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Abstract 

ITh1M basically models the speech signals at the level of short-term analysis frames. 
However, speech information is conveyed not only in this way, but also in long-term 
features such as the segmental duration. Integration of phonetic knowledge about dura­
tion into a recogniser should improve the accuracy of the modelling and therefore in­
crease the recognition performance. In order to justify such approaches, many aspects 
ranging from philosophical to implementational ones should be dealt with. In this paper 
a review and discussion is given. 

Introduction 

Since the introduction of the Hidden Markov Models (HMM) into the engineering 
applications of automatic speech recognition (ASR), the success is inevitable. Actually 
it is the HMM that brings forth the first feasible possibility to ASR after many decades 
of the attempt. The combination of the power of modern computers and the efficient 
algorithms makes the current encouraging situation possible (e.g. Rabiner et al., 1993). 

Standard HMM with the extremely simplified mathematical assumptions already 
find sufficiently satisfactory applications for moderate tasks. Therefore, based on such 
standard HMM structure, it is still possible to introduce further refinement for possible 
improvement and for more difficult recognition tasks. For different application pur­
poses, the direction chosen for refinement may be different. It is also possible to define 
such directions from a pure mathematical initiative and interests. 

The research area can be characterised in other ways as well. Since speech science 
itself has a much longer history than modern ASR, the well-established theories and 
rich knowledge can find their position on the new stage. These classical areas include 
phonetics, phonology, linguistics and psychoacoustics. Scientists in these areas are 
motivated to inject their knowledge into the ASR, which by itself has been rather engi­
neering from the beginning, therefore can in some respect be quite naYve with regard to 
the nature of the speech signal that is actually dealt with. On the other hand, where the 
classical theories find themselves confusing or insufficiently sophisticated, the practice 
of ASR may also provide new insights to re-justify and enrich the theory. 

One observed phenomenon in speech is the varying duration of the phonetically de­
fined segments. The duration has relations with, among other aspects, the phonetic 
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identity and the contexts of the segments, and with the overall speaking rate and style 
of the utterance. Human listeners use durational cues in the perception process. It is 
then logical to include a duration mechanism in ASR as well, such that the natural 
process of speech perception by humans can be better imitated with an ASR. However, 
the duration is not part of the basic design of the standard H:MM. Therefore, it is im­
portant to investigate how durational modelling has been implemented in an HMM­
based recogniser, and how the durational modelling should affect the recognition per­
formance. Note here that the duration feature is not part of the objective of the rec­
ognition (the recogniser does not have to identify the segmental duration, but only the 
content in an utterance in terms of a sequence of linguistic units). A recogniser can 
output the segmental duration as a by-product, but it is usually not used. However, a 
better durational modelling in a recogniser may improve the recognition, provided that 
the durational feature carries extra information and this information can be made use of 
by the recogniser. 

In this paper, an in-depth review will be given on durational modelling in HMM­
based recognition. Attempts will be made to analyse each approach with respect to its 
impact on the HMM system and possible improvement of the performance. Some gen­
eral confusions in the understanding of the problem and approaches are clarified. 

1. The Durational pdf as a Secondary Measure of HMM 

HMM is currently the basis of the most successful technique of automatic speech 
recognition (Rabiner et al., 1993). This technique is based on statistical methods as 
opposed to non-statistical rule-based systems. When the rules for speech get more and 
more complicated while the modelling quality does not get much better, a statistical 
approach relying less on an understanding of the speech signal wins the battle. 
However, in essence, the physical reality of speech is neither governed by sets of arti­
ficially derived rules, nor generated from a stochastic information source with parame­
ters to be estimated. Statistical modelling based on HMM is only a good approxima­
tion to the reality of speech, and therefore many assumptions and compromises have to 
be made. 

In the application of HMM to speech recognition, the speech signal is usually repre­
sented as a sequence of feature vectors1 at discrete time intervals: 0 = 0102 ···Or. Basi­

cally, HMM is used in a recogniser to calculate the probability that 0 is' generated from 
an HMM. The basic parameters of HMM, namely a in the transition matrix A and b in 
the observation matrix B, are both defined at a single time step: 

aij = P(st = jlst_1 = i); 

b/ot) = P(otlst = }), 
( 1) 

where Prefers to probability, and sis one of the finite states of the HMM. 
The durational behaviour of an HMM is usually characterised by a durational prob­

ability density function (pdf)2• It is defined on all possible durations, and its value is the 
probability of staying in a state or in an HMM for a given time steps d. This pelf is then 

1In this study, the actual composition of a feature vector obtained from an analysis frame is not 
dealt with. The reader can find reference in e.g. Wang et al. (1993) for that aspect. For systems using 
also time- or frequency-derivatives, we refer to all the components as one vector. Therefore, feature 
vector, acoustic vector, or observation vector all refer to the same thing, as an analysis frame does. 

