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Abstract 

We present a straightforward and robust algorithm for periodicity detection, working in 
the lag (autocorrelation) domain. When it is tested for periodic signals and for signals 
with additive noise or jitter, it proves to be several orders of magnitude more accurate 
than the methods commonly used for speech analysis. This makes our method capable of 
measuring harmonics-to-noise ratios in the lag domain with an accuracy and reliability 
much greater than that of any of the usual frequency-domain methods. 

By definition, the best candidate for the acoustic pitch period of a sound can be found 
from the position of the maximum of the autocorrelation function of the sound, while 
the degree of periodicity (the harmonics-to-noise ratio) of the sound can be found 
from the relative height of this maximum. 

However, sampling and windowing cause problems in accurately determining the 
position and height of the maximum. These problems have led to inaccurate time
domain and cepstral methods for pitch detection, and to the exclusive use of 
frequency-domain methods for the determination of the harmonics-to-noise ratio. 

In this paper, I will tackle these problems. Table 1 shows the specifications of the 
resulting algorithm for two spectrally maximally different kinds of periodic sounds: a 
sine wave and a periodic pulse train; other periodic sounds give results between these. 

Table 1. The accuracy of the algorithm for a sampled sine wave and for a correctly 
sampled periodic pulse train, as a function of the number of periods that fit in the 
duration of a Hanning window. These results are valid for pitch frequencies up to 80% of 
the Nyquist frequency. These results were measured for a sampling frequency of 10 kHz 
and window lengths of 40 ms (for pitch) and 80 ms (for HNR), but generalize to other 
sampling frequencies and window lengths (see section 5). 

Periods per Pitch determination error Resolution of determination 
window M/F of harmonics-to-noise ratio 

sme wave pulse train sme wave pulse train 
>3 < 5.10 -4 < 5.10 -5 >27 dB > 12 dB 
>6 < 3.10 -5 < 5.10 -6 >40 dB >29 dB 

> 12 < 4.10 -7 < 2.10 -7 >55 dB >44 dB 
>24 < 2.10 -8 < 2.10 -8 >72 dB > 58 dB 
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1 Autocorrelation and periodicity 

For a time signal x(t) that is stationary (i.e., its statistics are constant), the 
autocorrelation rx( r) as a function of the lag r is defined as 

r x( r) = f x(t) x(t + r)dt (1) 

This function has a global maximum for r = 0. If there are also global maxima outside 
0, the signal is called periodic and there exists a lag T 0, called the period, so that all 
these maxima are placed at the lags nT0, for every integer n, with rx(nT0) = rx(O). The 
fundamental frequency F 0 of this periodic signal is defined as F0=1/T0. If there are 
no global maxima outside 0, there can still be local maxima. If the highest of these is 
at a lag rmax , and if its height rx(rma:J is large enough, the signal is said to have a 
periodic part, and its harmonic strength R 0 is a number between 0 and 1 ,  equal to the 
local maximum r�( rma.x) of the normalized autocorrelation 

(2) 

We could make such a signal x(t) by taking a periodic signal H(t) with a period T0 and 
adding a noise N(t) to it. We can infer from equation (1) that if these two parts are 
uncorrelated, the autocorrelation of the total signal equals the sum of the 
autocorrelations of its parts. For zero lag, we have r x (0) = rH (0) + rN (0) , and if the 
noise is white (i.e., if it does not correlate with itself), we find a local maximum at a 
lag rma.x = T0 with a height rx (rma.x) = rH(T0) = rH(O). Because the autocorrelation 
of a signal at zero lag equals the power in the signal, the normalized autocorrelation at 
rma.x represents the relative power of the periodic (or harmonic) component of the 
signal, and its complement represents the relative power of the noise component: 

r'(r )=rH(O) . 1-r'(r )=rN(O) x ma.x r x ( 0) ' x ma.x r x ( 0) 
(3) 

This allows us to define the logarithmic harmonics-to-noise ratio (HNR) as 

r' (r ) 
HNR (in dB)= 10 · 10log 

x , ma.x 
1-rx( 't"ma.x) (4) 

This definition follows the same idea as the frequency-domain definitions used by 
most other authors, but yields much more accurate results thanks to the precision with 
which we can estimate rx(r). For perfectly periodic sounds, the HNR is infinite. 

