SpeakGoodChinese: Learn to speak the tones of Mandarin Chinese

D.J.M. Weenink and R.J.J.H. van Son

Institute of Phonetic Sciences
ACLC
University of Amsterdam

Guangqin Chen, Zongyan Chen, Stefan de Konink, Eveline van Hagen, Dennis Vierkant

http://www.SpeakGoodChinese.org/
Introduction

Mandarin Chinese is the official administrative language of China
Studying Chinese is popular in the West (and elsewhere)

Problems Teaching Mandarin

- Mandarin Chinese is a tone language
- Every syllable in a word has one of 4 (5) tones which determines the meaning of the word
- Using the wrong tone makes a word incomprehensible (cf, English bad and bat, Dutch boot and bot)
- Mastering the production and recognition of tones is a major stumbling block in learning Mandarin Chinese
- Direct interaction with a highly proficient speaker, usually the teacher, is needed to practise tone pronunciation
Mandarin Chinese is the official administrative language of China. Studying Chinese is popular in the West (and elsewhere).

Problems Teaching Mandarin

- Mandarin Chinese is a tone language.
- Every syllable in a word has one of 4 (5) tones which determines the meaning of the word.
- Using the wrong tone makes a word incomprehensible (cf, English *bad* and *bat*, Dutch *boot* and *bot*).
- Mastering the production and recognition of tones is a major stumbling block in learning Mandarin Chinese.
- Direct interaction with a highly proficient speaker, usually the teacher, is needed to practise tone pronunciation.
Introduction

Mandarin Chinese is the official administrative language of China
Studying Chinese is popular in the West (and elsewhere)

Problems Teaching Mandarin

- Mandarin Chinese is a tone language
- Every syllable in a word has one of 4 (5) tones which determines the meaning of the word
- Using the wrong tone makes a word incomprehensible (cf, English bad and bat, Dutch boot and bot)
- Mastering the production and recognition of tones is a major stumbling block in learning Mandarin Chinese
- Direct interaction with a highly proficient speaker, usually the teacher, is needed to practise tone pronunciation
Introduction

Mandarin Chinese is the official administrative language of China
Studying Chinese is popular in the West (and elsewhere)

Problems Teaching Madarin

- Mandarin Chinese is a tone language
- Every syllable in a word has one of 4 (5) tones which determines the meaning of the word
- Using the wrong tone makes a word incomprehensible (cf, English *bad* and *bat*, Dutch *boot* and *bot*)
- Mastering the production and recognition of tones is a major stumbling block in learning Mandarin Chinese
- Direct interaction with a highly proficient speaker, usually the teacher, is needed to practise tone pronunciation
Introduction

Mandarin Chinese is the official administrative language of China
Studying Chinese is popular in the West (and elsewhere)

Problems Teaching Mandarin

- Mandarin Chinese is a tone language
- Every syllable in a word has one of 4 (5) tones which determines the meaning of the word
- Using the wrong tone makes a word incomprehensible (cf, English bad and bat, Dutch boot and bot)
- Mastering the production and recognition of tones is a major stumbling block in learning Mandarin Chinese
- Direct interaction with a highly proficient speaker, usually the teacher, is needed to practise tone pronunciation

Weenink & van Son (IFA, ACLC)
Introduction

Consequences of problems with tones

- Classes must be kept small to allow for ample student-teacher interaction
- Teachers are scarce
- Speaking and listening proficiency improves very slowly
- High drop-out rates of demotivated students
- Speaking is neglected in favor of writing
- ⇒ Use speech technology to help students practise
Introduction

Consequences of problems with tones

- Classes must be kept small to allow for ample student-teacher interaction
- Teachers are scarce
 - Speaking and listening proficiency improves very slowly
 - High drop-out rates of demotivated students
 - Speaking is neglected in favor of writing
- ⇒ Use speech technology to help students practise
Consequences of problems with tones

- Classes must be kept small to allow for ample student-teacher interaction
- Teachers are scarce
- Speaking and listening proficiency improves very slowly
 - High drop-out rates of demotivated students
 - Speaking is neglected in favor of writing
- ⇒ Use speech technology to help students practise
Introduction