2Note that here and elsewhere if not specified, pdf, mean and variance all refer to the durational 
distribution, instead of the acoustic distribution. 
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not a basic quantity of an HMM, namely not a probability of a basic event associated 
with an HMM. However, the event associated with the durational pdf is a joint event 
of the basic events. In this sense, the durational pdf is a secondary measure of the 
process. The durational pdf is defined on a sequence of time frames so it is a long-term 
feature. Given the Markovain assumption, the durational pdf for a single state i is 

(2) 
It can be seen that this is a geometrically decaying function of d. It has been claimed 
that this is a source of inaccurate mcxlelling with the HMMs since no actual physical 
events in speech obey this rule. 

2. Explicit State Durational Modelling 

Owing to the inaccurate durational mcxlelling of the standard HMM at the state 
level, a very common attempt has been to replace the intrinsic durational behaviour of 
HMMs with an explicit model at the state level. Actually this explicit state durational 
mcxlelling is almost taken for granted as the only durational mcxlelling technique. Suf­
ficient work has been done along this direction with concrete conclusions (e.g. Levin­
son, 1986; Guedon, 1992), therefore it will not be dealt with in detail in this paper. 

The principle of the technique is straightforward, namely to replace the durational 
pdf of each state of a standard HMM with an artificial pdf. The form of this pdf is cho­
sen to be some well established pdfs, such as a Gamma, a multi-nominal, or a Log­
normal. The parameters of this pdf are estimated directly from a set of training data. 
Since the standard HMM formalism is altered, e.g. the transitional behaviour does not 
follow the Markov process entirely, such a model is called Hidden Semi-Markov 
model (HSMM). The estimation algorithm for parameters of HSMM (different from 
HMM) and the explicit pdf can be found in Levinson (1986). 

With the parametrical modelling of the durational pdf at the state level, certainly the 
durational behaviour at this level can be modelled very accurately. All the well chosen 
pdf functions are governed by two or more parameters, therefore both the mean and 
variance can be fitted to the statistical distribution of the real data. The HSMM 
provides some improvement in recognition performance for some tasks (Russell et al., 
1985), as compared with the HMM, at the cost of an increased complexity of the 
whole system. 

3. Whole-Model Durational pdf 

Although a better durational behaviour at the state level is important, this is not 
sufficient. The critique of the standard HMM for its state durational behaviour is 
weakened for systems using HMMs with multiple states. Actually the latter is the most 
common practice because one wants to model the intra-segment variations of speech 
as well, with a single model. Within such a model, each state does not necessarily cor­
respond to any well-defined acoustic event with a known durational distribution. In 
this sense, the durational behaviour of an internal state is less important than that of the 
whole model, which always corresponds to an acoustic segment. Therefore it is sensi­
ble to investigate the whole model durational pdf. If the investigation shows that such a 
pdf does not behave well enough, it will be then necessary to manipulate it. 

In this section, the expression of the whole model durational pdf is derived, starting 
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with an often used simple linear topology as an example. Conclusions for general 
mQdel topologies are also given with extensions from this simple example. The investi­
gation into the whole-model pdf has only been brought to attention recently (e.g. 
Guedon, 1992), while the derivation used here is different from his. 

The key difference to be taken into account between single state and a number of 
connected states in the whole model is that the total time d can be spent in different 
state transitions in many different possible ways. We start from a linear transition to­
pology in which each state can only transit to itself (the selfloop) or to the next state in 
the cascade. Recall that with the single state the durational pdf decreases with d be­
cause the value of the pdf for a larger d is obtained simply by more multiplication with 
a which are smaller than 1. For a cascade of n state each with a selfloop, the actual 
way of distributing all the d � n time steps3, namely how many steps to spend in each 
state, or more generally the state sequence S = s1s2 • .. sT' is unknown. In this situation, 
because we are talking about the probability that the process stays within the model for 
a given d, this value of the pdf is the sum of the probabilities of all possible events, 
namely all different ways of distributing the total d. This is why in the resulting dura­
tional pdf, there can be regions where probability increases with d because these values 
are sums of many values. Each of the summation terms decreases with d, but the num­
ber of terms increases with d. Therefore, when for some regions of d the second effect 
compensates the first one, the value of pdf can increase with d. 