For non-stationary (i.e., dynamically changing) signals, the short-term 
autocorrelation at a time t is estimated from a short windowed segment of the signal 
centred around t. This gives estimates F 0(t) for the local fundamental frequency and 
R0(t) for the local harmonic strength. If we want these estimates to have a meaning at 
all, they should be as close as possible to the quantities derived from equation (1), if 
we perform a short-term analysis on a stationary signal. Sections 2 and 3 show how to 
cope with the windowing and sampling problems that arise. Section 4 presents the 
complete algorithm. Sections 5, 6, and 7 investigate the performance of the algorithm 
for three kinds of stationary signals: periodic signals without perturbations, with 
additive noise, and with jitter. 
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2 Windowing and the lag domain 
.... 

Candidates for the fundamental frequency of a continuous signal x(t) at a time tmid can 
be found from the local maxima of the autocorrelation of a short segment of the sound 
centred around tmid· In figure 1 ,  we summarize the algorithm for the speech-like 
signal x(t) = ( 1  + 0.3 sin 2n 140 t) sin 2n 280 t, which has a fundamental frequency 
of 140 Hz and a strong 'formant' at 280 Hz. The algorithm runs as follows: 

Step 1. We take from the signal x(t) a piece with duration T (the window length, 24 
ms in figure 1), centred around tmid (12 ms in figure 1). We subtract from this piece its 
mean µx and multiply the result by a window function w(t), so that we get the 
windowed signal 

a(t) = (xCtmid -t T + t)-µ x ) w(t) (5) 

The window function w(t) is symmetric around t = t T and zero everywhere outside 
the time interval [O, T]. Our choice is the sine-squared or Hanning window, given by 

w(t) = -!---!- cos 
2rct 

T 

We will see how the Hanning window compares to several other window shapes. 

(6) 

Step 2. The normalized autocorrelation ra(r) (we suppress the primes from now 
on) of the windowed signal is a symmetric function of the lag r: 

T-r J a(t) a(t + r) dt 
ra(r) = ra(-i") = -0 -r=----J a2(t) dt 

0 

(7) 

In the example of figure 1, we can see that the highest of these maxima is at a lag that 
corresponds to the first formant (3.57 ms), whereas we would like it to be at a lag that 
corresponds to the F0 (7. 14 ms). For this reason, Hess ( 1992) deems the 
autocorrelation method "rather sensitive to strong formants". Moreover, the skewing 
of the autocorrelation function makes the estimate of the lag of the peak too low, and 
therefore the pitch estimate too high (e.g., for 3 periods of a sine wave in a Hanning 
window, the difference is 6%). One method commonly used to overcome the first 
problem, is to filter away all frequencies above 900 Hz (Rabiner, 1977), which should 
kill all formants except the first, and estimate the pitch from the second maximum. 
This is not a very robust method, because we often run into higher formants below 
900 Hz and fundamental frequencies above 900 Hz. Other methods to lose the 
formant include centre clipping, spectral flattening, and so on. Such ad-hoe measures 
render the method speech- and speaker-dependent. All these patches to the 
autocorrelation method are unnecessary, for there is a simple remedy: 

Step 3. We compute the normalized autocorrelation rw(r) of the window in a way 
exactly analogous to equation (7). The normalized autocorrelation of a Hanning 
window is 

r (r)= 1-- -+-cos-- +-sm--
( 1� )(2 1 2nr) 1 . 2nj� 

w 
T 3 3 T 2n T 

(8) 
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.... 
x(t) multiplied by w(t) gives a(t) .--������----. 1.--��-___..--��-. 1.--������-, 

Time (ms)-> 24 °o Time (ms)-> 24 -l 0 Time (ms)-> 24 

ra(r) divided by gives rjr) 
1�������-. 1.--�-.--����-, 

7.14 Lag (ms)-> 24 °o Lag (ms)-> 24 -l 0 7.14 Lag (ms)-> 24 

Fig. 1. How to window a sound segment, and how to estimate the autocorrelation of a 
sound segment from the autocorrelation of its windowed version. The estimated 
autocorrelation r J... -r) is not shown for lags longer than half the window length, because it 
becomes less reliable there for signals with few periods per window. 

