons. 
These fields are connected with feedforward and feedback connection weights. The 
connection weights form the long term memory (L TM) components of the system and 
multiply the signals along these pathways. The name short tenn memory (STM) will 
be associated with the pattern of activity that develops on a field as an input pattern is 
processed. The orienting subsystem is necessary to stabilize the processing of STM 
and the learning in LTM. As can be seen from the figure, the F 1 field receives input 
from possibly three sources. These three input sources are the bottom-up input to F 1, 
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the top-down input from F2 and the gain control signal. To avoid the possibility that 
mere feedback from F2 can generate spontaneous activity at level F 1, i.e., to avoid 
that the system hallucinates, system dynamics are limited in such a way that at least 
two out of three inputs must be active to generate activity at the F1 field. This is called 
the 2/3 rule in ART. The same rule applies to the three possible input sources for the 
F2 level. 

All ART systems incorporate basic features, notably, pattern matching between 
bottum-up input and top-down learned prototype vectors. This matching leads either 
to a resonant state that focusses attention and triggers stable prototype learning or to a 
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Figure 2. Typical ART neural network block diagram. After preprocessing, the 
input activity pattern is transformed to the first field F1. Field F1 is connected to 
field F1 with feedforward and feedback connections which are indicated with 
black half ellipses. These connections form the long term memory components 
of this system. 

self-regulating parallel memory search. This search ends in either of two ways. First, 
if an established category is selected, then this prototype may be refined to 
incorporate new information in the input pattern. In this case when an input matches 
an established category, we speak of resonance. This resonant state persists long 
enough for learning to occur; hence the term adaptive resonance theory. Second, if 
the search ends by selecting a previously untrained node, then learning of a new 
category takes place. The criterion of an acceptable match is defined by a 
dimensionless parameter p called vigilance. Vigilance weighs how close an input 
must be to the top-down prototype for resonance to occur. Because the vigilance 
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Fig. 3. ART search for an F2 code: (a) The input pattern I generates, after being properly 
normalized, the specific STM activity X at F l as it nonspecifically activates the orienting 
subsystem A. Pattern X both inhibits A and generates the output signal pattern S. Signal 
pattern S is transformed into the input pattern T, which activates the STM pattern Y across F2; 
(b) Pattern Y generates the top-down signal pattern U, which is transformed into the prototype 
pattern V. If V mismatches I at F1, then a new STM activity pattern x* is generated at Fi. The 
reduction in total STM activity which occurs when X is transformed into x* causes a decrease 
in the total inhibition from F 1 to A; ( c) If the matching criterion p fails to be met, A releases a 
nonspecific arousal wave to F2. which resets the STM pattern Y at f:2; (d) After Y is inhibited, 
its top-down prototype signal is eliminated, and X can be reinstated at F1. Once again X 
generates the input pattern T to F2 and activates a different STM pattern y* at Fz since Y 
remains inhibited. If the top-down prototype due to y* also mismatches I at F l • then the 
search for an appropriate F2 code continues (adapted from Carpenter et al., 1991). 

IFA Proceedings 21, 1997 121 



parameter can vary across learning trials a single ART system is able to encode 
widely differing degrees of generalization. Low vigilance leads to broad 
generalization and more abstract prototypes than high vigilance. In the limit of very 
high vigilance, prototype learning reduces to exemplar learning.With the help of the 
diagrams in figure 3, we will now follow in detail a typical ART search cycle. Not 
shown in this figure is the preprocessing field F0 whose main purpose is a 
normalization of the input pattern. 
(a) After the preprocessing by field F0, an input pattern I generates a pattern of 
activity X at field F1. The 2/3 rule is satisfied here because input I also activates the 
gain control at the F 1 level. The activation of the gain control is nonspecific because it 
does not depend on the type of pattern but only on its overall input activity. Pattern X 
both inhibits A and generates an output signal S from field F 1. Inhibition of A is 
necessary because otherwise a reset of field F2 would occur. The signal S is 
multiplied by the bottom-up connection weights and results in a signal T that inputs to 
the F2 level. The signal T produces an output Y from the level F2. Here also the 2/3 
rule is obeyed because the input signal I also nonspecifically activates the gain control 
for the F2 level. The signal Y, for example, could result from the activation of the 
node(s) whose connection weights best matched the signal S. 

(b) the pattern Y now generates a top-down signal pattern U which, after being 
multiplied by the top-down connection weights, results in the prototype pattern V. 
This prototype pattern V is compared at F 1 with the input pattern I. The result of this 
comparison is a new pattern of activity X* at F 1. If V mismatches I at F 1 the resulting 
activity X* will have significantly dropped. As a result of this reduction in total 
activity, less inhibition results at A. 

