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Abstract 

In this paper, we will consider a relation between three different numerical aspects that 
play a role in speech research models, viz. (1) the phone model as applied in HMM 
speech recognition algorithms, (2) the statistical disl!ibution of the duration of the speech 
segments to be modelled, and (3) a mathematical tool, known as the Fade-approximation. 
To each phone model a transfer function will be assigned. By means of this assignment, 
a correspondence between the topological structure of phone models on the one hand and 
the algebraic properties of the corresponding transfer function on the other hand can be 
established. By this correspondence, an admissable class of network topologies of 
phoneme-like units can be calculated effectively on the basis of segment duration data. 

1. Introduction 

As is well known, so-called Hidden Markov Models (HMM) are frequently used in 
Automatic Speech R ecognition. In the HMM-approach, the speech signal is considered 
to be the acoustic outcome of a (finite, first order, stationary) Markov process (Holmes, 
1988; Lee, 1989) A concatenation of acoustic events (for example in terms of spectral 
characteristics of frame-like speech segments) is modelled by a sequence of non
observable ('hidden') states in a Markov-chain. Between these hidden states, transition 
probabilities are given by means of a transition matrix A. An emission matrix B 
specifies the probability density of acoustic vectors for each transition between hidden 
states. These two matrices A and B completely specify the Markov model 1. 
The transitions that are in principle possible, i.e. those which may have a probability 
larger than zero, are admissable. The set of admissable transitions determines the 
topology of the Markov chain(= Markov 'network'). 
A speech segment can be modelled by many different Markov chains, sometimes called 
phone-like units (PLU's). In figure 1, two PLU' s  with different topology are 
presented. Only the admissable transitions are depicted. On the left-hand side, a simple 
model is shown in which a segment is represented by three hidden states. On its left
most and right-most side, the initial and final state are represented by the symbols I and 
F, respectively. Transitions from and towards these default states are non-emitting, i.e. 
they do not con-espond to an acoustic output. 

1The recognition rates in case of connected word recognition also depend on the grammar. In the strict 
sense, this grammar does not belong to the underlying Markov model. 
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On the right-hand side of figure 1, a more elaborate network consisting of seven states 
is shown. As this network contains twelve transitions, this latter network is capable of 
representing a much more difficult sequence of acoustic events. 

I F 

I s F 

Fig. 1. (Left) A three-state network with three transitions (of which one represents a self
loop). (Right) A seven-state network with twelve transitions. 

A path throug� the network represents the evaluation over time of a (through vector 
quantizing discretized) speech parameter vector, each u-ansition corresponding to one 
fixed time step. In current HMM-algorithms, networks are 'feed-forward', which 
means that time-reversal is not allowed2. The duration of the modelled speech segment 
is defined by the number of transitions (i.e. time steps) required to reach the final state 
F from the initial state I, which is, in turn, determined by the matrix A of state transition 
probabilities. In other words, A fully determines the duration distribution3 of a 
segment. 

In this paper, we will go into detail on the relation between the matrix A and the 
duration distribution and, more specifically, the inverse problem of how to derive A 
(together with the network topology) from the observed distribution of the segment 
duration. It will be shown that every duration distribution determines a class of 
networks that all are equivalent with respect to their power to model the statistical 
behaviour over time of that particular segment. These networks, however, may differ 
with respect to their topology and the transition probabilities, and may consequently 
behave differently with respect to the capability of specrral modelling. With respect 
particularly to modelling duration, our method is capable to point to a specific exemplar 
out of this class which is the 'most simple PLU' in some sense. 
In the next section, we informally introduce the preliminaries required for the present 
problem, and we consider many examples how the network topology determines the 

2rn the present exposition, hoewever, there is no theoretical objection to time-reversal HMM-net
works. Time-reversality will not be studied. 
In practical HMM systems, p/ace-reversality is not allowed, which means that the time evaluation 
along the states a-b-a is impossible within one phone model. In this paper, we generally meet this 
restriction; in a few cases we will study specific examples of place-reversality. 
3That is, the probability of the time interval having a specific duration. We use the term 'distribution' 
rather than the term 'probability density function' (pdf) in order to avoid confusion with respect to pdf s 
defined on codebooks. 
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duration probability function. In section 3, the formal relations between network 
topology, duration distribution and the Pade-approximation will be dealt with. 