To estimate the autocorrelation rxCr) of the original signal segment, we divide the 
autocorrelation r a( r) of the windowed signal by the autocorrelation r w( r) of the 
window: 

(9) 

This estimation can easily be seen to be exact for the constant signal x(t) = 1 (without 
subtracting the mean, of course); for periodic signals, it brings the autocorrelation 
peaks very near to 1 (see figure 1). The need for this correction seems to have gone by 
unnoticed in the literature; e.g., Rabiner (1977) states that "no matter which window 
is selected, the effect of the window is to taper the autocorrelation function smoothly 
to 0 as the autocorrelation index increases". With equation (9), this is no longer true. 

The accuracy of the algorithm is determined by the reliability of the estimation (9), 
which depends directly on the shape of the window. For instance, for a periodic pulse 
train, which is defined as 

+oo 
x(t)= L,8(t-t0-nT0) (10) 

n=-oo 

where T0 is the period and t0/T (with 0 � t0 < T0) represents the phase of the pulse 
train in the window, our estimate for the relevant peak of the autocorrelation is 

I, w(t0 + nT0) w(t0 + (n + l)T0) 
rx(To) = n I, 2 r w(To) w (to+ nTo) 

n 

(11) 

This depends on the phase t0/T. If the window is symmetric and the pulse train is 
symmetric around the middle of the window, the derivatives with respect to t0 of both 
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Fig. 2. Example of a windowed signal showing the two phases of a pulse train that yield 
extrema in the HNR estimation of the autocorrelation peak at a lag that equals the period. 

the numerator and the denominator are O; the extrema of r x(T 0) as a function of t0 are 
thus found for the two phases exemplified in figure 2 for 3.0 periods per window. If 
such an extremum is greater than 1, it must be reflected through 1 to give a 
mathematically possible value of the autocorrelation, e.g., an initial estimate of 1.01 
must be converted to 1/1.01 before computing its final HNR estimate, which is 20 dB. 

Figure 3 shows the worst-case HNR values for a perfectly periodic pulse train, 
calculated with equation ( 11) for a Hanning window, and for the rectangular window 

w( t) = 1 ; r Jr) = 1 - '; 

and for the Welch window 

w(t) =sin nt · r (r) = (1-lr l)cos nr +_!_sin nlrl 
r ' w T T n  T 

as well as for the Hamming window 

2nt w(t) = 0.54-0.46 cos-
T 

(1-td)(o.2916 + 0.1058cos 2nr)+ 0.3910-1 sin 2nlrl 
T T 2n T r (r) - _;__�������������� 

w - 0.3974 

(12) 

(13) 

(14) 

As we can see from figure 3, the Hanning window performs much better than the 
other three window shapes. Furthermore, the Hanning window is the 'naffowest' of 
the four window shapes, which makes it the least vulnerable of the four to rapidly 
changing sounds. That makes two reasons for forgetting about the other three. 

In our implementation, the autocorrelations of the windowed signal and the 
window are numerically computed by Fast Fourier Transform. This is possible thanks 
to the fact that the autocorrelation can be obtained by first computing the Fourier 
transform of the windowed signal, which gives in the frequency domain 

a(w) = f a(t) e-irotdt (15) 

and then computing the inverse Fourier transform of the power density la( a> )j2, which 
brings us to the lag domain 

(16) 
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Fig. 3. The sensitivity of several window shapes to the phase of a pulse train. Every point 
on a curve represents the worse of the two HNR values belonging to the phases in fig. 2. 

This procedure allows us to try two other functions in the lag domain, besides the 
autocorrelation. The first of these functions is what we will call the 'zero-phased' 
windowed signal, which is the sum of all the Fourier components of a(t), reduced to 
cosines with a starting phase of 0. This function is obtained by computing in the 
frequency domain the absolute value la( m )I instead of the power density. This 
conserves the relative amplitudes of the components of the windowed signal, which is 
nice because it gives the formants the peaks that they deserve. The second function is 
known as the cepstrum (Noll, 1967) and is obtained by computing in the frequency 
domain the logarithm of the power: 

log( 1 + cla( m )12) (17) 

