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Abstract 

As part of a larger study on speaker normalization, the merits of some special cost 
functions for feedforward neural nets are discussed with respect to their classification 
performance. Both Juang & Katagiri (1992) and Hrycej (1992) claim their cost functions, 
that are based on minimum classification error (MCE), to be superior to the standard cost 
function i.e. the one based on a minimum squared error (MSE) criterion. However, no 
evidence for this claim could be found. On the contrary, for the special condition that a 
blocked updating scheme for the weights and biases was used in the training procedure, 
the MCE-based cost functions proved to be inferior to MSE. 

1 Introduction 

As part of a larger study on speaker normalization, we have been using neural nets to 
model the process of speaker adaptation (Weenink, 1 993). These neural nets were 
used as special classifiers. The type of cost function that is used during the training 
phase of a neural net determines to a large extent its classification performance and, 
therefore, is an essential part of the neural net. Choosing a wrong cost function can 
have degrading effects. In this paper we want to discuss the merits of cost functions 
that are based on a criterion called minimum classification error (M CE) in relation to 
cost functions based on minimum squared error (MSE). In the MSE cost function the 
classification error is the sum of squares of the differences between the actual outputs 
and the desired outputs of the neural net. Two recently proposed MCE-based cost 
functions were developed by Hrycej (1 992) and Juang & Katagiri (1 992a). Especially 
the latter received considerable attention in the literature (Juang & Katagiri, 1 992h; 
Komori & Katagiri, 1 992; Kurinami & Sujiyama, 1 992). The discussion will be 
focused on cost functions for supervised feedforward neural nets. Classification 
capabilities as well as some other aspects of this family of nets have been discussed in 
Weenink (1 991). 

For classification, in general, it is not necessary that the output nodes of a neural 
net contain a nonlinearity. The nonlinear functions that are used for neural nets, for 
example the sigmoid function, are al ways monotonic functions. Monotonic functions 
preserve rank ordering of their inputs. The output node with the largest input 
produces also the largest output. Consequently, the nonlinearity in the output nodes 
need not be present. Output nodes that do not contain the nonlinear function are called 
linear since the output of this node is just a linear combination of its inputs. 
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The search for cost functions is motivated by the following list of shortcomings of 
the MSE cost function with respect to classification (Hrycej, 1 992; Hampshire & 
Waibel, 1 990): 
1. The winning class is not identified during learning and is not used in the learning 

rule either. This means that for classification MSE is not necessarily adequate. 
2. The inability to consider an arbitrary cost matrix. In MSE classification it is not 

possible to consider an individually specified cost for each misclassification type, 
i.e. the cost for classifying a member of the i-th class as a member of the j-th 
class. 

3. MSE, in combination with linear outputs, slows down the convergence of 
learning by overconstraining the problem. Generally the desired output of the 
correct class is given the value 1 and the other desired outputs the value 0. It may 
be clear that a value greater than 1 for the correct output class and a value smaller 
than 0 for the incorrect classes would be harmless. However, MSE penalizes such 
cases and it can be expected that these unnecessary constraints slow down the 
learning process. 

4. The MSE cost function is not monotonic with respect to classification when the 
number of classes (M) exceeds one. In other words, patterns with a 'low' MSE 
may be classified wrongly while patterns with a 'high' MSE may be classified 
correctly. E.g. the maximum MSE for a correctly classified pattern could have, 
besides the correct unit being 1, all other (wrong) outputs near 1. In this case the 
MSE is approximately equal to M-1 . The minimum MSE for a wrongly classified 
pattern could have, besides the correct unit being 0, all other (wrong) outputs 
near 0, giving rise to MSE=l . 

Before we discuss the merits of the alternatives we will have a look at how the cost 
function influences network parameters. 

