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Abstract 

In describing human performance in sound perception, in word recognition, in speech 
understanding, and in dialogue handling, we generally test human limits under controlled 
conditions and try to understand the underlying mechanisms, however, the human system 
itself has already been built by nature. In speech and language technology we would like 
to equal, or perhaps even outrank, human performance, but we will then first have to 
design the system and we will have to develop the modules according to certain 
specifications. This paper emphasizes the flexibility, robustness, and efficiency of human 
performance at various levels and tries to indicate lessons to be learned for designing 
speech and language technology systems. 

1. Introduction 

Human speech recogmt10n and understanding is extremely robust to masking, 
reverberation, and all kinds of other signal distortions. However, a human listener can 
also easily get distracted from the main speech perception task by other interesting 
stimuli, or can become tired, or otherwise less attentive. This implies that, on the one 
hand, under certain conditions an automatic speech understanding system might do 
better than the human, whereas on the other hand speech and language technology 
definitely can still learn a lot from human perfonnance. 

In a recent paper, Lippmann ( 1997) concludes that even the presently best single 
systems for specific tasks, varying from 10-word vocabularies to 65,000-word 
vocabularies, are still one or more orders of magnitude worse than human 
performance on similar tasks. He suggests that the human-machine performance gap 
can be reduced by basic research on improving low-level acoustic-phonetic modeling, 
on improving robustness with noise and channel variability, and on more accurately 
modeling spontaneous speech. I see no reason to disagree with him at all, however, let 
me try to indicate in somewhat more detail a number of reasons why this gap might 
still exist. 

Human listeners generally do not rely on one or a few properties of a specific 
speech signal only, but use various features that can be partly absent ('trading 
relations'), a speech recognizer generally is not that flexible. Humans can also quickly 
adapt to new conditions, like a variable speaking rate, telephone quality speech, or 
somebody having a cold, using pipe speech, or having a heavy accent. This implies 
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that our internal references apparently are not fixed, as they are in most recognizers, 
but are highly adaptive. Because of our built-up knowledge of speech and language, 
we can also rather well predict what might come next, in this way making 
communication much more effficient. 

Below I will present a number of these speech perception phenomena and I will try 
to indicate how they might be useful in speech technology. Unfortunately, I will only 
rarely be able to demonstrate that by careful implementation of such features, speech 
recognition performance will actually improve. On the one hand, this is related to our 
lack of having flexible algorithms available that easily permit us to implement new 
features (e.g., Sitaram & Sreenivas, 1997), on the other hand this also relates to the 
fact that simply adding one specific feature, not yet will immediately improve overall 
system performance, because optimization of all elements of a system is required in 
optimal cooperation (Bourlard et al., 1996; Pols et al., 1996). 

2. Aspects of human performance 

Human performance in speech perception and recognition is surprisingly flexible, 
robust, and efficient. For an overview, see for instance Pisoni & Luce ( 1986) or Allen 
(1994). The sections below are meant to create some more awareness of these 
phenomena and their underlying mechanisms, whereas at the same time speech 
technologists might see good opportunities to implement certain elements for 
improving the performance of their speech technology systems. 

2.1. Robustnes to noise and reverberation 

The performance of speech recognizers trained in quiet generally starts to degrade 
substantially already at signal-to-noise ratios (SNR) of+ 10 dB and less (Lippmann, 
1997), whereas human speech intelligibility (or word error rate) then is not yet 
degraded at all. Also the level of (human) performance of course depends on such 
aspects as the size of the vocabulary and the native language of the speaker and the 
listener. At about -10 dB SNR all speech becomes unintelligble even for very limited 
vocabularies, such as the digits or the spelling alphabet (Steeneken, 1992). For a 
difficult word vocabulary such as eve nonsense words the score from unintelligible 
to 100% correct covers a range of signal-to-noise ratios of about 20 dB, roughly from 
-9 to + 12 dB. At SNR= -3 dB single digits and triplets in English are still correctly 
understood with less than 1 % error (Pols, 1982). 