for large enough c > 0. The cepstral pitch-detection tactic was very common in the 
days that equation (9) was unknown, because it was the only one of the three methods 
that could raise the second peak of r aC r) (see figure 1) above the first peak. However, 
for both the zero-phased signal and the cepstrum, the addition of noise strongly 
suppresses all peaks relatively to the one at zero lag to a degree that depends on the 
frequency distribution of the noise. This makes these two methods unsuitable both for 
voiced-unvoiced decisions and for determination of the harmonics-to-noise ratio in 
the lag domain. Also, the pitch estimates are less accurate by several orders of 
magnitude as compared to the autocorrelation method. With equation (9) at our 
disposal, the advantages of these two alternative methods have vanished. 
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3 Sampling and the lag domain .... 
Consider a continuous time signal x(t) that contains no frequencies above a certain 
frequency f max· We can sample this signal at regular intervals M � 1/(2! max ) so that 
we know only the values xn at equally spaced times tn: 

( 18) 

We lose no data in this sampling, because we can reconstruct the original signal as 

x(t) = I x 
sin n( t -tn) I L\t 

n=-oo 
n 

n( t -tn) I �t 
( 19) 

The autocorrelation computed from the sampled signal is also a sampled function: 

There is a local maximum in the autocorrelation between (m-1 )� "C and (m+ 1 )� "C if 

rm >rm-1 and rm >rm+l (20) 

A first crude estimate of the pitch period would be "Cmax :::::: m � "C, but this is not very 
accurate: with a sampling frequency of 10 kHz and� -r = � t , the pitch resolution for 
fundamental frequencies near 300 Hz is 9 Hz (which is the case for most time-domain 
pitch-detection algorithms); moreover, the height of the autocorrelation peak (rm) can 
be as low as 2/rt = 0.636 for correctly sampled pulse trains (i.e., filtered with a phase
preserving low-pass filter at the Nyquist frequency prior to sampling), which renders 
HNR determination impossible and introduces octave errors in the determination of 
the fundamental period. We can improve this by parabolic interpolation around m� "C : 

(21) 

However, though the error in the estimated period reduces to less than 0.1 sample, the 
height of the relevant autocorrelation peak can still be as low as 7 /(3rc) = 0.743. 

Now for the solution. We should use a 'sin x Ix' interpolation, like the one in 
equation ( 19), in the lag domain (we do a simple upsampling in the frequency 
domain, so that � "C = � t/2). As we cannot do the infinite sum, we interpolate over a 
finite number of samples N to the left and to the right, using a Hanning window again 
to taper the interpolation to zero at the edges: 

_ � sinn(<pz + n -1)( 1 1 n(<pz + n -l)J r(-r)- �rn -n ( ) 2+2cos + 
n=l r n <pi + n -l <pi + N 

� sin n( <p, + n - 1) ( 1 1 n( <p, + n - 1) J �rn+n ( ) 2+2cos 
n=l / n <p, + n -l <p, + N 

h 1 . "C w ere n1 = argest mteger � - ; n, = n1 + 1 ; 
�"C 
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In our implementation, N is the smaller of 500 and the largest number for which 
... (nz + N)� r is smaller than half the window length. This is because the estimation of 

the autocorrelation is not reliable for lags greater than half the window length, if there 
are few periods per window (see figure 1). Note that the interpolation can involve 
autocorrelation values for negative lags. 

The places and heights of the maxima of equation (22) can be determined with 
great precision (they are looked for between (m-l)�r and (m+l)�r). We can show 
this with long windows, where the windowing effects have gone, but the sampling 
effects remain. E.g., with a 40-ms window, any signal with a frequency of exactly 
3777 Hz, sampled at 10 kHz, will be consistently measured as having a fundamental 
frequency of 3777.00000 ± 0.00001 Hz (accuracy 10-8 sample in the lag domain, 
N=394) and a first autocorrelation peak between 0.99999999 and 1. The measured 
HNR (80-ms window) is 94.0 ± 0.1 dB. This looks like a real improvement. 

4 Algorithm 

A summary of the complete 9-parameter algorithm, as it is implemented into the 
speech analysis and synthesis programpraat, is given here: 

Step 1. Preprocessing: to remove the sidelobe of the Fourier transform of the 
Hanning window for signal components near the Nyquist frequency, we perform a 
soft upsampling as follows: do an FFf on the whole signal; filter by multiplication in 
the frequency domain linearly to zero from 95% of the Nyquist frequency to 100% of 
the Nyquist frequency; do an inverse FFf of order one higher than the first FFf. 