Consequences of problems with tones

- Classes must be kept small to allow for ample student-teacher interaction
- Teachers are scarce
- Speaking and listening proficiency improves very slowly
- High drop-out rates of demotivated students
- Speaking is neglected in favor of writing
- ⇒ Use speech technology to help students practise
Introduction

Consequences of problems with tones

- Classes must be kept small to allow for ample student-teacher interaction
- Teachers are scarce
- Speaking and listening proficiency improves very slowly
- High drop-out rates of demotivated students
- Speaking is neglected in favor of writing

⇒ Use speech technology to help students practise
Introduction

Consequences of problems with tones

- Classes must be kept small to allow for ample student-teacher interaction
- Teachers are scarce
- Speaking and listening proficiency improves very slowly
- High drop-out rates of demotivated students
- Speaking is neglected in favor of writing
- \(\Rightarrow \) Use speech technology to help students practise
SpeakGoodChinese

An aid for practising Mandarin tones.

- All mono- and bisyllabic words
- Automatic Tone Recognition
- Graphical Tone Presentation
- A written analysis of tone pronunciation.
- Hummed (TTS) or pre-recorded examples
- Replaying recorded student pronunciation
- Automatic student evaluation (hidden)

http://www.SpeakGoodChinese.org/
SpeakGoodChinese

An aid for practising Mandarin tones.

- All mono- and bisyllabic words
- Automatic Tone Recognition
- Graphical Tone Presentation
- A written analysis of tone pronunciation.
- Hummed (TTS) or pre-recorded examples
- Replaying recorded student pronunciation
- Automatic student evaluation (hidden)

http://www.SpeakGoodChinese.org/
An aid for practising Mandarin tones.

- All mono- and bisyllabic words
- Automatic Tone Recognition
- Graphical Tone Presentation
- A written analysis of tone pronunciation.
- Hummed (TTS) or pre-recorded examples
- Replaying recorded student pronunciation
- Automatic student evaluation (hidden)

[Image of application interface]

http://www.SpeakGoodChinese.org/
An aid for practising Mandarin tones.

- All mono- and bisyllabic words
- Automatic Tone Recognition
- Graphical Tone Presentation
- A written analysis of tone pronunciation.
- Hummed (TTS) or pre-recorded examples
- Replaying recorded student pronunciation
- Automatic student evaluation (hidden)

http://www.SpeakGoodChinese.org/
An aid for practising Mandarin tones.

- All mono- and bisyllabic words
- Automatic Tone Recognition
- Graphical Tone Presentation
- A written analysis of tone pronunciation.
- Hummed (TTS) or pre-recorded examples
- Replaying recorded student pronunciation
- Automatic student evaluation (hidden)

http://www.SpeakGoodChinese.org/
An aid for practising Mandarin tones.

- All mono- and bisyllabic words
- Automatic Tone Recognition
- Graphical Tone Presentation
- A written analysis of tone pronunciation.
- Hummed (TTS) or pre-recorded examples
- Replaying recorded student pronunciation
- Automatic student evaluation (hidden)

http://www.SpeakGoodChinese.org/
An aid for practising Mandarin tones.

- All mono- and bisyllabic words
- Automatic Tone Recognition
- Graphical Tone Presentation
- A written analysis of tone pronunciation.
- Hummed (TTS) or pre-recorded examples
- Replaying recorded student pronunciation
- Automatic student evaluation (hidden)

http://www.SpeakGoodChinese.org/
Pinyin to Tone synthesis as TTS

- Pinyin phonetic transcription system (eg, \textit{ni3hao3})
- Each syllable has a number 1-4 or the neutral tone 0
- Split pinyin word into syllables (on tone number)
- Split pinyin syllable into Unvoiced initial and voiced final
- Tone contour is realized on voiced part only
Pinyin to Tone synthesis as TTS

- Pinyin phonetic transcription system (e.g., ni3hao3)
- Each syllable has a number 1-4 or the neutral tone 0
- Split pinyin word into syllables (on tone number)
- Split pinyin syllable into Unvoiced initial and voiced final
- Tone contour is realized on voiced part only
Pinyin to Tone synthesis as TTS

