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Abstract 

In modern hearing theory much anention is paid to the possible influence of outer hair cell, 

activity on the motion of the basilar membrane. In order lo include those efTocts in models of ll•e 
cochlea, an extension of the usual equations of motions is necessary. Therefore, we reconsidered 

the derivation of 1he equations of motion from a quite general point of view and showed that it is 

possible to incorporate additional forces in the equa1ions. A straigluforward analysis o( properties 
of Lile equations shows that an uncritical application of natural parnme1ers can lc.1d 10 results 

wilhout sense. Two examples of the numerical implementation of the model confirm the validity 
of the way in which extensions can be properly made. 

1 Introduction 

In most models of the cochlea the motion of the basilair membrane results from equations in 
which forces at the membrane arc caused by a prescribed motion at the stapes. Until now, 
these models fail to describe impo11ant observations adequately if realistic values of the 
damping parameter are used. For instance, it is impossible to model the observed sharpness of 
tuning curves without using unnatural values for the damping. Moreover, without the 
introduction of additional forces it is impossible to model or to explain cochlear emissions of 
any kind (de Boer, 1993). So, there is a need for the extension of cochlear model equations 
with which observed results can be explained and understood. 

At present it is believed that in a healthy cochlea outer hair cell activity contributes 
substantially to the motion of the basilar membrane (Ruggero, 1992). Forces in consequence of 
this activity (Brundin and Russel, 1993) may comprise non-linear terms which are responsible 
for the generation of combination tones as well as forces which are responsible for emissions. 

In this research note we derive model equations which open the possibility to introduce new 
forces of any significance. The derivation is quite general and includes all good properties of 
model equations which are used by several investigators in this field. For an overview we refer 
to de Boer (1980, 1984, 1991 ). As an application the generation of a cubic difference tone will 
be shown. 
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2 General dynamics 
� 

Let us start with a particular cochlea in which all membranous structures are absent. Then the 
fluid in the cavity has to obey the well-known equations of Euler. ln vector notation these 
equations can be written as 

dv I 
= -Vp ... f.. 

dt p 
(1) 

The vector v is the velocity of a unit of mass of the fluid. The density of the fluid is p and p is 

the pressure. The sum of ex1emal forces - per unit of mass - is denoted by F. This equation 
expresses the equilibrium becwcen the inertial resistance of a unit of mass of the fluid, the 
pressure and external forces. 

Next we assume that in addition to the fluid in a certain region of the inner ear cavity a 
membrane is present The stiffness component of the membrane is not negligible. In order to 

find the equation of motion for this membranous medium, it is sufficient to add a tenn to the 
Euler equation (I) which expresses the restoring force in consequence of the presence of 
stiffness If the stiffi1ess per unit of volume is given by Km and the density of the medium is 
p ,., the restoring force per unit of mass reads 

Here ii m is the deOcction of a unit of mass of the membranous medium. w� is defined 
according to w� K .. Ip ... Then, the modified Euler equations for this medium are 

(2) 

In this equauon subscripts /11 arc used to distinguish between membrane quantities and the 
counterparts of the s�rrounding fluid. At the boundary between fluid and membrane the normal 
component of (I) reads 

dv -· 
dt 

I iJp +F 
p iJn • 

The equivalent equation for the membranous medium is 

(3) 

(4) 

In both equations subscripts n refer to  the normal components of the corresponding vector 
quantities. 
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3 The basilar membrane as a discontinuity 

If the'fluid and the membranous medium are in motion, we shall assume that at the boundary 
between fluid and membrane normal components of the velocity of both media arc the same 

Thus v. = v .... Moreover, we assume that normal components of the additional forces at this 

boundary for both media arc the same In consequence of this, it holds that f� = F _ These 
assumptions make it possible to compare (3) and (4) with each other at the boundary After 

subtraction of ( 4) from (3), the difference between the equations can be written as 

I iJp I iJp. , -- - - :(I) u 
p iJ11 P. iJn o - (5) 

Next we consider the membrane as a thin strip with thickness An. Jn that case the density 

p. can be wriucn as 

Ill 
p .. --

/'!Ji • 

where m is the mass per unit of area of the membrane. Insertion of this tem1 in (5) yields 

I op I op 2 ----..:...!:.!!l t\11 - CtJ(Jll,,.,. 
p on Ill IJn 

(6) 

(7) 

In the second 1e1 m of the lcfl member of (7), the expression ( q1m I th)/111 is the difference 
between the pressure at the upper- and lower-side of the membrane. We shall assume that this 
difference equals two times the fluid pressure at the upper side of the membrane. In 
consequence of this, we introduce the following simplification 

with which (7) is reduced to 

I op 
pun 

(8) 

(9) 