Step 2. Compute the global absolute peak value of the signal (see step 3.3). 
Step 3. Because our method is a short-term analysis method, the analysis is 

performed for a number of small segments (frames) that are taken from the signal in 
steps given by the TimeStep parameter (default is 0.01 seconds). For every frame, we 
look for at most MaximumNumberOfCandidatesPerFrame (default is 4) lag-height 
pairs that are good candidates for the periodicity of this frame. This number includes 
the unvoiced candidate, which is always present. The following steps are taken for 
each frame: 

Step 3.1. Take a segment from the signal. The length of this segment (the window 
length) is determined by the MinimumPitch parameter, which stands for the lowest 
fundamental frequency that you want to detect. The window should be just long 
enough to contain three periods (for pitch detection) or six periods (for HNR 
measurements) of MinimumPitch. E.g. if MinimumPitch is 75 Hz, the window length 
is 40 ms for pitch detection and 80 ms for HNR measurements. 

Step 3.2. Subtract the local average. 
Step 3.3. The first candidate is the unvoiced candidate, which is always present. 

The strength of this candidate is computed with two soft threshold parameters. E.g., if 
VoicingThreshold is 0.4 and SilenceThreshold is 0.05, this frame bears a good chance 
of being analyzed as voiceless (in step 4) if there are no autocorrelation peaks above 
approximately 0.4 or if the local absolute peak value is less than approximately 0.05 
times the global absolute peak value, which was computed in step 2. 

Step 3.4. Multiply by the window function (equation 5). 
Step 3.5. Append half a window length of zeroes (because we need autocorrelation 

values up to half a window length for interpolation). 
Step 3.6. Append zeroes until the number of samples is a power of two. 
Step 3.7. Perform a Fast Fourier Transform (discrete version of equation 15), e.g., 

with the algorithm rea 1 ft from Press et al. (1989). 
Step 3.8. Square the samples in the frequency domain. 
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Step 3.9. Perform a Fast Fourier Transform (discrete version of equation 1 6). This 
gives a sampled version of ra( r). 

Step 3.10. Divide by the autocorrelation of the window, which was computed once 
with steps 3.5 through 3.9 (equation 9). This gives a sampled version of rx(r). 

Step 3.11. Find the places and heights of the maxima of the continuous version of 
rx(r), which is given by equation 22, e.g., with the algorithm brent from Press et al. 
(1989). The only places considered for the maxima are those that yield a pitch 
between MinimumPitch and MaximumPitch. The MaximumPitch parameter should be 
between MinimumPitch and the Nyquist frequency. The only candidates that are 
remembered, are the unvoiced candidate, which has a local strength equal to 

R 1 7 • • Th h Id (o 2 (local absolute peak)/(global absolute peak)J(23) =voicing res o +max , ------------------'--
SilenceThreshold/(1 + VoicingThreshold) 

and the voiced candidates with the highest (MaximumNumberOfCandidatesPerFrame 
minus 1) values of the local strength 

R = r( 'rmax ) - OctaveCost · 2log(MinimumPitch · rmax ) (24) 

The OctaveCost parameter favours higher fundamental frequencies. One of the 
reasons for the existence of this parameter is that for a perfectly periodic signal all the 
peaks are equally high and we should choose the one with the lowest lag. Other 
reasons for this parameter are unwanted local downward octave jumps caused by 
additive noise (section 6). Finally, an important use of this parameter lies in the 
difference between the acoustic fundamental frequency and the perceived pitch. For 
instance, the harmonically amplitude-modulated signal with modulation depth dmod 

x(t) = (1 + dmod sin2nFt) sin 4nFt (25) 

has an acoustic fundamental frequency of F, whereas its perceived pitch is 2F for 
modulation depths smaller than 20 or 30 percent. Figure 1 shows such a signal, with a 
modulation depth of 30%. If we want the algorithm's criterion to be at 20% (in order 
to fit pitch perception), we should set the OctaveCost parameter to (0.2)2 = 0.04; if we 
want it to be low (in order to detect vocal-fold periodicity), say 5%, we should set it 
to (0.05)2 = 0.0025. The default value is 0.01 , corresponding to a criterion of 10%. 