2. Preliminaries 

A central notion will be the generating function. Let f(k) denote an arbitrary (real) 
function defined on the set of integers N = {0, 1, 2, 3, ... }. Then the function Gf(X) 
defined by 

Gf (X) = L f(k) Xk 
k�O 

is called the generating function of the function f. In this formula, X denotes a formal 
variable. If f(k) denotes a probability density function on N1 then it follows that Gf(X) 
is non-negative and monotonically increasing on the interval [0,1], and Gf(l) = 1. The 
expectation of a stochast with f(k) as a pdf is formally given by (Gf)'(l). 
Generating functions are handy tools when dealing with the durational behaviour of 
networks. 

Example. The self-loop (figure 1) contains three states I, s and F. There are three 
admissable transitions (I, s), (s, F), and the self-loop (s, s). We consider a process, 
starting at t=O in the initial state I, which terminates as soon as F is reached. With every 
transition, a probability and a print action are defined, according to the following table: 

transition probability action 
(I, s) 1 p1int" 
(s, s) a print 'T' 
(s, F) 1-a print,, 

in which '' denotes the empty string. A full specification of all transition probabilities 
between the states (I, s, F) is specified by the matrix A: 

(0 0 0 ) 
A= 1 a 0 

0 1-a 0 

In this matrix, the column and row indicate the source and target state, respectively4. 
After the process has terminated in the final state F, the resulting length L of the output 
string of T's equals the number of times the system passed the self-loop (s, s). Let 
P(L=k) denote the probability of this length L equalling exactly k. We have 

P(L=k) = ak (1 - a) 

By substitution, its generating function GP(X) reads 

4In the literature, the transposed notation is sometimes applied. The advantage of the present notation 
is that the ordinary matrix products retains an interpretation in terms of probabilities. 
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GP(X) = I, P(L=k) Xk =I, ak (1- a) Xk = (1 - a) I, (aX)k = 1=� 
k?:O k?:O k?:O 

In the last step, \Ve
1
essen!iallY,_1applied the power �ep�s expansion of the function ) 

1/(1-X). ( ¥_/' · 11 ! r / f! >;,../" ,. � t.,,,.,,D.(f <I 
This function GP(X) is uniquely de�ermined by the network and by the probability 
density function P(L=k). GP(X) is an example of a so-called rational function, i.e. a 
quotient of two polynomials. We will encounter rational functions throughout the 
present theoretical exposjtion. 
Any network can be assigned a generating function, by first evaluating P(L=k) and next 
GP(X). However, in general this is not the most handy way to evaluate GP(X). A 
more elegant method is to directly evaluate GP(X) from the topology of the network, 
without explicit reference to the probability density function P(L=k). The by-pass is 
depicted in figw-e 2. 
The next example shows the direct formal evaluation of GP(X) in case of the network 
N2 (figure 3). 

topological Network N 
domain 

J 
Probability density 

? function 
P(L=k) 

J 
algebraic Generating function 
domain GP(X) = TF(N) 

Fig. 2. A conceptual overview of the model. The by-pass is represented by the question 
mark. 
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1-a-b 

F 
1 

s2 

Fig. 3. The network N2. For an explanation see the text. 

Example. In order to formally assign a generating function GP(X) to the network N2, a 
rational function R(so, X) will be assigned to each state so of the network N2 by 
solving a specific system of linear equations. The algebraic structure of the system of 
linear equations is based on the topological structure of the network. Each of the linear 
equations relates R(so, X) to a weighted 'incoming' .sum of R(s, X) over all states s 
that are adjacent to so: 

R(so, X) = (weighting polynomial) R(s, X) 
(all s adj . to s0} 

After having solved the set of equations, GP(X) is defined as the quotient 

R(F, X) 
R(I, X) 