The example is further simplified for situations where all the selfloop probabilities 
are equal aii = a.  It can be seen that the transition probability from any state to its next 
state are also equal, being (1-a). Then, irrespective of which particular S is taken, the 
probabilities for taking any single S with a given d are equal. This can be understood in 
such a way that all the states are mutually indistinguishable with respect to their contri­
bution to the probability of S. It follows that what we need is to calculate the probabil­
ity of such a single S and the total number of such possible S. (Note here that all the S 
are different but their contributions are equal4). The summation over all S is simplified 
to a multiplication of the probability of a single S with the number of S. 

Since each transition from a state to its next takes one step, any sequence S with d 
will spend exactly n steps in a model with n selfloops, and spend the rest (d-n) to 
some of the selfloops in an arbitrary way. Such a joint event (for any S) consists of n 
to-next transitions and (d -n) selfloop transitions. Each of the former has a probability 
(1-a) and each of the latter, a. Then the probability of the joint event is a multiplica­
tion of all these: ad-n (1-a Y. The number of ways of distributing ( d -n) time steps 
(think of them as identical tokens) among the n selfloops (as distinct locations), given 
by the combinatory formula, is 

K(d,n)= (d-l)= 
1 

(d -l)(d-2)··-Cd-n+l). 
n-l (n-1)! 

(3) 

Therefore the durational pdf of the model is 

P
n

(d) = K(d,n)ad-n(l-a)n. (4) 

3It is impossible to have d < n time steps with such a model, therefore the pelf value for those 
points are simply zero. 

4For example two distinct sequences S1 and S2, with S1 spending at si for 2 and at si+l for 3, 
whereas S2 staying at s; for 3 and at S;+i for 2. In both cases, this total contribution from s; and s;+i 
are equal, being a5 (1- a)

2
• 
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This is a negative-binomial distribution (Lloyd, 1980). This discrete distribution is also 
a close approximation to a continuous Gamma distribution. Such a distribution has a 
single peak at d0 � n (see Appendix), and has an asymmetric long tail for d > d0• This 

is ideal for modelling segments such as the phones. 
For the more general situation with different selfloop probabilities, we start with 

two states in cascade. We still denote the total time spent in these two states by d. It is 
obvious that the more time is spent in state i, the less time is left for state i+ 1, with the 
total always being d. For each particular number of time steps in i, we have exactly one 
way of distribution. Therefore the summation over all possible ways is simply a sum­
mation over all possible values of times spent in the first state i, namely 

d-2 
D (d) � I d-2-1 
r 2 = £.J aiiai,i+l ai+l,i+l ai+1,i+2. 

l=l 

Note that we also considered the time spent to transit out of each state. 

(5) 

It can be seen that this formula is formally a convolution5 between a terms. How­
ever this is obtained by distributing the time steps among states, therefore this has 
nothing to do with the convolution used in e.g. calculating the output from a digital 
filter. If an explicit durational term is used to replace each aii as is done in HSMM, this 

convolution formula still holds. This can be directly extended to a longer cascade with 
more than two states by convoluting gradually the resulting cascades with other ones, 
with some minor modification for the initial value of d. For a model topology with 
arbitrary transition branches, as long as there are no large feedback loops involving 
more than one state (namely if the whole model is still left-to-right, the only type used 
to model speech), the total durational pdf is simply a contributed sum from all linear 
branches weighted by the probabilities of taking these branches. 

It is obvious that the simpler linear case with equal a is a special case of the general 
cases for single linear branch with different aii, namely the simple one can also be ob-

tained with a convolution. But the result of the convolution for the case of equal a is 
known with a closed form, being a negative-binomial function. It can be speculated 
from this that the convolution with different and more than two aii will result in similar 

functions. It is difficult to obtain a closed form of it, but a numerical procedure for cal­
culating it can be derived. However, for the following reasons, we do not go further 
along this line. For the purpose of fitting the durational behaviour of a whole model, 
even a binomial case with the simplest topology and equal a, as shown above, may be 
competent. The more complicated cases including different a", parallel transitional 

branches, and eventually the convolution with the parametrical terms of HSMM6, do 
not seem necessary, at least before we have tried the simpler setups. Furthermore, 
within the framework of statistical modelling, any attempt which increases the com­
plexity of the system and the number of parameters which have to be trained with lim­
ited data, should be avoided as much as possible. 