In Pols ( 1983) we studied consonant intelligibility and confusibility under various 
conditions of noise (noise with a speech-like spectrum, and (low-pass filtered) pink 
noise, SNR from +15 to -6 dB) and reverberation (T = 0, 0.5, 1, and 1.5 s). The 
theoretical and practical relations between the effect of noise and reverberation and 
speech intelligibility are nicely represented in the speech trasmission index (STI) 
concept (Houtgast et al., 1980). 

2.2. Robustness to spectral and temporal distortions 

Most automatic speech recognizers are trained to ]earn phoneme, triphone, or word 
templates. Recognition is then based on shortest distance or greatest similarity. Some­
times speaker adaptation is applied. Also human beings learn by being confronted 
with many examples, however, their templates seem to be much more flexible and 
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adaptable (Grossberg, 1986). High-pitched small-headed youngsters seem to have 
little difficulty to understand their low-pitched big-headed fathers. Telephone-quality 
speech (300-3400 Hz) is not a big challenge for most human listeners. Substantial 
variability in speaking rate does not seem to bother us a lot. 

Actually this relative insensitivity to (spectral) distortions is a prerequisite for a 
certain type of digital hearing aid to be successful. Ordinary hearing aids amplify the 
input signal, sometimes after applying a (fixed) filter. Unavoidably this implies that 
the desirable signal (speech) is amplified just as much as the undesirable signal 
(noise, competing speech), thus not actually improving the signal-to-noise ratio. By 
dividing the spectrum in a number of frequency bands and then selectively amplifying 
certain bands (where the SNR is good) and neglecting others (where SNR is poor 
already) one can get a much better result. However, this implies that the average 
speech spectrum continuously changes form. It appears that humans are rather 
insensitive to that. This can be nicely illustrated by an experiment in which the slope 
of the amplitude-frequency response is slowly modulated. Sinusoidal variations of the 
slope from -5 to +5 dB/oc.t, with frequencies from 0.25 up to 2 Hz, had remarkably 
little influence on the speech reception threshold (SRT) of sentences in noise (van 
Dijkhuizen et al., 1987). 

Such slope modulations still leave the variation in the envelope per frequency band 
intact. This temporal envelope contains the information that is essential for the 
identification of phonemes, syllables and words. Disturbances like noise and reverber­
ation reduce the temporal modulation depth. By applying envelope filtering, Drullman 
er al. ( 1994) studied the effect of temporal smearing on speech intelligibility. For low­
pass cutoff frequencies above 4 Hz the phoneme intelligibility for eve and vev test 
words was hardly degraded. The same is true for high-pass cutoff frequencies lower 
than 8 Hz. Apparently we are not very sensitive to temporal smearing. 

Ter Keurs et al. (1993) performed a similar study on spectral envelope smearing. 
Only when the spectral energy is smeared over a bandwidth wider than one-third. 
octave, the masked SRT starts to degrade. This indicates that the intelligibility 
primarily depends on the global shape of the spectral envelope and not so much on the 
fine detail. 

Flanagan (1972) already demonstrated the low human sensitivity for formant 
bandwidth, the difference limen being 20 to 40% for one-formant vowel-like stimuli. 
On the other extreme we can mention sinus speech (Remez et al., 1981 ), in which 
formants are reduced to pure tones. 

2.3. Auditory modelling 

Neuro-mechanical signal processing in the peripheral auditory system is so complex 
that it does not make much sense to try to imitate that process in ASR front-end 
modelling, apart from its functionality. Why to worry about the non-flat frequency 
response of the middle ear, limited spectral resolution of the basilar membrane, 
limited dynamic range and saturation of the haircells, non-linearities like two-tone 
suppression, combination tones and lateral inhibition, active elements like the Kemp­
echo, co-modulation, profile analysis, or low pitch, if bandfilter analysis, PLP, or 
MFeC seem to perform rather well already? Of course certain aspects might become 
more relevant if optimal feature extraction is required. It is probable that higher 
robustness can be achieved by careful selection of the spectra-temporal features, and 
that prosody-driven recognizers will indeed increase performance (see also sect. 2.8). 
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2.4. Multiple features 