(c) if now the vigilance criterion at A fails to be met, A can release a nonspecific 
signal to F2 which inhibits the nodes at F2 that were most active. As a result the signal 
Y is reset as well as the feedback signal U and its prototype V. 

(d) pattern X is reinstated at F 1 and a different STM pattern Y* becomes active at 
F2. If the top-down prototype due to Y* also mismatches I at F 1, then the search for 
an appropriate code continues until either a prototype has been found that satisfies the 
matching criterion at A, or a new category must be established at a previously 
uncommitted node. 

In the sequel we will describe how the the ideas of this section can be implemented 
in the form of an algorithm for our Category ART. However, before we can explain 
the supervised Category ART algorithm, we first have to explain how a basic ART 
module works. As an example we take the Fuzzy ART module for unsupervised 
classification. This Fuzzy ART module will later be incorporated in the Category 
ART model. 

3. Fuzzy ART algorithm 

The Fuzzy ART component in Category ART consists of a preprocessing field of 
nodes, F 0, that modifies the current input vector a and a field F 1 that receives both 
bottom-up input from F0 and top-down input from the field F2. We do not need to 
distinguish between the connection weights of the top-down feedback paths and the 
bottom-up feedforward paths between the fields F 1 and F2 in the Fuzzy ART module, 
both will be implemented by the same weights. 

Three parameters determine the dynamics of a Fuzzy ART network, a choice 
parameter a> O; a learning rate parameter f3 E [O, 1] and a vigilance parameter p e 
[O, 1]. The influence of these parameters on the network dynamics will be explained 
in the following paragraphs. 
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3.1. Preprocessing 

When an M-dimensional input vector a is presented to the network it is first 
normalized by the field F0. This normalization is necessary to guarantee stable 
category learning. The F0 output activity vector I is a simple function of the F 0 input 
vector a, and its complement vector ac, namely, I= (a, ac) =(a , ... , aM, 1-a1, • • •  , l­
aM), where all a1 are in the interval [0, l]. The net result of this normalization 
operation is accordingly a doubling of the length of the input vector a, while at the 
same time the norm of the new vector will always be equal to M. We use the 
following definition of the norm of a vector x 

M 
!xl= :Llxi l · 

i=l 
We then get for the norm of I 

M M 
II!� i<a,ac)I = Iai + ICI-aJ = M 

i=l i=l 

3.2. Category choice 

The input vector I is now fed forward from the F 1 field to the F2 field. Both fields 
are implemented with a single layer of, respectively, 2M and N nodes. N is the 
capacity of the F2 field and at the same time represents the maximum number of 
categories that this field can accommodate. All nodes in one layer are fully connected 
with all the nodes of the other layer, i.e., each of the N category nodes in the F2 field 
has 2M connection with field F 1. Initially, before any learning has occurred all 
weights in the vectors wj have the value 1 and each category node is said to be 
uncommitted. A weight vector w1 is also called a template. 

When a pattern I is presented at field F 1, a choice function 1j is defined according 
to the following formula 

]1 I\ wJ I 
1j (

I
)
= I I' a+ wJ 

where a is the choice parameter and/\ is the fuzzy AND operator, defined as 

(x I\ y) i = min(xt,Yi ). 
The fuzzy AND operator reduces to the Boolean AND operator in the case of binary 
vectors. The system is said to make a category choice when at most one F2 node can 
become active at a given time. The F2 node with maximum T1 will be chosen to 
represent the pattern I, and, when the Ith category node is chosen, the output vector y 
of the field F2 is set as y 1 = 1 and yj = 0 if ft:.J. In a choice system, the F 1 activity 
vector x obeys the equation {I if F2 is inactive x = I /\ w / if Jth F2 node is chosen. 

If the chosen category J meets the vigilance criterion, that is if 
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then learning can occur. Mismatch reset occurs when the vigilance criterion is not 
met, and subsequently a new node is chosen. This search process continues until the 
chosen node satisfies the vigilance criterion. The search order among the nodes in the 
F2 layer depends on the choice parameter a. If a is small then the search is more 

dominated by the pattern with the largest ratio [1/\ w1 [1[w 1 1 than by the the size of 

\1/\ w1 lalone. For larger values of a we see that the patterns for which !1/\ w1 1 is 

large dominate the search. We can now make the following hierarchy for the F2 nodes 
that will be chosen when an input pattern I is presented at the F1 layer (Huang et al., 
1995): 

(a) If there is a subset node it will be chosen over an uncommitted node. A subset 
node has a template wi whose components satisfy 

wJi $Ii, 
This means that for a subset node 

i = l.. 2M 

11 /\ wj j 
!w, j = 1 

(b) Because of the choice parameter a > 0, among all the subset nodes the node with 
the largest template wi will be chosen first. 
(c) An uncommitted node will be chosen whenever there are no subset nodes and all 
committed nodes j satisfy 

[l l\w1 j 1 
'--------,.'"-' < -lw1 I - 2 

In our implementation of the Fuzzy ART algorithm we have changed this biologically 
oriented blind search. Mainly for reasons of efficiency, we always maintain a list of 
committed and uncomitted nodes to speed up the search process. 