The weighting polynomials dete1mine whether or not the c01Tesponding state transition 
is taken into account in the durations. Their construction is clarified by the following 
table: 

edge probability variable weighting polynomial 

(I, s 1) 1 xo = 1 1 
(s1, s1) a Xl = X  aX 

(s J, s2) b Xl = X  bX 
(s2, s1) 1 xi = x x 
(s 1. F) 1-a-b xo = 1 1-a-b 

, The first column contains all admissable state transitions. In the second column, the 
actual state transition probability is given. (These numbers are shown in figure 4). The 
third column contains new information, viz. the contribution of each transition for the 

5 By using variables X1, ... , Xk, it is possible to assign a k-ary polynomial to an arbitrary network. 
We will not go into details. 
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overall duration. In this column, the exponent of the variable X equals the contribution 
of the corresponding state transition to the number of time steps required to pass from I 
to F. As the transitions (s1, s1), (s1, s2), and (s2, s1) have Xl, these transitions take 
one time step. 
The fourth column contains the product of the entries in the second and third column. 

According to the topology of the network, the following set of four linear equations is 
constructed: 

State s Weighted 'incoming' sum 
1 
l.R(I, X) + aX.R(s1, X)+ X.R(s2, X) 
bX.R(s1, X) 
(1-a-b).R(s1, X) 

Result R(s, X) 
= R(I, X) 
= R(s1, X) 
= R(s2, X) 
= R(F, X) 

After direct substitution and some combination, it can easily be shown that N1 has the 
following generating function: 

GP(X) = R(F, X) = R(F, X) = 1-a-b R(I, X) 1 1-aX-bX2 

The same result can be obtained by directly conside1ing the mauix equation Mx + e = x, 
or, equivalently, (M-I)x = -e, in which 

1 r\ 

M �
t

� 

& � j2 0 bX 0 
F 0 1-a-b 0 

0 

J 

[ 1 0 
0 0 1 
0 and I= 0 0 
0 0 0 

with 

[

1 

[ 

R(I, X) 
0 R(s1, X) e = oJ and x = R(s2, X)J 
0 R(F, X) 

0 0 

J 

0 0 
1 0 
0 1 

Straightforward calculation shows that det(M-I) = 1-aX-bX2, which equals the 
denominator in GP(X) shown above. Observe that this detenninant never vanishes (i.e. 
becomes zero), and accordingly, that the solution x is always unique. 

In the next section, we will see that the generating function GP(X) might be allotted the 
character of a 'transfer function' related to the network. To emphasize this relation to 
the underlying network N, GP(X) will also be denoted TF(N), the 'transfer function' 
of N. 

The assignment of the rational function TF(N) = GP(X) to the network N is unique. It 
fulfils three elegant properties which relate the topological properties of the network to 
the algebraic properties of the generating function. We will see, however, that the 
correspondence is not one-to-one, but it might be helpful to fonnulate a statement about 
one domain on the basis of arguments from the other domain. 
The three properties will be referred to as 'correspondence relations'. 
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Fig. 4. Three different topological compositions of networks. The grey areas represent 
networks that are 'building blocks' to be integrated. Their initial and final states are 
represented by white and black circles, respectively. States of the integrated network are 
grey. 
(A) Graphical representation of two networks in series. 
(B) Graphical representation of a weighted parallel connection. 
(C) Graphical representation of network nesting (N' into N). 
For a more detailed explanation see the text. 

Correspondence relation 1 (networks in series): 
Let two networks Ni and N2 be given in a 'series' as shown in figure 5(A). A new 
network N2N 1 is defined by identifying the final state of network N 1 with the initial 
state of network N2. Then 

Correspondence relation 2 (networks in parallel): 
Let two networks N 1 and N2 be given 'in parallel' as shown in figure 5(B). The 
networks now have one common initial state and one common final state. From the 
intial state, the transition towards network N 1 has probability a 1; the transition towards 
network N2 has probability a2, where a1 + a2 = 1. If we denote the resulting network 
formally by a1 N1 + a2 N2, then 
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Correspondence relation 3 (nesting): 
Let TF(N) denote the transfer function of a network N as illustrated in figure 5(C). If 
TF(N') denotes the transfer function of the nested subnetwork N', the overall transfer 
function TF(N) reads 

1-a 
TF(N) = 

1-aTF(N') 
{ ;1, f f (J 

where a (0 s; a< 1) denotes the probability of 'entering' the subnetwork N' from state 
s .  