One of the biggest distinctions between machine recognition and human perception, is 
the flexible multi-feature approach taken by humans versus the fixed and limited 
feature approach by pattern recognition machines. A frequently quoted example is the 
study by Lisker ( 1978), who showed that the voicing distinction between American 
English 'rapid' and 'rabid' can independently be controlled by a variety of some 15 
different acoustic features. Especially the Haskins group has performed many trading­
relations and multiple-cue experiments (e.g., Repp, 1982), see also Nearey (1997). 
During that same period in time also the invariance theory was popular (Blumstein & 
Stevens, 1980). The book edited by Perkell & Klatt ( 1986) is a nice reflection of these 
discussions. It is also educational to read in Zue ( 1985) how variable the features are 
that are used by an expert spectrogram reader. 

Personally I believe that there are neither single most important cues, nor invariant 
cues, but that the flexible human recognizer is as efficient as possible and uses the 
most appropriate cues from whatever cues are available. If this is a correct viewpoint, 
worth to be copied in ASR', then of course this does not make life easier at all! In sect. 
2.10 I will emphasize another level of complexity, namely the context-dependency. 

2.5. Scale spacing: from global to detailed 

Some time ago there was a nice beer advertisement on Dutch TV, starting with a shot 
from the whole earth taken from an outer orbit satellite, and gradually zooming in to 
Europe, Holland, the Dutch North Sea coast, the Scheveningen beach, up to a good­
looking young lady drinking a cool glass of beer on a terrace. This might be an 
appropriate metaphor for speech perception as well. If necessary we zoom in to the 
smallest detail (Smits, 1995), if we can do without it, we limit attention to global 
features only. 

Again a speech recognizer generally learns features at one level of precision only. 
The frame rate frequently is of the order of 10 - 25 ms, although this might be far too 
detailed for most slowly-changing sonorants, whereas for a burst onset much higher 
temporal precision might be required. 

2.6. Adaptation, speaker normalization 

Human adaptation to different speakers, speaking styles, speaking rates, etc. is almost 
momentarily. However, most so-called adaptive speech recognizers need sizable 
chunks of speech to adapt. In Pallett et al. ( 1995) it was clearly demonstrated that 
most CSR systems, if not adapted, do much worse for the faster speakers in a group. 
Adapting to another condition, be it more background noise, another speaker, or a 
different speaking style, should not require new training, but just a quick adaptation of 
all models. The idea of making optimal use of parameter dependence recently got 
more attention, and using tree-based multiscale dependency models might be a good 
approach (Kannan & Ostendorf, 1997). 

2. 7. Predictability 

Everyday experience, as well as formalized gating (Grosjean, 1980), shadowing 
(Marslen-Wilson & Tyler, 1981) and silent center experiments (Strange, 1989), and 
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phoneme restoration tasks (Samuel, 1981) tell us that humans are rather good (better 
than an n-gram language model) in predicting what might come next in the speech 
stream, in this way easing recognition substantially. One could perhaps say that the 
perplexity for human listeners is always much lower than for machines. Furthermore, 
most recognizers are not very good in left-to-right processing and prefer to parse a 
whole sentence. 

A somewhat related problem is that of out-of-vocabulary words, which 
unavoidably sets the upper limit of word-error-rate performance of any CSR system, 
whereas humans have little difficulty to understand, interpret, and remember un­
known words or new word compounds. 

2.8. Prosody-driven recognition 

To the best of my knowledge Noth et al. (1997) are the first claiming that their 
Verbmobil speech understanding system actually uses prosody, although not yet for 
word recognition itself but for disambiguating speech understanding. They give the 
example of "Dann mtissen wir noch einen Terrnin ausmachen" ("Then we still have to 
fix a date") versus "Dann mtissen wir noch einen Termin ausmachen" ("Then we still 
have to fix another date"). 