Equation (9) holds true at the boundary between fluid and membrane. The equatmn has the 
shape of an inhomogenous radiation condition. Its meaning is restricted to the presence of 

stiffness in the membranous region. However, in oscillating problems the importance of 
stiffness depends on the frequency of oscillations. This can be elucidated at the hand of 
equation (4). In absence.of external forces, the linear counterpart of(4) reads 
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Let us assume that we arc dealing with complex oscillations proportional to exp(±iax). As 
foilows rrom the preceding equation, the complex amplitudes of deflection and pressure -
which are denoted by 11 ... and p .. respectively - satisfy the expression 

( al�) ' . iJii. -p 1-- alll = --.. a1' - 011 
{10) 

If a1 < a10, the stiffness tenn dominates and it is not difficult to conceive the membranous 
region as a discontinuity in a fluid-like environment. However, if al > a10 the expression (I 0) 
can be considered as an Euler equa11on in which the inertial resistance is determined by an 
effective density 

( 11) 

If al increases sufficiently, the density (11} can be approximated by p.,. Jn that case there is 
no reason to introduce a discontinuity, because the dynamic properties of both media a1 e 

approximately the same. In consequence of this, any pressure differenc� in th at r�gion must 
vanish. This determines the natural zero boundary condition.· 

Along the basilar membrane the stiffness rv� varies as a decreasing function of the distance 
to the stapcs. Thus, at a fixed value of the frequency al, both situations will appear. Then it 
will appear that the validity of the discontinuous approach is ques tionable. Within this work we 
shall accept the idea of the basilar membrane as a discontinuity in a fluid-like environment In 
consequence of the preceding remarks, we shall assume th at the pressure (difference) at the 
end of the membrane always vanishes. 

4 Model equations 

In models of the cochlea, the length parameter along the basilar membrane is often denoted by 
x The nonnal direc11on to this abscissa is the positive y-axis. ln tcnns of abscissa and 
ordinate the equation for the membrane is 

where 

d'u 2( 
) -, - <u. x u pm+F, 

dt 

2 pm(x,1) = p(x,O,t) ; 11(x,1) = 11.,. (x,0,1) and F(x,t) = F.,.(x,O,t) . 
Ill 

(12) 

The ordinate y"' 0 refers lo the boundary between fluid and membrane. At this boundary the 
radiation condition can be written as 
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1 i}p ---pm= (J)2U 
� p 8y 0 (13) 

Equation ( 13) can be made suitable for numerical implementation. Let us apply the so called 
'shallow water' approximation in cochlear mechanics (Van Dijk., 1990). This reduces iP I o/ 
to hp,, in which his the mean height of the cochlear scalae. After scaling of both the abscissa 
and ordinate to the length I of the membrane, it ultimately appears that the radiation pressure 

follows from the model 

pm,, - a2 pm= a2(J)!(x)u , 0 < x <I 

pm=O at x = 0 

pm=O at x - 1 

in which the constant a is defined by 

(14) 

pm is defined in (12). An alternative for the boundary condition at x = 0 is pm,= 0. 

However, it will appear that the next results scarcely depend on boundary conditions. 
Therefore we shall confine ourselves to pm= 0. For the sake of completeness we shall always 
assume that zero initial conditions are supplementary to both equation (12) and problem ( 14) 
The solution of problem (14) can be written explicitly as (Van Dijk., 1992) 

I 
p11i(x,1) = -a2 J G(x.�,a)111!(4)11(4,1)c14 , 

0 

in which 0lx, 4, a) reads 

G(x,4,a) = 

-s1nhaxsinha{I- 4) 
asinha 

sinha4sinha(I - x) 
asinha 

0 S x <4 < 1 

From (12) and (15) follows that the motion of the membrane obeys the equation 

I 

ii(x,t) = <.o�(x)11(x,1)+a2 J G(x,4,a)(.()!(4)11(4,t)d�+ P(x,t) 
0 

O<x<l,/�O. 
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The behaviour of the radiation pressure prr�x,t) highly depends on properties of the function 
of Green In essence, this function expresses the spatial extent of the radiation in terms of an 
influence function, which describes all effects from a unit of pressure with density l placed at 
the point x -�. In ( 16), the constant a determines the sharpness of the function of Green and 
therefore the spatial extent of the radiation. Typical values of model parameters are 
m- 005 g I cm2; h = 0.1 cm and / - 3.5 cm (de Boer, 1980). Thus a"' 70, which is a very 
large parameter value. Then as follows from ( 16), in almost the whole region O < x < 1 -
excepted near the endpoints of the interval - the Green's function can be approximated by 

G(x J! a) = 1 
e -1,. ( ,�, 2a 

, (18) 

which is the function of Green for the radiation pressure in absence of boundary condi tions Jn 
consequence of th is, we conclude that from a qualitatively point of view in almost the whole 
cochlea properties of the radiation are uniform. It is easy to verify that 

a' f G(x,�,a)d,;-
sinha-sinhax-sinha(l-x) . 

o Sinha 

From this expression follows that with exception of the endpoints of the interval (0,1] 
I 

!�"r!a2 f G(x,�,a)d� 1 . 
0 

This means that in the lim iting case the Green's function resembles a delta function for points 
belonging to (0, I) Thus we have 

(19) 

In consequence of ( 19). a sufficiently large value of a results in the approximation 

1 
a' f G( x, ,;,a )w!( ,;)"( ,;, t )di;"" w!(x )11( x, t) . 