- Pinyin phonetic transcription system (e.g., ni3hao3)
- Each syllable has a number 1-4 or the neutral tone 0
- Split pinyin word into syllables (on tone number)
 - Split pinyin syllable into Unvoiced initial and voiced final
 - Tone contour is realized on voiced part only
Pinyin to Tone synthesis as TTS

- Pinyin phonetic transcription system (eg, \textit{ni3hao3})
- Each syllable has a number 1-4 or the neutral tone 0
- Split pinyin word into syllables (on tone number)
- Split pinyin syllable into Unvoiced initial and voiced final
- Tone contour is realized on voiced part only
Pinyin to Tone synthesis as TTS

- Pinyin phonetic transcription system (eg, \textit{ni3hao3})
- Each syllable has a number 1-4 or the neutral tone 0
- Split pinyin word into syllables (on tone number)
- Split pinyin syllable into Unvoiced initial and voiced final
- Tone contour is realized on voiced part only
Tone models: All tones

SpeakGoodChinese tone models

- Neutral tone, 0, tones 1-4, and garbage model 6
- Tones change in “context”
Tone models: Assimilation of neutral tone

Examples

- Neutral tone continues from previous tone
- Returns to “neutral” position
- Fourth tone seems exception
Tone models: Assimilation of neutral tone

Examples

- Neutral tone continues from previous tone
- Returns to “neutral” position
- Fourth tone seems exception
Tone models: Assimilation of neutral tone

Examples

- Neutral tone continues from previous tone
- Returns to “neutral” position
- Fourth tone seems exception
Tone synthesis: Initials and finals

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>ei</th>
<th>ong</th>
<th>ia</th>
<th>iong</th>
<th>uan</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>ba</td>
<td>bei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>da</td>
<td>dei</td>
<td>dong</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zh</td>
<td>zha</td>
<td>zhong</td>
<td>zhuan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td>jia</td>
<td>jiong</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>ga</td>
<td>gei</td>
<td>gong</td>
<td></td>
<td></td>
<td>guan</td>
</tr>
</tbody>
</table>

Durational model

- Syllable: Optional Initial (zh) + Obligatory Final (ong)
- Tones are realized on the voiced part of the syllable
- Estimate durations of Initial and Final
- Crude model: Fixed duration $+ \delta \cdot$ number of symbols (ia=3)
- Adapt duration to tone: $3 > 1 > 2 \approx 4 \gg 0$
Tone recognition

Tone recognition: Was student correct?

- Extract utterance pitch contour (F_0)
- Pinyin-to-Tone synthesis for all tones (correct and incorrect)
- Compare student utterance to all possible tone contours using Dynamic Time Warping
- Pick best matching model ⇒ Recognition
- Construct possible contours from theoretical tone model
- Limited to two syllables (combinatorial explosion)
- Student pitch register must be known
Tone recognition

Tone recognition: Was student correct?

- Extract utterance pitch contour \((F_0)\)
- Pinyin-to-Tone synthesis for all tones (correct and incorrect)
- Compare student utterance to all possible tone contours using Dynamic Time Warping
- Pick best matching model \(\Rightarrow\) Recognition
- Construct possible countours from theoretical tone model
- Limited to two syllables (combinatorial explosion)
- Student pitch register must be known
Tone recognition: Was student correct?

- Extract utterance pitch contour (F_0)
- Pinyin-to-Tone synthesis for all tones (correct and incorrect)
- Compare student utterance to all possible tone contours using Dynamic Time Warping
 - Pick best matching model \Rightarrow Recognition
- Construct possible contours from theoretical tone model
- Limited to two syllables (combinatorial explosion)
- Student pitch register must be known
Tone recognition

Tone recognition: Was student correct?

- Extract utterance pitch contour (F_0)
- Pinyin-to-Tone synthesis for all tones (correct and incorrect)
- Compare student utterance to all possible tone contours using Dynamic Time Warping
- Pick best matching model \Rightarrow Recognition
 - Construct possible contours from theoretical tone model
 - Limited to two syllables (combinatorial explosion)
 - Student pitch register must be known
Tone recognition: Was student correct?