The acoustic parameters responsible for prosody are generally considered to be 
fundamental frequency, duration, energy, and spectral slope, as a function of time. 
Next to the common aspects of intonation (sentence type, sentence accent), there are 
strong indications that in human communication the prosodic structure is also respon­
sible for marking word boundaries, for phrasing, and for specifying the pragmatic 
discourse structure (e.g., Cutler & Butterfield, 1991; van Donzel & Koopmans-van 
Beinum, 1996). Another related feature of conversational speech are its disfluencies, 
including filled pauses (Siu & Ostendorf, 1997). If word stress could be detected 
consistently or, even better, the weak-strong syllable sequence, this could greatly 
enhance word recognition performance. 

2.9. Duration modeling 

Phoneme duration is one of those signal aspects for which a phonetician believes that 
this could be modelled better than just by a probability density distribution. Speaking 
style, speaking rate, word stress, local context, position in the word, and position of 
the word in the sentence, all contribute to the actually realized phoneme duration. 
Analyzing a large database undoubtedly shows that, both for vowel (Pals et al., 1996) 
and consonant duration (van Son & van Santen, 1997). Unfortunately, the benefit in 
terms of increased ASR performance of using that knowledge cannot so easily be 
demonstrated (Wang, 1997). 

2.10. Coarticulation and reduction 

In our institute we have paid much attention to the dynamic spectre-temporal events 
(formant transitions) in speech. 

This led, for instance, to a better understanding of the human sensitivity to vocalic 
transitions (van Wieringen & Pols, 1995). Whereas the difference limen (DL) in 
endpoint frequency for 40-ms tone glides is as low as 30 Hz, it is more than 200 Hz 
for VC-like stimuli with a short (20 ms) formant transition. This may be another 
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indication that high spectral resolution is not always required and that unique spectral 
targets are quite useless. 

By comparing formant transitions in normal and fast rate speech for comparable 
eve-segments, Pols & van Son (1993) could show that, at least for this male speaker, 
so-called formant undershoot in the shorter segments of fast-rate speech, did barely 
happen. Apparently this speaker could easily adapt his speaking style (articulation 
speed) in such a way that still the vowel target, appropriate for that context, could be 
reached. Of course, contextual and prosodic conditions caused a lot of (rather 
systematic) variation in the vowel midpoint formant position reached, but higher 
speaking rate and shorter duration did add very little to that variability. On the other 
hand, changing the speaking style from read to spontaneous speech, did cause vowel 
reduction, more specifically a centralization of mainly F1 (van Son & Pols, 1996). We 
have the impression that it might be useful to implement such rather systematic 
phenomena as specific knowledge in ASR, rather than as variability in training data. 

In a similar way, van Bergem (1995) greatly enhanced our insight on vowel 
reduction. He showed that that mechanism is much more a process of contextual 
assimilation than of centralization. This may have implications for the phone and 
word models used in ASR. Similarly, the (Dutch) schwa appears to be a vowel 
without an articulatory target, completely assimilated with its (consonantal) 
environment. This coarticulatory effect of Cl' C2, and V on the schwa in 'Ve/�/e2 
and C/�/'C2V nonsense words could very well be modelled. Triphone models are 
probably rather good in modelling this contextual asimilation, however, they do not 
distinguish in levels of reduction. 

Recently van Son & Pols (1997) drew attention for consonant reduction as well. 
Reduction in consonant identification errors for VCV syllables extracted from 
spontaneous vs. read speech (for both stressed and unstressed syllables) was 
compared with the differences in five acoustical measures: segmental duration, 
spectral center of gravity, intervocalic sound energy difference, intervocalic F2 slope 
difference, and the amount of vowel reduction in the syllable kernel. All these 
acoustic measures appear to be indicators of both vowel and consonant reduction and 
are all correlated to changes in speaking style and syllable stress. Only for segmental 
duration and spectral center of gravity we could so far show (in a statistically 
significant way) that a 'reduction' in these values also correlated to 'reduced' 
identification. See table 1 for the mean consonant identification results. 

read 
s ontaneous 

stressed 

14.4 
22.2 

unstressed 

18.0 
30.5 

total 

16.6 
27.3 

Table 1: Mean (22 Dutch listeners) consonant error rate (in percentages) for VCV stimuli 
(2 x 791 VCV segments extracted from read and spontaneous speech, partly 
stressed (308), partly unstressed (483)), separated out for speaking style and 
syllable stress. 