2 The relation between cost function and weights 

Before a neural net can be used as a classifier it has to be trained. The purpose of 
training is to obtain a set of weights and biases that minimizes a certain cost function 
E over the training set. Training a one-layer net is very simple since the desired 
output is known and the only weights are those between the outputs and the inputs. 
This means that weights can be gradually updated until the error is sufficiently small. 
However, this procedure is not directly applicable to a net with hidden nodes because 
most of the time one does not know what the hidden nodes should represent: there is 
no desired output for the hidden nodes. Despite this problem, successful training 
procedures for nets with hidden layers have been developed. The most common 
learning algorithm uses a gradient search technique to find the network weights and 
biases w that minimize the cost function E(w). It is called the back propagation 
algorithm (Rumelhart et al., 1 986). The weights and biases of the network are 
determined iteratively until a minimum of E(w) is found according to: 

_ ()E(w) wl,ij(k + 1) - wl,ij(k)-µ aw 
l,ij 

(1 ) 

where µ is a positive constant, called the learning rate. To minimize the cost function 
E(w), we have to derive an expression for the partial derivative of the error function 
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with respect to each individual weight in the network. Before we can do so we have to 
d�fine some terms that will be used in the derivation. For a node j in layer /, the 
output in relation to its inputs is: 

01.j 
= 

!1 (11.j ) 
N,_I 

11.j 
= L wl.kjol-1,k 

k=l 

(2) 

(3) 

Here 01,j is the output of the node j in the layer /, w1,kj is the weight that connects 
node k in layer /-1 with the j-th node in layer/, 11,j is the input of the nonlinearity f1 
of the j-th node in layer I, and Nz-1 the number of node at layer /-1. We define the 
error at node j of layer I as follows: 

8 -
-(�J l.j - a1 . l,J 

When we use the chain rule on (4) we get: 

8 . = -( aE J =_I,� - iH,+,,• = I,o . a1,+,,• 
i., a11.j k=l a1,+1.k a11.j k=l 

l+l,k a11.j 

The last term in the summation can be simplified as: 

a1 a N,+I a N,+I 
�=-°"w ko, =-°"w ! (! )=w .f'(! · ) 
ai . ai . 

� 1+1.p ,k ai . � 1+1.pk 1 1.p 1+1,,k , ,,, 
l,J l,J p-1 1,, p-1 

The two equations above then combine to: 

(4) 

(5) 

Relation (5) expresses the back propagation of errors. The errors 8i at the lower layer 
I can be calculated from the errors at the next higher layer/+ 1. The derivative of the 
cost function with respect to the weights can now simply be written down as: 

aE _ aE a11.j _ 
-- - -- ·----8, .ol-1. dw/ · ·  a1, · aw, · ·  

,J ,I 
,IJ ,) ,IJ 

(6) 

The attractiveness of this formulation of the derivative lies in the fact that in (6) no 
explicit notion of the cost function figures any more. Derivative information at a layer 
I is expressed in terms of 8i and Oz. The specifics of the cost function only enter at the 
top layer. 

When we minimize the errors between the desired outputs and the actual outputs of 
the net in a quadratic sense, it is called the Minimum Squared Error (MSE) criterion 
function. 
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(7) 

Here D;_ (p) denotes the output of the j-th output node of the neural net for pattern p 
and dj lP) the desired output for this pattern on this node. M denotes the .number of 
outputs. This cost function is at a minimum when for all patterns for all output nodes 
the output of the net is equal to the desired output. For this cost function, the errors at 
the top level, that propagate back, can simply be calculated according to formula (4) 
as: 

OL,j = f�(IL,j(p )) · ( Oj(p )- dj(p)) (8) 

Two schemes for updating the weights and biases exist, incremental and blocked 
updating. In the incremental updating scheme weights and biases are changed after 
each training pattern. One usually uses this scheme in adaptive sessions when the 
total training set is not available or continuously changing. When the total training set 
is fixed a blocked updating of the weights is more favourable. In this case the weights 
and biases are updated only after each complete iteration of all training patterns. 
Usually this is faster than updating after each training sample. Furthermore, blocked 
updating has better convergence properties because the cumulative gradient, which is 
a mean gradient over the training set, converges to zero for the optimal parameter 
values. 