After performing step 2 for every frame, we are left with a number of frequency
strength pairs (F ni' Rn), where the index n runs from 1 to the number of frames, and i 
is between 1 and the number of candidates in each frame. The locally best candidate 
in each frame is the one with the highest R. But as we can have several approximately 
equally strong candidates in any frame, we can launch on these pairs the global path 
finder, the aim of which is to minimize the number of incidental voiced-unvoiced 
decisions and large frequency jumps: 

Step 4. For every frame n, Pn is a number between 1 and the number of candidates 
for that frame. The values {Pn I 1 s n s number of frames} define a path through the 
candi?ates: { (F npn' R np) I 1 s n s number of frames}. With every possible path we 
associate a cost 

numberO[Frames numberOJFrames 
cost({Pn}) = I, transitionCost(Fn-I,pn-I 'FnpJ - 2,Rnpn (26) 
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where the transitionCost function is defined by (F = 0 means unvoiced) 

0 if F1 = 0 and F 2 = 0 

transitionCost(F1,F2 ) = VoicedUnvoicedCost if F1=0 xor F2 = 0 (27) 

2 F1 
OctavelumpCost · log- if F1 * 0 and F2 * 0 

F2 

where the VoicedUnvoicedCost and OctavelumpCost parameters could both be 0.2. 
The globally best path is the path with the lowest cost. This path might contain some 
candidates that are locally second-choice. We can find the cheapest path with the aid 
of dynamic programming, e.g., using the Viterbi algorithm described for Hidden 
Markov Models by Van Alphen & Van Bergem ( 1989). 

For stationary signals, the global path finder can easily remove all local octave 
errors, even if they comprise as many as 40% of all the locally best candidates 
(section 6 presents an example). This is because the correct candidates will be almost 
as strong as the incorrectly chosen candidates. For most dynamically changing 
signals, the global path finder can still cope easily with 10% local octave errors. 

For many measurements in this article, we turn the path finder off by setting the 
VoicedUnvoicedCost and OctavelumpCost parameters to zero; in this way, the 
algorithm selects the locally best candidate for each frame. 

For HNR measurements, the path finder is turned off, and the OctaveCost and 
VoicingThreshold parameters are zero, too; MaximumPitch equals the Nyquist 
frequency; only the TimeStep, MinimumPitch, and SilenceThreshold parameters are 
relevant for HNR measurements. 

":- 60 ······· ······································································· 
�40·············································································· 
E .E 20 ------- -----------------------------------------------------------------------
� 0... (/.) 0 ······· ······································································· 

- 1 '----'-'----L-'----__._. ___ .__ __ .....__. -20 '---'------------� 0 Time (seconds) -> O.Ql 0 Frequency (Hz) -> 5000 
80�---------� 

":- 60 ······· ······· ······· ············· ............. ....... ....... ...... . 
�40······· ······· ······· ······ ...... ...... ....... ....... ....... ...... . 
E .E 20 ------- ------- ------- ------ ------ ·----- ------- ------- ------- -------
� 0... (/.) 0 ....... ....... ....... ...... ...... ...... ....... ....... ....... ...... . 

-! �--------------� -20 .__..._..._..._..._...__...___._...__...____,_, 0 Time (seconds) -> 0.01 0 Frequency (Hz) -> 
Fig. 4. At the left: two periodic signals, sampled at 10 kHz: a sine wave and a pulse train, 
which was squarely low-pass filtered at 5000 Hz (acausal, phase-preserving filter). Both 
have a fundamental frequency of 490 Hz. At the right: their spectra. 

5000 
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5 Accuracy in measuring perfectly periodic signals ... 
The formula for a sampled perfect sine wave with frequency F is 

(28) 

and the formula for a correctly sampled pulse train (squarely low-pass filtered at the 
Nyquist frequency) with period T is 

(29) 

These two functions form spectrally maximally different periodic signals. Figure 4 
shows examples of these signals, together with their spectra. The spectrum of the sine 
wave is maximally narrow, that of the pulse train is maximally wide. 