-
These relations are not difficult to prove, and the verification will be omitted here. They 
allow us to calculate the generating function of an arbitrary network by cutting and 
chopping the network into smaller pieces that yield more elementary genera.ring 
functions. Finally; we anive at tne simplest networks of which the generating function 
can be easily obtained: the self-loops, and simple parallel networks. The ultimate simple 
networks consist of exactly one transition between two different states. These 
'networks' will be called 'atomic'. The algebraic representation of an atomic network 
equals xn if n is its contribution to the overall duration. 

pX qX 

1-a-b 

I F 
l.X 1-q 

s2 

A c 

pX qX 

qX 

1-q-r 

(1-q)X pX 

1-p 
r 

B D 

Fig. 5. Four different networks. For a discussion see the text. 
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has a discriminant D = (p+q)2 - 4pq(l-r+pr) = (p-q)2 + 4pqr(l-p);:::: 0. Moreover, since 
(p+q)/(2pq) > 0 and (1-(1-p)r) > 0, H(X) will generally have positive zeroes z1 and z2. 
Since r < 1-q, H(l) > 0, and both these zeroes will exceed 1. Consequently, their 
inverses w1 and w2 fulfil 0 < w1, w2 < 1, so H(X) = (1-w1X)(l-w2X) (up to a 
constant) which yields the identity 

TF(N) _ (1-p)(l-q-r) _ l-w1 l-w2 
- (1-pX)(l-qX) - (1-p)r - l-w1X l-w2X 

which corresponds to a series of two self-loops. We conclude that there exist networks 
with a slightly different place behaviour (i.e. they allow slightly different state 
sequences) with the same duration pdf. In the place-reversal network, the HMM may 
swap between two different spectral states, in the other network, HMM first settles 
down in the first state and next in the other. We observe that spectral considerations are 
here of primary importance. 
We finally have a closer look at the elaborate PLU, which was already presented in 
figure 1. This network has twelve transitions of which eight are independent. 
(Independency is lost in every state -- the outgoing transitions are subject to one 
normalization constraint). It can be verified that the corresponding rational function is 
of the form: 

where a 1, a2, a3, bi, b2, ci, c2, and q denote the independent transition probabilities 
occurring in the network. The problem of finding these transition probabilities can be 
refo1mulated into the problem of finding these coefficients by appropriate minimization 
of the difference between R(X, a1, ... , c3) and a given generative function GP(X). For 
example, the ai and bi can be found by low order approximations of GF(X). 

In this section, we used the concept of generating function in order to introduce the 
'transfer function' of a network. The transfer function can be evaluated in a direct way 
by first calculating the coITesponding dist1ibution F(L=k). However, we have indicated 
a more elegant method to obtain the transfer function directly from the topology of the 
underlying network. It was shown that this assignment can be formalized. This 
assignment fulfils three properties that relate the network topology on the one hand with 
the algebraic prope11ies of the generating functions on the other hand. 
The evaluation of TF(N) from N was one-way. In the next section, we will introduce a 
second tool, known as Fade-approximation, in order to find the network topology from 
its transfer function. 

3. Network topology and the Pade-expansion 

In the previous section, we have considered a method to derive a transfer function from 
the topology of a network. In this section, we will present a method to deal with the 
inverse problem, and we will encounter many examples of the many-to-one character of 
the assignment. 
One of the mathematical tool involved is known as the Fade-expansion. In the 
following section, this expansion will be inu·oduced informally. A more detailed 
analysis can be found in Lindemann (1981). The Fade-expansion can loosely be 
interpreted as the inverse operation of the power se1ies expansion. 