In the minimization of the cost function we can use gradient information in a 
special way. The standard minimization method, as described by equation (1 ), is the 
steepest descent method. In this method weight changes are always in the direction of 
the gradient. This method leads to a not very good algorithm of minimization. The 
problem with the steepest descent method is that it will perform many small steps in 
going down a long, narrow valley, even if the valley has a perfect quadratic form. 
Because the new gradient at the minimum point of any line minimization is 
perpendicular to the direction just traversed, you always must make a right angle turn, 
which does not, in general, take you to the minimum. Instead we want a way of 
proceeding not down the new gradient, but rather in a direction that is somehow 
constructed to be conjugate to the old gradient and previous directions. Conjugate 
gradient methods accomplish this and therefore are, under many circumstances, 
superior to steepest descent methods. In our neural net simulation program we have 
implemented three different minimization algorithms, two of which are based on 
conjugate gradients. The simplest minimization method implemented is steepest 
descent with an (optional) momentum term. The second, most powerful, method is 
Powell's conjugate gradient method (Van der Smagt & Krase, 1 991 ). The third 
method is the Fletcher-Reeves-Polak-Ribiere conjugate gradient method. An 
introduction to conjugate gradient methods of minimization can be found in Press et 
al. (1992). 

In the initial phase of the training the sizes of the random weights and the inputs 
are essential. When they are too large, the weighted sums of the inputs, which form 
the inputs to the sigmoid nonlinearities, can be relatively big numbers. As a 
consequence, the training algorithm starts where the sigmoid functions are at a 
position where the derivatives are extremely small, and, since the speed of updating 
weights is a function of this derivative, hardly any training of the net is the effect. A 
sensible strategy to avoid this is to choose the initial random weights so that the 
magnitude of the typical input to a unit is somewhat less than unity. This can be 
achieved by initializing the weights in a layer to a random number in the interval 
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(-n-t,n-t), where n is the number of units which feed.forward to this layer. In an 
a.ualogous way the inputs, when they are too large, can block the training process. The 
remedy is scaling the inputs to values located around zero, say in the interval (-1, +1) 
or (0, 1 ). 

3 The cost function of Juang & Katagiri 

The first alternative to MSE that we consider was formulated by Juang & Katagiri 
(1 992a). It contains explicit notion of the winning class and therefore addresses the 
first point of the list 'shortcomings of MSE' in section 1 .  They define the cost 
function for pattern p to be a sigmoid function of a continuous misclassification 
measure dk: 

(9) 

where dk is defined as: 

I 

dk(p) = -Ok(p)+ [� I,0/7(p)]-;; M 1 j,j7'k 

(10) 

Here pattern p is supposed to belong to class k (the correct output class), Ok(p) is the 
_output of the correct node of class k resulting from input pattern p, 71 is a positive 
number and there are M classes. In this formula (10), the correct class appears 
explicitly (via Ok(p )) and the incorrect classes enter in a weighted sum (the term 
enclosed by the square brackets). When 71 approaches oo, the misclassification 
measure becomes: 

(11 )  

where i is the index of the class with the largest output value other than the correct 
class k. It is clear that in this case dk > 0 implies misclassification and dk ::; 0 means 
correct decision. The errors at the linear output nodes, according to equation (4), then 
become: 

(12) 

where the argument pattern vector p is implied, L is the index of the output layer, and, 

(13)  
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w�hich, for 1J � oo, becomes: 

J = k  

j = argmax; (O;) 
otherwise 

(1 4) 

We emphasise again that in equations (1 2-1 4) it is understood that the output units are 
linear, i.e. no sigmoid function is active in these units. 