3.3 Learning 

The template vector wi is updated according to the following equation 

w�ew) = /3(I /\ w)old)) + (1- /3)w�ld) 

When /3 = 1 we speak of fast learning. For efficient coding of noisy inputs, we choose 
the fast learning option when J is an uncommitted node, and then take f3 < I after the 
node is committed. Then w�new)= I the first time category J becomes active. After the 
commitment the weight vector update causes the new weight vector to become more 
aligned with the most recently coded input pattern. 

4. Category ART algorithm 

Our Category ART neural network module is a simplification of the ARTMAP 
module. In the ARTMAP architecture, as shown in figure 1, two ART modules, 
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ARTa and ARTb, are linked together via an inter-ART module, Fab• called the map 
field. The ART a and ARTb, modules could be one of the set ARTl, ART2-A or 
Fuzzy ART. Two choices are described in the literature, in ARTMAP (Carpenter et 
al., 199la) two ARTl modules are combined and in Fuzzy ARTMAP (Carpenter et 
al., 1992) two Fuzzy ART modules are combined. Input vectors to ART a and ARTb 
are named a and b, respectively, and xa and xb are the outputs of the corresponding 
F l fields, F la and F lb• and ya and yb are the outputs of the corresponding F2 fields, 
F2a and F2b· For the map field, let xm denote its output vector and Wmj denote the 
weight vector from the j-th node F2a to Fm. The map field includes an associative 
memory and control signals and both are used to form predictive associations between 
categories of ART a and ARTb and to realize the match tracking rule. Match tracking 
means that a wrong prediction triggers the search mechanism in the ART a module 
anew to look for a better match or, if a better match cannot be found, for a new 
category. Match tracking can reorganize category structure so that predictive errors 
will not be repeated on subsequent presentations of the same input. ARTMAP can be 
used for mapping multidimensional vectors. However, when we want to associate 
category labels with multidimensional vectors, for example vowel labels with spectral 
representations, using ARTMAP forces us to represent the category labels as a 
multidimensional input vector to the ART b network, and initialising ART b's vigilance 
to a very high level. Two possible options how to choose ART b' s input vector when 
we have M different categories are: choose vector b of dimension M and make bi= 1 
for category i, or use a binary representation with a p-dimensional vector b, where 2P 
>= M. This vector b is processed by the ARTb module, in which different input 
vectors (resulting from different category labels) should activate different output 
nodes of field F2a. In effect, ART b categorizes one to one, each different input is 
represented by a different output node. This means that for each b, only one output 
node is active and thus the norm of yb equals one. As a consequence this makes the 
map vigilance parameter, Pab• in the following match tracking equation equation, 
which is equation (35) in the Fuzzy ARTMAP implementation of Carpenter et al. 
(1992), non-effective. 

lxabj < PablYal 
We note that both in the ARTMAP as well as in the Fuzzy ARTMAP 

implementations of Carpenter at al. (1991 a, 1992) the map vigilance parameter is 
ineffective because the output of the ART b network, yb, is always normalized to one. 

In our Category ART algorithm, the second ART system, ART b• whose only 
function is to form a category representation, and the map field are replaced by an 
ordered collection of category labels and an array of pointers. There is a pointer to a 
category label for each node of the F2 layer of the ART a module. 

The Category ART learning algorithm in pseudo code goes as follows: 

for all (pattern p, categoryLabel c) 
learn (pattern p, categoryLabei c) 

if categoryLabel not in categoryLabelList 

create categoryLabel c 
add categoryLabel c to categoryLabelList 

endif 
J = categorize p by ARTa network 

if categoryLabelList[nodePointer[J]] * c 
temporarily increase vigilance 
J = categorize p by ARTa network 
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reset vigilance 
endif 
update_weights (wJ) 
nodePointer[J) = index categoryLabel in categoryLabelList 

end learn 
endf or 

Because of the combination of match tracking and fast learning, a single ARTMAP 
system can learn a prediction for a rare event that is different from that for a cloud of 
similar frequent events in which it is embedded. This means that eventually noise is 
also learned since the system cannot know beforehand what constitutes the signal and 
what the noise. 