0 

ln that case the integral equation (17) is reduced to 

ii(x,r)--F(x, r) ; 

and the model fails to describe adequately basilar membrane behaviour. 
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5 Results and applications 
� 

After discrelization of1he length in /1 equal steps, the membrane can be considered as a system 
of n successive oscillators. The deflection of the i-th oscillator is denoted by 11,; i = I, 2, .. , /1 
In consequence of this, the discrete counterpan of(17) can be written as the system (Van Dijk, 
1992) 

U-AU +F 

in which the components of the column vector U are the deflections of successive oscillators 
A is a constant 11x11 matrix. The column vector F = F( t) represents the sum of the external 
forces of the system In absence of the radiation pressure pm, the eigenvalues of A are the 
squared resonance frequencies of successive oscillators. The presence of pm slightly lowers the 
eigenvalues. Therefore, the hydrodynamical environment of membrane oscillators tends to 
diminish the resonance frequencies. . 

A damping force can be considered as an external force which makes part of F -F(x,t) in 
(12). Then it is sufficient to 1eplace in (12) the stiffness term co�u by w�u+ €(<)011, in which c 
is a small positive parameter. Note that as a result of the present way of modelling, there will 
never be a damping term in the radiation pressure ( 15). In models with damping it is useful to 
write the discrete countcrpar t of (17) as a first order system. 

Y = BY +G . 

Ilere Y consists of 211 components which are the deflection and velocity of successive 
oscillators. Il is a 211 x 2n matrix G - G( t) is the vector, which denotes the sum of external 
forces. In this case the cigenvalLJes of Il are complex. l t  can be proven that if the real parts of 
the eigenvalLJcs are positive, the system is stable. It appears that if the damping€ is negative for 
at least one oscillator, the real part of at least one pair of (complex conjugate) eigenvalLJes is 
negative. In consequence of this, the system is stable only if€ 2: 0. 

In ( 17), the funcuon F - F(r, t) can be defined so that the whole system equals a 
transmission line with an input at x = 0 It is well-known that the solutions of those models 
with a sinusoidal input are travelling waves along the membrane. 

Figure I Four succcss"c s1agcs of a 1ravclling 
wave in a model in -.hich 1hc place dcpcndcn1 
p:irt of 1hc c'lcmal force varies in an almost 
exponcn!Jal -.ay along lhc membrane. 
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However, if F = F(x,t) models a propulsion which extends over (a part of) the basilar 
membrane, the travelling wave has been conserved. This means that the concept of travelling 
waves does not only depend on propulsion at the stapes, but mainly on intrinsic properties of 
the radiation pressure. Figure 1 is the solution of a model in which the driving force extends 
over almost the whole membrane. 

The external force F = F(x,t) may comprise terms which are proportional to the third of 
the deflection of membrane oscillators. The presence of this kind of terms does not disturb the 
stability of the system. Besides, this kind of terms generate combination tones. If outer hair 
cells are responsible for forces of this kind, these forc·es form a natural part of the external 
force F. The next figure is an example of the motion of the membrane in which - as a result of 
a small third order term - two primary frequencies /, and /2 generate a cubic difference tone 
with frequency f. = 2 /2 - /, (/, > /,) . The spectral contents of the point which resonates at 
this frequency is given in the next figure. 

c 0 ·o u ., 0 ., "O 
� ·o 
"' 

] 

1, 
\! 1, 

f=�::S'<jS:9'�crl I \IV1�1� ----+ 
\ 1T11 , -12 

basilar membrane frequency 

Fi&'UJe 2 a. Successive stages of IJ1e wave motion in Ille case of two primary tones which generate 

combination loncs. The region of resonance of Ilic cubic difference lone is clearly visible. b. Spoclrum 

from IJ1e motion of Lh� oscillmor al U1e place which is 1w1ed at IJ1e frequency of IJ1e cubic difference Lone 

in Ille case of two tone stimuli. 

6 Discussion 

In this work we investigated possibilities to enlarge the way in which mechanical processes in 
the cochlea can be modelled. The opportunity for this question results from the present opinion 
in hearing theory that the motility of the outer hair cells of the organ of Corti strongly 
influences the motion of the basilair membrane. Within this brief span, we did not pay attention 
to the precise shape of forces as a result of hair cell activity. We only showed, by sta11ing from 
the first and foremost beginning, that additional forces in model equations can be incorporated 
in a natural way. As a side-line effect, an important restriction to the applicability of natural 
parameters in models has been found. Running away with those parameters can lead to 
degeneration of the whole model. The two examples from the preceding section show that 
from a qualitatively point of view, the model works. 
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