2.11. Pronunciation variation 

In May 1998 an ESeA workshop on "Modeling pronunciation variation for automatic 
speech recognition" will be organized in Holland (http://lands.let.kun.nl/ pron-var/). 
Taking one standard pronunciation from a word lexicon, irrespective of the speaker 
and the context in which the words occur, is a huge oversimplification. Human lexical 
search certainly does not work like that. We know about reduction, word boundary 
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effects like deletion and stress clash, allophonic variation, etc. Applying phonotactic 
rules (Giachin et al., 1991 ), or extracting detailed pronunciation from large database 
statistics (Riley & Lolje, 1996; Wang & Pols, 1997), or using separate stressed and 
unstressed phoneme models (van Kuijk et al., 1996), have so far only let to limited 
success. 

2.12. Word perception models 

Psycholinguistjcs and related domains have provided us with a great variety of speech 
perception and word recognition models, such as the motor theory (Liberman & 
Mattingly. 1985), analysis-by-synthesis (Stevens, 1960), quanta} theory (Stevens, 
1989), logogen model (Morton, 1969), cohort model (Marslen-Wilson & Welsh, 
1978), lexical access from spectra (LAFS) (Klatt, 1979), first order context-sensitive 
coding (ERIS) (Marcus, 1981), autonomous search (Forster, 1976), dual coding (Foss 
& Blank, 1980), interactive activation TRACE model (McClelland & Elman, 1986), 
shortlist (Norris, 1994 ), adaptive learning (Grossberg, 1986), etc. Rather than 
advocating one best approach, it might be wiser to indicate that HMM-based word 
recognition is probably not a bad choice after all. It is a kind of analysis-by-synthesis 
model and it allows for extended unmoderated learning. 

What I would like to see added in CSR, is the implementation of more specific 
knowledge that relatively easily could be derived from the speech stream (such as 
environmental characteristics, speaking style characteristics related to the speaker and 
the local speakjng rate, as well as word characteristics related to word stress, 
reduction and coarticulation) and that might permit quick adaptation of the model 
parameters. 

As already indicated by G. Doddington at the ARPA Spoken Language System 
Technology Workshop in 1995 in Austin, TX, including speech understanding in the 
word recognition process beyond a simple n-gram model, would also enhance CSR 
perfo1mance. 

2.13. Other modalities 

Speech is definitely an acoustic signal, however, speech communication is not 
necessarily limited to the auditory mode only, unless the communication channel 
forces one to do so, like in telephone speech. Arm and body gestures, facial 
expressions, eye blinks, all add to the communicative situation and may influence the 
interpretation of what was said. Audio-visual synthesis ("talking faces") is getting 
more and more popular, if sign language symbols have to be transrrutted, the visual 
modality is of course also unavoidable, but also bimodal ASR is starting to get some 
attention. At the ESCA Workshop on "Audio-visual speech processing AVSP'97" 
(Benoit & Campbell, 1997) there was for instance a session on "Automatic 
recognition of audio-visual speech". 

3. Conclusions 

This potpouri of observations concerning the flexibility, robustness, and efficiency of 
human speech perception and word recognition, unfortunately cannot be a manual for 
ASR-best-practice at all. Much of the apparent systematicity in human perception, 
either cannot be implemented in present-day recognizers at all, or, if implementable, 
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generally does not lead to any improved performance. So, should speech scientists 
and speech technologists simply stop trying to understand each other and to learn 
from each other? Of course not, we should join forces, have more sessions like the 
one on 'Lessons learned from human speech recognition system' in which this paper 
was presented at the IEEE Workshop on Speech Recognition and Understanding 
ASRU'97, Santa Barbara, CA (Furui et al., 1997), and evaluate and compare 
analytically human and system behavior. 
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