5This derivation is obtained with our special case without using knowledge in probability theory 
(Lloyd, 1980) which says that the distribution of the sum of independent random variables is a convo­
lution of the distributions of individual variables. 

6If the parametric term is a Gaussian, the convolution will still result in a Gaussian (with different 
parameters in general). Gaussian is however not often used as durational pdf because its symmetrical 
tails are not realistic. Other functions will in general result in complicated forms after convolution. 
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4. Acoustic Durational pdf 

... 

In the above discussion of durational pdf, we have only used the transitional prob-
abilities A, not the observation probabilities B. One argument for this is that the transi­
tional behaviour determines the duration that it models. However, the moment that the 
process enters a state is also governed by the associated process of observing a par­
ticular acoustic vector o. In other words, the durational behaviour can also be influ­
enced by the temporal structure of the observation sequences 0 and B which store sta­
tistical information of the training data. 

It is important to distinguish which set of speech data is being concerned, being the 
whole set of training data, or a particular sequence 0 to be recognised. In this section, 
it will be clarified that the durational pdf in the previous section is a pdf that has con­
ceptually considered all theoretically possible 0, either being present in the training 
data or not. Therefore it is called a full pdf referring to its full consideration. Note that 
it has been taken for granted in the literature that this full pdf is the pdf that character­
ises the durational behaviour of an HMM, without realising from what statistical in­
formation it has been calculated. It requires further investigation to clarify whether a 
full pdf is a justified measure of the durational behaviour (Wang, 1993 ) . 

In the procedures of both training and recognition, it is usually a particular set of 
data, instead of a full set of data, that play the role in the calculation. The phonetic 
knowledge that segmental duration affects spectra (e.g. van Son et al., 1990, 1992) 
also suggests a need for a pdf which is more closely related to the acoustic data. This 
durational pdf, called acoustic pdf, will also be proposed in this section. 

The derivation starts with a relation between the full pdf and P( 01 A.), the quantity 
very often used and referred to as the likelihood that a model (with parameter set 
A.= {A,B}) generates 0. Similar to the standard forward procedure (see e.g. Juang et 
al., 1992) where a probability of the observation of a particular partial sequence 
0102 • • ·o, is defined as 

a;(t) = P(o1o2 • • ·o,,s, = ilA.), 

we define an observation probability of any partial sequence 

&.;(t) = P('t/(0102 • • ·o,),s, = ilA.). 

( 6) 

(7) 

The calculation is also similar to that of a, namely in a way of recursion with t, except 
that an extra summation taken over all possible different o is performed at each time t. 
It is obvious that this is equivalent to considering all different possible partial se­
quences as a whole. The recursion is 

a /t) = I [ta; <t -1)aijbj < o, )]. 
Ot 1=1 

(8) 

Since &.i (t -1) has considered all different partial sequences till (t-1) and a is con­

stant, the summation over 01 only applies to b terms, which leads to unity (e.g. for a 

continuous-observation system), 

L,b/o,) = J bj(o,)do, = 1, 
Ot Ot 

(9) 

where the integral is performed over the entire multi-dimensional acoustic space. It 
follows that the recursion is only over all different S, using only the A parameters, 
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N 
aj(t) = :L aj(t-l)ajr (10) 

i=l 

The recursion terminates with the likelihood that A, generates any 0, each with a total 
duration d 

N 
P(V(op02,···0JIA.) = P(V(O(d))IA) = :L aj(d). (11) 

i=l 

In the whole forward recursion procedure, all S have been considered by means of 
considering at each t all state transitions. The summation of the joint likelihood 
P(O,S) over all 0 e {O(d)} results in the marginal P(S), but the duration of all these 

S are confined to d. A further summation of P(S) over all such S is exactly the same 

operation as in the previous section, only in the latter calculation, a different way of 
listing all S was used. Therefore the likelihood in (11) equals Pn (d). Combining these 

we obtain 

Pn(d) = P(VO(d)IA.) = L,P(O(d)IA.). (12) 
O(d) 

From this expression we can give an alternative interpretation of the full pdf as: 

the likelihood that a model generates any observation sequence with a given duration. 