(} 
0 

2 2 2 2 2
1 1 

2 2 1 1 1 1 2 1 l 2 l 2 2 2 2 2 1 2 1 2 2 l 2 2 1 2 2 1 1 I l l l 2 1 1 l 1 l 2 2 2 1 2 1 l/222) 11 2 1 2 1 2 1 tUll! \ 2 1 21211 ( 12121 
2 l 2 1 � l II l l 2 2 1 22 l11utl 2 l 1 

I 1 2 2 2 2 2 I 222222 1 
I 1 I 2 2 2 2 I 1 l l 1 I 2 

2 2 2 2 I 2 2 2 I 2 I 1 I I l 2 2 2 

Figure 4. Two spirals in the plane. Each spiral consists of 97 points. 

S. Simulation: Learning to tell two spirals apart 

To get an impression of the possibilities of a Category ART network we will describe 
its performance on a complicated classification task. We reproduce the example from 
Carpenter et al. ( 1992) in which they describe the Fuzzy ARTMAP network: learning 
to tell two spirals apart in a two dimensional plane. This benchmark task cannot be 
learned by a standard feedforward network with backpropagation. According to the 
authors cited above, Lang and Witbrock ( 1988) succeeded by constructing a special 2-
5-5-5-1 network with each node connected to all nodes in subsequent layers. The 
system had 138 trainable weights. With their fastest algorithm they needed at least 
8000 epochs to complete the task, i.e., each of the 194 points in the training set 
responds to within 0.4 of its target output value. An epoch is one full presentation of 
the entire training set. 
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The spirals of the benchmark each make three complete turns in the plane and consist 
of 97 points as is shown by figure 4 above. The coordinates of the points of the two 
spirals are 

x(I> = 1 - xl2> = r_ sin a + 0 5 n n n: " • 

Yo> = 1- yl2> = r cos a + 0 5 n n n n • 

where 
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Figure 5. Fuzzy Category ART performance figures for the two spirals data set. The figure on 
the left shows the number of committed nodes as a function of the vigilance parameter when 
match tracking was active. In this case there was always 100% correct classification. For 
match tracking off, the figure on the right shows besides the number of committed nodes ( +) 
also the percentage correct classification (x) as a function of the vigilance parameter. 

/\ 
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A trivial solution with Category ART is obtained by selecting for the vigilance 
parameter p = 1. In this case the network learns all patterns in one epoch with 100% 
correct classification. However, the network uses 194 category nodes for the 
classification, one node for each training pattern. This amounts to using 770 
parameters for the classification: the 194 times 4 connection weights from the Fr 
nodes in the Fuzzy ART module plus 194 category index pointers to either the first or 
the second spiral. In a Fuzzy Category ART we have in principle four parameters that 
determine learning. The first three parameters are determined by the Fuzzy ART 
module namely the choice parameter a, the vigilance parameter p, and the learning 
parameter /3. The fourth parameter matchtrack determines whether matchtracking is 
on or off. The parameters that influence most the number of categories and therefore 
the number of weights, are the vigilance parameter and the matchtrack parameter. 
When matchtracking is on, the network is capable of raising its vigilance level when a 
mismatch at the category index level occurs. The most effective strategy to lower the 
number of categories is to start with matchtracking on and a very low vigilance, i.e., 
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p = 0. We performed two series of runs with the vigilance parameter increasing from 
0 in steps of size 0.02 to 1.0, the learning parameter f3 fixed at l ,  the choice parameter 
a fixed at 0.001. The first series had match tracking on, the second had match 
tracking off. The results are displayed in figure 5. For all combinations of the 
parameters the training of Category ART completed within 15 training epochs. When 
match tracking was on, the percentage correct classification obtained was always 
100%. The left plot in figure 5 shows the number of committed nodes as a function of 
the vigilance level. For vigilance levels smaller than approximately 0.45 the number 
of committed nodes stays at the very low value of 36. It shows a gradual increase in 
the number of committed nodes when the vigilance level increases to 0.96, still higher 
values of the vigilance level show a steep increase in this number. The maximum, 
194, is reached when the vigilance level is equal to 1.0. When match tracking is off, 
the percentage correct drops to 50% when the vigilance level is reduced, as the right 
plot in figure 5 shows. Because match tracking is off, the number of committed nodes 
drops much steeper, ultimately to only two conunitted nodes when the vigilance level 
drops below 0.4. 

5. Conclusions 

The preliminary performance of the Category ART neural network is satisfactory. It 
ia capable of learning reasonably complex tasks in a very short time. The simulation 
study in which the network task was to tell two spirals apart was handled well. This 
task was already too complex for a standard feedforward network with backpropa­
gation (BP). As Lang and Witbrock (1988) showed, only a specially constructed BP 
network could handle this task after an enormous amount of training epochs (8000). 
Category ART was able to handle the task several orders of magnitude faster, i.e., 
within 15 epochs. This neural network design therefore shows great potential for 
vowel recognition tasks, a complex task, with interaction between spectral cues and 
fundamental frequency. Further classification tests with these type of networks will be 
performed on vowel data from the TIMIT corpus (Lamel et al., 1986). 
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