In all subsequent comparisons of classification performances between the two cost 
functions the training data set and the test data set were the same. There were two 
data sets for which we compared classification performances: Fisher's iris data set 
and van Nierop et al.' s female vowel formant data. The iris data consist of four 
measurements made by E. Anderson (1 935) on 150 samples of three species of iris. 
The four measurements are sepal length, sepal width, petal length and petal width. 
Fifty tokens are available for each of the three classes. The iris data set was one of the 
test sets used by the authors of this MCE-based cost function and is used extensively 
in the literature as a reference set (Fisher, 1 936). However, we must note that it is not 
a very interesting data set for classification since standard linear discriminant analysis 
with the program SYST AT (Wilkinson, 1 989) already gives a classification rate of 
98.0%, only 3 out of 1 50 are being misclassified. This means that the 
misclassification of 2.2% that Juang and Katagiri obtain by their formula (9) is not 
impressive (their table III). In fact with our neural net simulation program we easily 
reach 0.7% misclassification with a one-layer neural net of topology (4, 3), i.e. 4 
inputs, 3 outputs, no hidden units, a sigmoid nonlinearity, and the MSE cost function. 
This contrasts heavily to their 1 2.3% misclassification, which was simulated with a 
net of topology (4, 15, 3). With MSE, 15 hidden units, and a nonlinear output layer 
we obtained 1 00% correct classification. The iris data set does not show the 
superiority of the MCE cost function as Juang & Katagiri argue. On the contrary, 
there is slight superiority for the MSE based cost function. 

The principal weakness of this MCE-based cost function will reveal itself with a 
data set that needs considerable more output classes than the iris data set such as the 
formant frequency measurements of 25 female speakers of van Nierop et al. (1 973). 
The van Nierop et al. set consists of the first three formant frequencies in Hertz of the 
1 2  Dutch vowels (/u/, /'J/, /of, /a/, /a/, /Y/, 10/, /y/, /i/, /I/, /e/ and /£/). It consequently 
needs 1 2  output classes. These formant frequency values were scaled to values in the 
interval (0, 1 )  according to the following formula: 

F� 
= 

f (F;) -f ( Fi,min) 
1 J(Fi,max)- J(Fi,min) 

(15) 

Since all vowel classifications in the Van Nierop et al. paper were performed on logF 
values, the function f was chosen to perform a logarithmic formant frequency 
transformation by taking/(x) = ln(x). This transformation is then followed by a linear 
scaling. The following values were used for the parameters of this linear scaling: the 
minimum formant frequency values, Fi,min for the first three formants were chosen to 
be 200, 500, and 1 500 Hz, respectively. The maximum formant frequency values, 
Fi,max' were 1500, 3500, and 4500 Hz, respectively. This linear scaling makes 
logarithmic scaling independent of the base of the logarithm and has the additional 
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advantage that all transformed frequencies are in the range (0, 1 )  which guarantees 
better training. 

With MSE we get excellent classification on the van Nierop et al. data set as is 
shown in the last column of table 1 .  When the MCE cost function (9) in combination 
with (1 0) was used for finite 71, classification results were generally worse. We only 
present results here, and not in table 1 ,  for a net of topology (3, 1 0, 1 2). The 
percentage correct on the average was less than 70% correct with the following 
settings of the simulation program: weights were initialized at a random value 
between 0.1 and -0.1 ,  a blocked update scheme was used with conjugate gradient 
minimization, 17=4 was chosen in formula (1 0), linear output nodes were used, the 
number of iterations was chosen sufficiently large (> 10,000) to guarantee good 
minimization. The performance of less than 70% correct classification is substantially 
below the 88.3% correct classification obtained with the combination of MSE and 
nonlinear output nodes. Apart from the worse classification performance, we notice 
that the blocked minimization with M CE more often got stuck in a local minimum 
than MSE minimization. Using a pattern by pattern update and choosing appropriate 
values forµ and a did not help. A careful look at the patterns that were not correctly 
classified revealed a flaw in this MCE-based cost function. For finite values of 17, the 
value of dk can become very negative, meaning very low cost, even when the output 
value of the correct class is very much smaller than that of one (or more) incorrect 
class(es). The derivative of the cost function, equation (13), is very small too in this 
situation, meaning that virtually no correction on this unfavourable situation is taking 
place. As long as the average of the M-1 values of 07 stays much below the value 
o:, the misclassification does not add much to the cost function. Indeed, the total 
cost function can reach any small value e (e > 0) without 100% classification, a very 
undesirable property. For example, in one session with MCE simulation as above, the 
total cost was minimized from an initial value of 250.0 to a value of 0.0013 with only 
67 .3% correct identification. In another session the total cost was reduced from an 
initial 150.0 to a final 0.00038 and, despite a reduction of the cost with a factor of 
1 05, only 58.3% correct classification resulted. When the number of classes (M) 
increases, the probability that this phenomenon occurs is likely to increase. 