Table 1 (page 97) shows our algorithm's accuracy in determining pitch and HNR. 
We see from table 1 that for pitch detection there should be at least three periods in a 
window. The value of 27 dB appearing in table 1 for a sine wave with the worst phase 
(symmetric in window) and the worst period (one third of a window), means that the 
autocorrelation peak can be as low as 0.995, which means that the signal 

(30) 

(see also figure 1), whose fundamental frequency is F, can be locally ambiguous for F 
near MinimumPitch, if the modulation depth dmod is less than� 1-0.995 = 7%. The 
critical modulation depth, at which there are 10% local octave errors (detection of 2F 
as the best candidate), is 5%, for the lowest F (equal to MinimumPitch). Note that the 
global path finder will not have any trouble removing these octave errors. 

We also see from table 1 that for HNR measurements, there should be at least 6.0 
periods per window. The values measured for the HNR of a pulse train are the same 
as those predicted by theory for continuous signals, as plotted in figure 3. This 
suggests that the windowing effects have the larger part of the influence on HNR 
measurement inaccuracy, and that the sampling effects have been effectively 
cancelled by equation (22). 

For very short windows (less than 20 samples in the time domain, MinimumPitch 
greater than 30% of the Nyquist frequency), the HNR values for pulse trains do not 
deteriorate, but those for sine waves approach the values for pulse trains; the relative 
pitch determination error rises to 1 o-4. 

The problems with short-term HNR measurements in the frequency domain, are 
the sidelobes of the harmonics and the sidelobes of the Fourier transform of the 
window: they occur throughout the spectrum. Pitch-synchronous algorithms try to 
cope with the first problem, but they require prior accurate knowledge of the period 
(Cox et al., 1989; Yumoto et al., 1982). Using fixed window lengths in the frequency 
domain requires windows to be long: the shortest window used by Klingholz ( 1987) 
spans 12 periods, De Krom ( 1993) needs 8.2 periods; with the shortest window, both 
have a HNR resolution of apx. 30 dB for synthetic vowels, as opposed to our 37 dB 
with only 6 periods (48 dB for 8.2 periods, 52 dB for 12 periods). In the 
autocorrelation domain, the only sidelobe that could stir trouble, is the one that causes 
aliasing for frequency components near the Nyquist frequency; that one is easily 
filtered out. This is the cause of the superior results with the present method. 
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Fig. 5. Measured HNR values for a sine wave (left) and a pulse train (right) sampled at 
10 kHz, both with a periodicity of 103 Hz, with additive noise. The figures show the 
10%, median, and 90% curves. The window len.gth was 80 ms. 

6 Sensitivity to additive noise 

The formula for a sampled sound consisting of a sine wave with frequency F and 
additive 'white' noise (squarely low-pass filtered at the Nyquist frequency) is 

x = f2 sin 2nFt + 10-SNRl20 z n VL n n (31) 

where SNR is the signal-to-noise ratio, expressed in dB, and zn is a sequence of real 
numbers that are independently drawn from a Gaussian distribution with zero mean 
and unit variance. The formula for a sampled sound consisting of a correctly sampled 
pulse train (squarely low-pass filtered at the Nyquist frequency) with period T and 
additive 'white' noise is 

x = n (32) 

Adding noise obscures the underlying fundamental frequency. For example, 
additive noise with a SNR of 20 dB gives the following results for sounds with an 
underlying F 0 of 103 Hz, sampled at 10 kHz, and analyzed with a MinimumPitch of 
75 Hz (40-ms window): the relative pitch 'error' (measured as the worse of the 10% 
and 90% points of the distribution of the measured pitch) rises to 0.7% for a sine 
wave, and to 0.007% for a pulse train (these 'errors' are not failures of the algorithm: 
they are signal properties). Gross pitch determination 'errors' (more than 10% off) are 
only found for negative signal-to-noise ratios (more noise than signal). 