70 IFA Proceedings 15, 199 1 



Examples. In figure 5, four different networks are presented. The default initial and 
final states are shown only in the first network. 
The first network (indicated by A; equal to the network N2 we studied before) 
represents a nesting of a parallel combination of two subnetworks, viz. an atomic 
network with probability a, and a series combination of two atomic networks with 
probability b and 1, respectively. If these atomic networks each contribute once for the 
duration, the nested subnetwork has as its transfer function (correspondence relation 1 
and 2): 

TF(N') = aX + (bX).X = aX + bX2 

Consequently (relation 3): "l 
"' 

TF(N) = 1-a-b 
- 1-aX-bX2 

which is in accordance with our previous results for N2. 
The second network B with a nested loop has as its transfer function 

TF(N) = (1-p)(l-gX) 2 1-qX-p(l-q)X 
( 1-p) --

/ - r2f1-r)?!..2 
(1 �f, y') 

The third network C consists of a sequence of 2 self-loops connected serially. The self
loops have probability p and q, respectively. From correspondence relation 1, it 
follows that 

_2£_ --1:9._ TF(N) = 1-pX 1-qX 

In the next section we will see that, although the first and third networks A and C seem 
very different from a topological point of view, they are very close in an 'algebraic' 
sense. 
If one specific place-reversal step is introduced in the third network C, we obtain the 
situation shown in the fourth network. The probability of the backward transition from 
the second state towards the first state equals r. If we assume that the place-reversal 
does not take time, it can be shown by a straightforward calculation that the resulting 
transfer function reads: 

TF(N) - (l-p)(l-g-r) 
- (1-pX)(l-qX) - (1-p)r 

which evidently reduces to the transfer function of the second network in the case of 
r=O. Surprisingly, this generating function has an interpretation as generating function 
of some network without a place-reversality! (This is an example of the many-to-one 
assignment of generating functions.) The mathematical argument is that the 
denominator 

(1-pX)(l-qX) - (1-p)r = pqX2 - (p+q)X + (1-(1-p)r) = H(X) 
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Let F(X) denote some real function, defined on an interval [a, b], and assume that all its 
derivatives exist. Let c denote some intermediate point such that a :;:; c :;:; b. Then F(X) 
can be (d1, d1)-Pade-approximated by a quotient 

P1 (X-c) 
P2(X-c) 

P1 and P2 denoting polynomials of degree at most di and d1, respectively. The 
approximation is found by adequate minimization of the expression 

max IF(X) P2(X) - P1(X)I 

by varying the coefficients, and considering the maximum over some adequate interval 
containing c. 

Example. The (0, 1)-Pade-approximation around 0 of the power series 

1 + aX + (aX)2 + (aX)3 + (aX)4 + ... 

is given by 

1 
1-aX 

Any smooth function with continuous derivatives has a (d1, d1)-Pade-approximation 
for any combination (d1, d1). 

A second tool that we may need in order to relate the transfer function TF(N) with the 
underlying network N is known from elementary algebra. Any rational function 

with deg(P1) :;:; deg(P2) can be decomposed into a sum of partial fractions, i.e. a sum of 
'simpler' rational functions 

""' ""' ain ""' ""' L' jn(X) 
� L. L·n(X) + � L. Q·n(X) I n i J n J 

in which a, L(X), and Q(X) denote constants, linear, and quadratic polynomials in X, 
respectively. Here the quadratic polynomials Qj(X) are irreducible over R, which 
means that they have no real zeroes. The real zeroes of P2(X) equal the zeroes of the 
linear expressions Li(X); each pair of complex conjugate roots of P2(X) corresponds to 
one of the quadratic denominators Qj(X). The inner summation with respect to n runs 
up to the order of the respective zero of P2(X). 
An example will yield more insight. The statement asserts that any quotient with 
arbitrary P1 (X) with deg(P1) :;:; 7 of the following form: 

P1(X) 
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can be written as 

al a2 a3 + a4X as + a6X a7 + agX 
(1-X)l + (l-X)2 + l+X2 + (l+X2)2 + (l+X2)3 

for some specific a 1, ... ag. 

This decomposition of the rational function 

into partial fractions con-esponds to the decomposition of the underlying overall 
network into a set of simple subnetworks. 

Examples. 
The observed duration distribution for some speech segment may be found to 
approximate a specific function. Such a proximity can effectively be tested as soon as 
an appropriate 'distance' on duration disu-ibutions is defined. In this example we 
consider the case of an exponential decay in k, i.e. 

P(L=k) = c ak 

with c denoting some no1malization constant such that L P(L=k) = 1. Then 

GP(X) = 2: c ak Xk = l-� 
k 

It directly follows that an appropriate network might consist of one selfloop6. 
A more complicated example is given when P(L=k) is such that positive constants a, b 
and c can be found such that 

It can readily be shown that the c01Tesponding GP(X) reads 

1-a 1-b -----
1-aX 1-bX 

I 
c / ' 

- - ( 
- t? 