The relation (12) between the full pdf and the likelihood indicates that all possible 0 
have been considered. However, many of these 0 are very unlikely to occur in actual 
speech data. It can be argued that these unlikely 0 would contribute very little to the 
summation even if they would be available, therefore the full-pdf would still provide a 
correct data statistics. However, it has not been proven whether such a penalisation is 
sufficient since the training of models follows a standard Baum-Welch algorithm in 
which the fit of the pdf to data is not used as an optimisation criterion. This can also be 
seen in the divergence between the full-pdf of a model trained with a data set and the 
data pdf of the same set, as given by the bars and curves in Fig.1. and 2. The data pdf 
is from a histogram with the total counts given between brackets. 
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Fig. 1. The durational pdf s of the Dutch vowel /a/. 
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duration (8 ms steps) 

Fig. 2. The durational pdf s of the Dutch vowel /a/. 

It can be seen that one possible way to get an acoustic pdf is to use only those avail­
able 0 within each subset {O(d)} of the data with duration d, in the summation of 

(12) .  However, direct substitution gives a problem. The value of the likelihood P( 01 A) 
decreases geometrically with duration d of 0 due to multiplication of probabilities. In 
the calculation of the full pdf, this is not a problem since for longer d, the total number 
of 0 also increases geometrically, so the summation over this larger number of 0 will 
weight it back. But with only the available set, this is the problem since the number of 
0 in {O(d)} is simply provided by the data, and the a priori distribution of the numbers 

is far from geometrically increasing. 
In order to use the available 0 to estimate a correct acoustic pdf, we assume that 

each 0 in the data set is a representative of all possible 0. Before summing, each like­
lihood is first down-scaled by the total number Nd of 0 in {O(d)}, and then up-scaled 

by an assumed number of all possible 0, given by a discrete-type observation. This es­
timated measure is normalised through the total range D of duration, and a proposed 
calculation is then 

(Md ) 
L,P(OIA) 

p 
(d) = 

Nd Oe{O(d)} 
• 

n ±(M d ) 
L,P(OIA) 

d=l Nd Oe{O(d)} 

(1 3) 

In this formula, M is an assumed codebook size. This and other proposed formulae for 
acoustic pdf can only be useful if the limited size of data do not introduce unacceptable 
irregularities. This is a serious practical problem since a whole set of data with a mod­
erate size will be further partitioned for different durations, leaving the size of {O(d)} 
unacceptably small. 

5. Constraint on the Whole-Model Duration 

Being aware of the importance of the whole-model pdf instead of merely adjusting 
the single-state pdf, a step forward is to actively fit the whole-model pelf to the empiri-
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cal durational distribution of the data. The only known activity along this line is re­
:ported in a very recent paper (Hochberg et al., 1 993), using whole-word models in a 
connected alphadigit task. The actual approach is to use Gaussian HSMM to fit the 
state mean and variance, and to constrain the state variances on the word variance_. Im­
provement in recognition (1 0.9% error rate as compared to 1 2.3% without constraint 
on word duration) has been achieved even with this simple choice of Gaussian pdf. 

This approach bypasses the investigation of the whole-model pdf (and trying to 
modify it). It directly goes to the estimation of the state parameters. In the whole pro­
cedure of estimation with the constraint, it is a particular state sequence S, instead of 
all possible S, that is considered. This technically replaces the calculation of convolu­
tion by a much simpler multiplication. When an S is known, namely a certain number of 
time steps is devoted to each state (of a linear model again), the probability of taking S 
is obtained by multiplying the parametrical HSMM terms of all states, and the transi­
tion probabilities between states. 

Both the lower-order statistics (mean and variance) of whole model and of single 
state have simple relations, such that the former are sums of the latter. The approach is 
still to estimate the values of the state variance of the explicit pdf terms, while these 
values are further constrained by the whole-model variance, the latter being obtained 
empirically from data. This way, although the variance of each single state is not fitted 
to the data, the variance of the whole model is. It turns out that the actual estimation 
of the variances does not affect the estimation of the mean of each individual state, so 
that the latter can still be fitted to the data. 