For a sine wave with a frequency of 206 Hz and a window length of 40 ms 
(MinimumPitch is 75 Hz), with noise added at a SNR of 20 dB, there are 40% local 
octave 'errors' (a detected pitch of 103 Hz; these are not failures of the algorithm, 
either: the 103 Hz is locally in the signal) if the OctaveCost parameter is 0.001. The 
global path finder leaves 0% octave 'errors' .  However, we cannot expect this good 
behaviour for dynamically changing signals. There remain 10% local octave 'errors' 
if the OctaveCost parameter is raised to 0.003. This gives a critical modulation depth 
of '10.003 = 5%. Thus, if we want to detect reliably the pitch of noisy signals, we 
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Fig. 6. Measured HNR values for a sine wave (left) and a pulse train (right), sampled at 
10 kHz, with fundamental frequencies that vary randomly around 103 Hz. The curves are 
shown for window lengths of 60, 80, 150, and 600 milliseconds. The short windows give 
slightly larger HNR values than the long windows, except where the HNR measurements 
for short windows level off for very low jitter depths. 

-80 

should not expect to see the difference between the fundamental frequency and a first 
formant whose relative amplitude is higher than 95% (we must note here that the 
zero-phased signal would raise this number to 97%). 

We see from figure 5 that the measured HNR values are within a few dB from the 
underlying SNR values (between 0 and 40 dB). These results are better than those 
found in the literature so far. For instance, in De Krom ( 1993), the measured HNR 
values for additive noise depend to a large degree on the number of periods per 
window: for a SNR of 40 dB (in the glottal source, before a linear filter), the averaged 
HNR varies from 27 dB for 8.2 periods per window ( 102.4 ms I 80 Hz) to 46 dB for 
121 periods per window (409.6 ms I 296 Hz), and the slope of HNR as a function of 
SNR is 0.7. With our algorithm, the median HNR, for a SNR of 40 dB, varies from 
39.0 dB for 8.2 periods per window ( 103 Hz I 80 ms) to 40.0 dB for large windows, 
and the slope is near to the theoretical value of 1. 

7 Sensitivity to random frequency modulations Uitter) 

A jittered pulse train with average period Tav has its events at the times 

(33) 

A jittered sine wave with average frequency F av involves a randomly walking phase: 

For sine waves, the harmonics-to-noise ratio is much less sensitive to jitterDepth than 
for pulse trains. This is shown in figure 6 (jitter depth in dB is 20·10logjitterDepth). 
The slope of the HNR as a function of the logarithmic jitter depth is apx. -0.95, which 
is closer to the theoretical value of 1 than De Krom's (1993) value of -0.66. 
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8 Conclusion 
... 

Our measurements of the places and the heights of the peaks in the lag domain are 
several orders of magnitude more accurate than those of the usual pitch-detection 
algorithms. Due to its complete lack of local decision moments, the algorithm is very 
straightforward, flexible and robust: it works equally well for low pitches (the 
author's creaky voice at 16 Hz, alveolar trill at 23.4 Hz, and bilabial trill at 26.0 Hz), 
middle pitches (female speaker at 200 Hz), and high pitches (soprano at 1200 Hz, a 
two-year-old child yelling [i] at 1800 Hz). The only 'new' tricks are two 
mathematically justified tactics: the division by the autocorrelation of the window 
(equation 9), and the 'sin x Ix' interpolation in the lag domain (equation 22). 

In measuring harmonics-to-noise ratios, the present algorithm is not only much 
simpler, but also much more accurate, more reproducible, less dependent on period 
and window length, and more resistant to rapidly changing sounds, compared to other 
algorithms found in the literature. 

Postscript 

After finishing this article, we discovered that the 'Gaussian' window, which is zero 
outside the interval [-! T,i T ], and (exp(-12(t/T - !)2) - e-12)/ (l - e-12) inside, 
produces much better results tlian the Hanning window defined on [O,T], though its 
effective length is approximately the same. The worst pitch determination error (table 
1) falls from 5· 104 to 10-6; the worst measurable HNR for a pulse train (at 6 effective 
periods per window) rises from 29 dB to 58 dB, and for a sine wave it rises from 40 
to 7 5 dB. In figure 3, the theoretical value for a real Gaussian window at 6 effective 
periods per window would be 58 dB (30 dB at 4.5 periods per window, and 170 dB at 
10 periods per window). In figures 5 and 6, the curves would not level off at 45 dB, 
but at 60 and 80 dB instead. In practice, a window only 4.5 periods long guarantees a 
minimum HNR of 37 dB for vowel-like periodic signals (65 dB for 6 periods). This 
means that we can improve again on the analysis of running speech. 
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