- f.. - - . J.;� 
_ c1- .· .1-c�.,,. "' 

which can be modelled by a se1ies of two self-loops with probability a and b. 

The following examples deal with the case that duration distributions are member of a 
specific class, viz. P(L=k) = kn ck, where? n is an integer and c a real number between 
0 and 1. Observe that this class contains the exponentially decaying distributions (take 
n=O). For n > 0, P is unimodal with a maximum at (-n/log(c)), and P tends to zero if k 

6 Or, more prudently, that the corresponding network should at least contain one self-loop with 
probability a. 
7For simplicity, we here omit the normalization. Consequently, the results hold up to one specific 
constant. This scaling is irrelevant for all essential steps in the theory, such as the Fade-expansion. 
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tends to infinity. Unimodal distributions might be approximated by a distribution out of 
this class. 

n = 0: We now have the exponentially decaying distribution P(L=k) = ck, 
corresponding to one self-loop. 

n = 1: Here P(L=k) = kck. Pade-expansion yields 

x_,_Cl_-c-'-)2_ 
(1-cX)2 

corresponding to a series of one atomic network and two self-loops. 
n = 2: Here P(L=k) = k2ck. Pade-expansion yields 

cX + c2 x2 (1 - c)3 
c + c2 ( 1  - cX)3 

corresponding to a series of a parallel network and three self-loops. 

n = 3: Here P(L=k) = k3ck. Pade-expansion now yields 

cX + 4c2 X2 + c3 X3 (1 - c)4 
c + 4c2 + c3 (1 - cX)4 

corresponding to a series of two subnetworks: one consisting of three parallel 
transitions, and a second consisting of four self-loops in series. 

In general, the distribution P(L=k) = kn ck corresponds to a network which consists of 
a series of two subnetworks Na and Nb. The network Na consists of at most (n+ 1) 
parallel transitions with durations 0, 1, ... , n and specific probabilities. This network is 
related to the nominator polynomial in the Pade-expansion of GP(X). 
The network Nb consists of a series of (n+ 1) self-loops, all with the same probability c. 
The resulting network is the 'product network' NaNb of the subnetworks Na and Nb. 
This network corresponds to the denominator polynomial in the Pacte-expansion of 
GP(X). 

For an arbitrary smooth distribution P, it is always possible to find pairs (ni, q) such 
that P is arbitrarily well approximated by a sum of distributions of the form described 
above. This is assured by the fact that P(L=k) can always arbitrarily well be 
approximated by a particular solution of a difference equation of arbitrary (but finite) 
order --which is the similar reason behind the existence of LPC-coding of a speech 
signal. As a conclusion, an arbitrary distribution can be obtained by a network 
consisting of arbitrarily many (but a finite number of) product networks NaNb. In 
practice, however, one should be careful in interpreting this result: nothing is specified 
about the 'recognition behaviour' of the networks. It might be the case that a network 
that is suboptimal with respect to duration modelling performs optimally with respect to 
overall recognition rates. Unfortunately, these rates are, up to now, hardly susceptible 
for a theoretical analysis, contrary to duration modelling. 
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In all these examples, the crucial step is the interpretation of the Pade-expansion as 
transfer function of a networks. Several cases of ambiguity can be observed. Firstly, 
there exists a principal ambiguity in the network interpretation of the algebraic terms 
anxn where a> 0 and n > 1: the corresponding network may equally be interpreted as a 
transition of duration n with probability an, or a series of more than one transition, their 
total duration equalling n and the product of their probabilities eqalling an. 
Another type of ambiguity is related to the summation as specified in the 
correspondence relation 1. The simple algebraic equation X = 0.5 X + 0.5 X already 
yields a topological ambiguity between the atomic network with duration 1 and a 
parallel network of atomic networks with duration 1. 
Precisely these ambiguities yield a 'class' of networks, all corresponding to the same 
transfer function, but with a different topological structure. Consequently, these 
networks may differ with respect to spectral modelling. On the basis of the duration, 
however, the search for an appropriate network topology may be inspired by a detailed 
study of the duration distribution. The following examples show that the interpretation 
deserves some care. 