Table 1. Comparison of classification perfonnance between MSE cost function and MCE 
cost function of Juang & Katagiri with TI -7 oo. The topology of the neural net was (3, 
N, 12). The training data set of van Nierop et al. was used (see text). MCE was tested 
with pattern-by-pattern update with randomization (µ=0.003 and a=0.9). The columns, 
from left to right, denote the number of hidden units, the MCE-cost after training, and the 
percentages correct for MCE- and MSE-based training, respectively. The percentage 
correct derived in the van Nierop et al. study via maximum likelihood classification was 
79.0%. 

#Hidden Cost MCE (%) MSE (%) 

2 72.0 77.0 75.6 
3 65.0 78.0 79.3 
4 58.2 81 .3 80.3 
5 55.9 82.0 83.0 
6 53.7 83.0 82.6 
7 52.5 83.0 86.6 

Since finite 1J does not do the job, the only formulation of this MCE cost function 
that needs checking is the limiting case 1J -7 oo: only the difference of the output for 
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the correct class and the highest output of the resulting output units appears in the cost 
f11nction. The measure in equation (1 1 )  for dk now clearly is better coupled to 
classification performance than before: a negative value meaning correct 
classification. In table 1 we have accumulated some results of testing this MCE-based 
cost function. We have tested MCE by updating the weights after each pattern was 
clamped, for each iteration the patterns were randomized. The values chosen for the 
gradient descent were a pattern-by-pattern update with µ=0.003 and a=0.9. The 
number of iterations was chosen to be sufficiently high (50,000). We had to use this 
pattern-by-pattern updating scheme because the blocked updating scheme did not 
perform reliably with this cost function, it got stuck many times in a local minimum. 
It seems that with MCE in the blocked update case, in one way or another, many 
times a heavy cancellation of weight changes is taking place, in such a way that no 
effective updating is possible any more. The results in table 1 show that with the van 
Nierop et al. data set the results, especially for topologies with a small number of 
hidden units, are satisfying. But these results come at great cost: many times the 
blocked updating of weights with fast conjugate gradient minimization cannot be 
used, pattern by pattern updating with steepest descent has to be used instead. 
Furthermore, the learning parameters (µ, a) have to be optimally adjusted to 
guarantee proper minimization and patterns have to be randomized in each iteration. 
Pattern-by-pattern updating takes considerable more computer time than a blocked 
update. Moreover, our powerful minimization algorithms cannot be used. Careful 
testing with more difficult artificially generated data sets with strongly overlapping 
classes showed clear superiority of the MSE cost function in combination with 
nonlinear output nodes over MCE with linear output nodes. In summary, we could not 
find convincing evidence for the superiority of this MCE-based cost function over the 
standard MSE-based cost function. 

4 The cost function of Hrycej 

The cost function of Hrycej (1 992) is the simplest form of a function that imposes no 
weight changes if classification is correct. It has a non-zero gradient only in the 
region were the cost is positive. The cost function is: 

(16) 

in which k is the index of the correct class of pattern p, i the index of the largest 
output, C ki is the element of the cost matrix that denotes the cost of misclassifying a 
pattern belonging to the correct class k as belonging to the incorrect class i, and the 
function pos(u) is defined as pos(u)=u for u > 0 and pos(u)=O otherwise. The cost 
matrix C ki need not be symmetric and can be any general matrix. The errors at the 
output level can be expressed as 

J=k 
J=i 
otherwise 

(1 7) 

where f)(u) denotes the step function, defined by 8(u)=l if u > 0 and 8(u)=0 
otherwise. This cost function, in combination with blocked updating, has the 
admirable property that it is a convex function with regard to the classifier 
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parameters, i.e. the weights (Hrycej, 1 992). This means that the global minimum of 
t!ie cumulative cost function can be found by gradient descent. 