Although both convolution and multiplication coincidentally result in Gaussian 
pdfs, the parameters of them are different (usually the convolution results in wider 
distribution, namely lager variance, than the multiplication does). The investigation 
here motivates us to have a closer look at the whole-model full-pd£ in section 3. 
Although the full-pd£ of a standard HMM has a good form of pdf, its parameters need 
to be adjusted with algorithms in addition to the standard training. 

It is interesting to view this phenomenon from a different perspective, namely in 
combination with the acoustic pdf. Although the coincidence that both convolution and 
multiplication of Gaussian pelf result in Gaussian, which only applies with this special 
function, the two resulting Gaussian pdfs represent conceptually different kinds of 
probability. When we start with the general joint probability (we drop the parameter 

indication A. because it is not relevant here) 

P(O,S) = P(OIS)P(S), (14) 

the result from the multiplication is simply the P(S) as the last term, namely the prob­

ability of a particular S. With our induction, the full pdf is 

P(d) = 'LP(O) = L 'L P(O,S). 
Oe{O(d)} Oe{O(d)} S 

(15) 

This also equals a convolution of the individual state pdf, obtained from another way 
of induction. Our attempt to obtain an acoustic pdf applies to the outermost summa­
tion, namely after the summation over S is done. Then we try to choose only those ex­
isting 0 e {O(d)}. P(S) essentially lies on one extreme, namely only one S (and associ­

ated with only one 0) is used, whereas the full pelf P(d) lies on the other, i.e. it has 

summed over all 0 e {O(d)} and all S associated with them. 

One attempt to obtain an acoustic pdf, therefore, can be to sum over only a selected 
set of S associated with each particular 0, or simply one S for each 0, found by a 
Viterbi scoring, since that S is dominating anyway. By doing so, the acoustic pdf we 
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get should be closer to P(S) than the acoustic pdf using all S. Using Gaussian state 
pdf, since both extremes are Gaussian, the acoustic pdf obtained this way should also 
be a Gaussian. 

Looking at the lower-order statistics is a parametrical way of statistical modelling. 
In one situation, either the (sufficient) statistics, or the whole pdf, will be more conven­
ient and insightful. The inaccuracy left by merely using the statistics can be treated in a 
later step. In this light, looking at the first two statistics mean and variance, either with 
or without using a parametric model, may be an alternative way to looking at the entire 
distribution pdf. 

6. Duration Relative to Speaking Rate 

Speaking rate is a global measure of an utterance, and can be defined as e.g. number 
of segments per unit of time. It has a certain relation with the segment duration. It is 
another way to see the same problem as treated with durational modelling directly. 
Due to the difference in the formalism in the two approaches, the actual kinds of meas­
ures, the emphasis on the aspects of the variations in the data, and eventually the per­
formance improvement they will bring, may be different 

Jones et al. (1993) in a recent work tried to incorporate rate information into large 
vocabulary continuous speech recognition. The essence of this work is to attach to the 
set of HMMs some parallel models in which to store direct durational statistical infor­
mation of the data. These parallel models differ from the HMM or HSMM in that they 
are not part of the modelled stochastic process that generate the speech. The statistical 
information stored in them are used to alter the scores of the recognition hypotheses 
when the speaking rate is available. 

The speaking rate of an unknown utterance is not available when the utterance en­
ters the recogniser. Some procedure is needed to get it or to estimate it. Actually in 
this work the whole recognition is almost finished when the rate is estimated. An N­
best algorithm is applied that uses the set of basic HMMs (before any adaptation proc­
ess to the rate) to get a list of N hypotheses. Based on the segmentation from these hy­
potheses, an estimated rate (or duration) of each basic unit is obtained. This rate in­
formation is used to calculate a rate score for each unit. The rate score for the whole 
utterance combined in a way with the basic score is used to re-score each of the hy­
potheses. The new top hypothesis provides the recognition. 