Example. Suppose we have the following transfer function 

1-a 1-b ----
1-aX 1-bX 

As we have seen, if 0 ::;; a, b < 1 then this transfer function corresponds to the 
distribution 

ak+l _ bk+ l 
P(L=k) = c b a -

corresponding to a series of two self-loops (see the third network C in figure 5). 
However, not necessarily need a and b to be positive in order to render the resulting 
rational function interpretable as a transfer function! For example, if a< 0 and (-a)< b, 

1-a 1-b 1-(b+a)+ab 1-(b-(-a))-(-a)b l-ci-c2 
1-aX 1-bX = 1-(b+a)X+abX2 = 1-(b-(-a))X-(-a)bX2 = l-qX-c2X2 

with c1 = b-(-a) > 0 and c2 = (-a)b > 0. And this rational function c01Tesponds to the 
first network A presented in figure 5 with c I = a and c2 = b. We observe that these 
seemingly very different networks are algebraically rather close: it depends on the sign 
of just one parameter (in this case: a) which networks fulfils best. 

Another very fine example of topological ambiguity is provided in figure 6. It is based 
on the algebraic identity 

Networks may show fractal properties. There exist arbitrarily complicated ones; one 
simple example is shown in figure 7. It is based on the identities 

8By the author, an algorithm is being developed to facilitate this interpretation. It parses an input 
function according to a grammar defined by the three correspondence relations. 
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1-a 1-aX+aX [ 1-a ] 
1-aX 

= (l-a) 1 - a X  = (1-a) + aX 
1-aX 

We have considered a method to construct a network on the basis of an arbitrarily 
specified duration distribution. We conclude this section by presenting another 
universal network that is able of modelling any arbitrary duration distribution (figure 
8). The verification that this network is indeed 'universal' is left to the reader. 

1/2 x 

1/3 x 

1/3 

Fig. 6. Another example of topological ambiguity. 
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1-a 

a X  

1-a 

aX 

Fig. 7. An example of fractallike networks. 

b5X 

b4X 

b3 x 

b2X 

bl x 

bOX 

Fig. 8. An example of a universal network, capable of modelling any arbitrary duration 

distribution. 
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4. Conclusion 

In this paper, a method was presented for assigning a 'transfer function' to an arbitrary 
network. The transfer function is always a so-called rational function, i.e. a quotient of 
two polynomials. By using concepts such as the duration probability density function, 
the generating function and the Pade-expansion, three 'coITespondence relations' have 
been formulated. These relations define a relation between the topological structure of 
phone-like units on the one hand, and algebraic properties of the transfer function on 
the other. On the basis of arguments in one domain, results can be derived in the other 
domain. 
The assignment of the transfer function to a network is not one-to-one. A transfer 
function does not define one specific network, but rather a 'class' of networks that are 
all equivalent with respect to their ability of durational modelling. The spectral 
modelling of these networks may differ; this aspect may be of importance in further 
optimization of network topologies. The topological coITespondence between networks 
within one class has been studied in the paper. 
By the author, an algorithm is being developed in order to facilitate the interpretation of 
given rational functions as a transfer function of some underlying network. Research in 
the near future will be focussing on the possibility of additional resuictions on the class 
of networks on the basis of their potential of spectral modelling. 
The results may be of interest for a recently started AIO-project on 'Duration modelling 
in the HMM-approach' at our Institute by X. Wang. This project follows the AIO 
project on more general HMM recognition and implementation, also at the Institute, by 
P. van Alphen. 
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Errata 

Page 65, line 2 from below. Read 'figure 3' instead of 'figure 4 '. 

Page 69, line 6 from below. Read 'third' instead of 'second'. 

Page 70, line 3 from above. One additional argument is lacking, viz. that the average of both zeroes 
(p+q)/(2pq) equals or exceeds unity if pq > 0: As 0 < p, q < 1, 0 < pq:::;; p and 0 < pq:::;; q. By 
addition, 0 < (2pq):::;; (p+q). Accordingly, (p+q)/(2pq) � 1. 
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