In table 2 we have accumulated some results of the comparison of MCE versus 
MSE. The data set used for the comparison was van Nierop et al.' s vowel formant 
frequency data set of 25 Dutch female speakers. We mention that, as was the case 
with the MCE-based cost function of the previous section, a blocked updating scheme 
of the weights was not very successful. Again, we had to use incremental updating. 
We chose µ=0.003 and a=0.9. The classification results for this MCE-based cost 
function were not very impressive. We did several other tests with data sets with 
strongly overlapping classes and this MCE cost function did not perform well. Many 
times it got stuck in a local minimum without any substantial classification 
performance. Careful analysis of the resulting states lead us to detect a defect in this 
cost function: The main weakness of the Hrycej cost function is that it is too sensitive 
to scale: a trivial reduction of all output weights and biases with a factor a (0 < a  <1 ) 
reduces the outputs with the same factor because the output nodes are linear. The net 
effect of this reduction is that the total cost is reduced with the same factor, however, 
without any implication on the classification performance whatsoever. The global 
cost can be reduced to any number e (e > 0), without affecting the classification at all. 
A very undesirable property for a cost function. 

Table 2. Comparison of classification performance between MSE cost function and MCE 
cost function of Hrycej. Incremental updating scheme with µ=0.003 and a=0.9. For 
further details see table 1. 

#Hidden Cost MCE (%) MSE (%) 

2 0.43 72.0 75.6 
3 0.42 74.3 79.3 
4 0.34 73.0 80.3 
5 0.24 73.3 83.0 
6 0.44 71.3 82.6 
7 0.86 72.0 86.6 

5 Discussion on cost functions 

Most of the criticism formulated in section 1 on MSE-based learning is only 
appropriate for the combination of MSE and linear output units. The only serious 
objection that MSE has no remedy for, is the first one of the list: the MSE cost 
function is not necessary optimal for classification. The rest of the objections can be 
dealt with easily as we will demonstrate. 

A class specific cost can be incorporated in the MSE cost function of (7) in an 
analogous way as was done in the previous section with the Hrycej cost function: 

(18) 

In this cost function, pattern p belongs to class k and Cki is the cost when class k is 
misclassified as class i. This reduces to the standard MSE formulation when all Cki 
are equal to 1 .  The errors at the output level can simply be calculated: 
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8L · =f�(IL ·)·Ck .·(O. - d .) ,) ,) ".} J J (19) 

where f is the function present at the output nodes. As was explained in section 1, 
when used in combination with linear units the MSE cost function slows down 
learning. However, this need not worry us since MSE and linear output nodes were 
not meant for each other. The solution is to change the output function to a sigmoid 
function. This immediately creates the necessary freedom and removes the 
unnecessary constraints because the domain of the sigmoid is (-00, +oo). The price we 
have to pay for changing the output function to a sigmoid is an increase in the 
learning time. All MSE classification tests in this paper were performed with sigmoid 
nonlinearities in all nodes. 

A cost function that is monotonic with respect to classification cannot be a 
function of all outputs at the same time. When the number of classes is substantial 
and the cost function is non-monotonic it is always possible that misclassified 
patterns with low cost exist. It may be that for these misclassified patterns the way to 
go in weight space in order to reach perfect classification is either partly uphill or 
very slowly downhill. In the averaging performed by a cumulative update this can 
normally be remedied. 

The only objection against MSE that remains valid is the first argument in the list 
of section 1, MSE is not necessarily optimal for classification. 

From the discussion above we must, however, conclude that, although MSE as a 
cost function is probably suboptimal, it is certainly hard to beat. 
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