Three ways of defining the rate models were tested, each with certain advantages. 
These are ( 1 )  partitioned model which splits the data into 3 categories being fastest, 
average and slowest; (2) shifted-mean model; and (3) relative normalised duration 
model. The partitioned model, though the simplest one and having the problem of less 
training data than the other two, gave the best improvement. The actual ways of stor­
ing the rate information include using the absolute minimal and maximal duration, the 
interval between which 9 0% of the duration occurred, a smoothed durational histo­
gram from the data, and the mean and variance of an assumed Gaussian distribution. 
The actual ways of using these different types of durational information in the re-scor­
ing process are different, e.g. for the partitioned models this is simply to choose the 
appropriate partition of the models. The best performance was provided by the histo­
gram, being 1 0% word error reduction relative to the baseline without rate adaptation. 
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7. Beyond the HMM: Modelling in the Whole System 

There can be a confusion between hidden Markov models and modelling speech in 
general. It can be seen from the title of this article that these two are not necessarily 
the same. Obtaining improved, or even perfect, durational behaviour of all the HMMs 
in a system is not the only way to cope with the durational information, and only doing 
so does not guarantee a complete incorporation of the information. Review and analy­
ses in section 1 through 5 have been concerned with the HMMs themselves. The ap­
proaches in section 6 show the incorporation of durational information into the system, 
but outside the HMMs. 

In the general modelling problem, hidden Markov models are only parts of all mod­
els used in a speech recogniser to model the whole speech. This can already be seen 
from the fact that the language models play a substantial role in recognition. As the du­
ration phenomenon is concerned, it should also be modelled outside the HMMs. 
Furthermore, the duration itself is present at different levels of the whole structure of 
speech. It will be improper to just try to model all durational variations within the 
HMMs, which are still segmental models. A particular serious situation is in systems 
with sub-word units, e.g. in a continuous speech recogniser. Merely modelling the du­
ration of the basic units (e.g. phones) cannot model the duration of the words com­
posed of phones. 

It is general in a statistical approach of recognition to let the system learn as much 
as possible the information in the training set, including the shape of and distribution 
within the acoustic space (mainly static statistics), and time correlation between units 
at various levels ranging from frames to words. Although this statistical approach 
seems blind in the sense that we let the system learn by itself, we have to, and are able 
to design the structures for the system to store the statistics. Some of the correlation is 
embedded in the structure so that they are not to be learned from data while others are 
to be learned. However, only the values of the parameters, not the structures them­
selves, will be altered during the training. Therefore a meaningful new approach within 
the statistical framework should always involve new designs of structures. 

8. Duration and Phonetic Contexts 

It is a common observation that the segment duration is affected by the phonetic 
context the segment is in. Therefore it is natural to take this into account in durational 
modelling. One way to do this is to model the duration of a segment with different 
models for different contexts. The use of triphones, having a structure with fixed type 
of context, is one way for coping with duration in context. A similarity can be seen be­
tween such an approach and the partitioned model in section 6. However, direct use of 
a triphone-inventory may not be appropriate since different triphone contexts can have 
the same durational impact, on the central phone. Furthermore, longer contexts are not 
considered by triphones, whereas attempt to use m-phones with m > 3 certainly brings 
complexity problem. Some entries of the longer contexts may be better identified with 
part-of-speech, e.g. the location associated with pre-pausal lengthening. 

The results of such investigations will involve new phonetic knowledge. Therefore 
work along this line will give insights not only in HMM-based recognition, but also in 
phonetics itself. Because the contextual effect on segment duration is a complicated 
phenomenon, certain descriptive models are needed to specify these relations (van 
Santen et al., 1990 ;  van Santen, 1992). 
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9. Combination of Knowledge and Statistical Approach 

.... 

There should be no contradictions between a statistical approach of durational 
modelling and a knowledge-based approach. Both ideas must be actively used. 

The segment duration as an observed phenomenon is an aspect of variation in 
speech. In order to have some measure on this phenomenon, statistics is a good way to 
cope with the uncertainty. Statistics is also good in dealing with relations between 
probabilities of different kinds, and in different parts. Although statistics is not the only 
possible way, it is much more sophisticated and richer than e.g. only indicating the ab­
solute duration of a segment without any probability associated with it. We can com­
pare this with the experiment of throwing dice. Only observing the number on the top 
side, we can only get 6 values, and we do not have any indication of a test e.g. with 
more throws. Recording some counts, e.g. the number of two consecutive throws with 
the total value of 7 ,  will introduce more measures, and can virtually define new events 
and characterise unlimited number of different tests. Even stochastic processes can be 
defined. Going back to the duration in speech, some of the events do not even need to 
be defined: they exist. 

Using statistics, however, does not imply that human knowledge cannot enter. One 
most straightforward way to provide a forum for the knowledge is the process of 
defining probabilistic events. The probability theory can help us define new events with 
basic, simple ones, using partition, joining, or conditioning properties. The example 
operations we have seen above are, to partition with the durational intervals, and to 
condition with the contexts. Without our knowledge about speech, we cannot define 
these events and manipulate these probabilities. 

An understanding of the problem of statistics and knowledge will pave the basis of 
the ways how a system equipped with durational knowledge should work. For exam­
ple, we want our recogniser to use its optimal subset of models to speech with particu­
lar speaking rate. Then an external informing signal should be available that tells the 
system about this rate. For this purpose the aforementioned N-best can provide the 
signal while the duration-partitioned models can be the set to be selected. Note that the 
partition is defined with our knowledge, whereas within each partition, statistics is 
needed. 

10. Still Open Questions 

It is not clear whether the durational modelling is necessary, namely manipulations 
in other parts of the system, or some implicit modelling simply have done the same job 
already. It is neither clear, similarly, whether a durational modelling only alters the du­
rational behaviour of a system, nothing else. Due to the complexity of the structured 
approach of all different durational modelling, and the complexity of the whole recog­
niser, these questions will only be answered in practice, but not in a theoretical or 
philosophical way. 

Other long-term speech features such as an energy or pitch contour, also find them­
selves difficult to be integrated in an HMM-based recogniser. Ways of integration 
should be found, and the mismatches of timing and dynamic range between the long­
term features and the frame-based ones, should be considered properly (see e.g. Juang 
et al., 1992) .  Techniques found useful in durational modelling, may also be used for 
any long-term features. 
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Appendix: Full pdf of Standard HMM 

In this appendix, we discuss the behaviour of a full pdf of a whole standard HMM, 
with a linear topology of n selfloops and equal a .  The pdf re-written from ( 4)  is 

0 , d < n; 

P11 (d) = (1 - a) d , d = n; (al) 
1 (l - a)11 

(d -l)(d - 2)···(d -n+l)a d , d >  n. 
(n-1)! a 

In order to find the maxima of this negative-binomial pdf, we look at the cases for 
d > n and treat d = n as a special case. For the purpose of analysis, we extrapolate d 
to a continuous variable. Since a log function is monotonic with its argument, the 
maxima of a function will have the same locations as its log. For convenience we take 
the (natural) log of the pdf, also leaving out the constant term, 

Q(d) = log(d -1)  + log(d -2)+· · · + log(d -n + 1 )  + d log a .  (a2) 
Derivation with respect to d gives 

Q'(d ) =-
1

-+_
1

_+···+ 
1 

+ log a .  
d -1 d -2 d -n+l 

(a3) 

Since a < 1 ,  the last term log a < 0. Because d > n, all the other terms are positive and 
so is the sum of them. Furthermore, it is obvious that all the terms except the last one 
is monotonically decreasing with d and therefore the sum of them is so, too. Therefore, 
there will be at most one point at which the positive and negative terms compensate to 
make the only critical point Q'(d 0) = 0. Since the second derivative is negative every-

where, this critical point is a maximum, and its location d 0  is given by 

a =  exp{-(-1 
+-1 

+· . ·+ 
1 )}· 

d 0  -1 d 0  -2 d 0  -n + 1 
(a4) 

Note that the actual value of d for the maximum of the pdf can only take an integer. If 
this is not exactly d 0, the true maximum is at one of its two neighbour points: 

(a5) 

where [ d 0] truncates d 0  to its integer part. 

Further analysis reveals the following behaviour of the pdf with respect to n, a and 
d. For a given a ,  a larger n gives a larger number of positive terms in (a3). Therefore d 
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has to be larger to make the sum of the positive terms small enough to be compensated 
with the negative term. This means that a longer model with more selfloops will have 
its maximum towards larger d. On the other hand, a should satisfy certain conditions to 
guarantee that the maximum is located at d 0  > n. Putting this into (a4) we then get 

a > exp{-(1 +  � +· · · + 
n�l)} (a6) 

For example, the required value of a for n = 2 is a >  e-1 = 0. 3679, and for n = 4 is 
a >  e-1 116 = 0.1 599 . If this condition is not satisfied, the maximum is at d 0  = n, namely, 
the pdf peak only has one slope on the right side, and the left side is a sudden 'cliff. 
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