- Extract utterance pitch contour \((F_0)\)
- Pinyin-to-Tone synthesis for all tones (correct and incorrect)
- Compare student utterance to all possible tone contours using Dynamic Time Warping
- Pick best matching model \(\Rightarrow\) Recognition
- Construct possible contours from theoretical tone model
 - Limited to two syllables (combinatorial explosion)
 - Student pitch register must be known
Tone recognition: Was student correct?

- Extract utterance pitch contour (F_0)
- Pinyin-to-Tone synthesis for all tones (correct and incorrect)
- Compare student utterance to all possible tone contours using Dynamic Time Warping
- Pick best matching model \Rightarrow Recognition
- Construct possible contours from theoretical tone model
- Limited to two syllables (combinatorial explosion)
- Student pitch register must be known
Tone recognition

Tone recognition: Was student correct?

- Extract utterance pitch contour (F_0)
- Pinyin-to-Tone synthesis for all tones (correct and incorrect)
- Compare student utterance to all possible tone contours using Dynamic Time Warping
- Pick best matching model \Rightarrow Recognition
- Construct possible contours from theoretical tone model
- Limited to two syllables (combinatorial explosion)
- Student pitch register must be known
A good tone has correct pitch height and movements

- If *top pitch* deviates from model, flag an error
- If *pitch range* deviates from model, flag an error
- Students will exaggerate tones, punish exaggerations less
- Flag error if 3 semitones too low or too narrow
- Flag exaggeration if 6 semitones too high or too wide
A good tone has correct pitch height and movements

- If *top pitch* deviates from model, flag an error
- If *pitch range* deviates from model, flag an error
- Students will exagerate tones, punish exagerations less
- Flag error if 3 semitones too low or too narrow
- Flag exageration if 6 semitones too high or too wide
A good tone has correct pitch height and movements

- If *top pitch* deviates from model, flag an error
- If *pitch range* deviates from model, flag an error
- Students will exaggerate tones, punish exaggerations less
 - Flag error if 3 semitones too low or too narrow
 - Flag exaggeration if 6 semitones too high or too wide
A good tone has correct pitch height and movements

- If *top pitch* deviates from model, flag an error
- If *pitch range* deviates from model, flag an error
- Students will exaggerate tones, punish exaggerations less
- Flag error if 3 semitones too low or too narrow
- Flag exaggeration if 6 semitones too high or too wide
A good tone has correct pitch height and movements

- If *top pitch* deviates from model, flag an error
- If *pitch range* deviates from model, flag an error
- Students will exaggerate tones, punish exaggerations less
- Flag error if 3 semitones too low or too narrow
- Flag exaggeration if 6 semitones too high or too wide
Tone recognition: Heuristic rules

Model tones do not model enough variation

- **Duration rules currently very bad**
- Current tone models do not capture variation
- Use “heuristic” rules to capture common confusions
- Eg, tones 2 and 3 merge before another tone 2 or 3
- Eg, tones 2 and 4 often misidentified as tone 0 in DTW but tone 0 would have been flagged by tone height and movement
Model tones do not model enough variation

- Duration rules currently very bad
- Current tone models do not capture variation
 - Use "heuristic" rules to capture common confusions
 - Eg, tones 2 and 3 merge before another tone 2 or 3
 - Eg, tones 2 and 4 often misidentified as tone 0 in DTW but tone 0 would have been flagged by tone height and movement
Model tones do not model enough variation

- Duration rules currently very bad
- Current tone models do not capture variation
- Use “heuristic” rules to capture common confusions
 - Eg, tones 2 and 3 merge before another tone 2 or 3
 - Eg, tones 2 and 4 often misidentified as tone 0 in DTW but tone 0 would have been flagged by tone height and movement
Tone recognition: Heuristic rules

Model tones do not model enough variation

- Duration rules currently very bad
- Current tone models do not capture variation
- Use “heuristic” rules to capture common confusions
- Eg, tones 2 and 3 merge before another tone 2 or 3
 - Eg, tones 2 and 4 often misidentified as tone 0 in DTW but tone 0 would have been flagged by tone height and movement
Tone recognition: Heuristic rules

Model tones do not model enough variation

- Duration rules currently very bad
- Current tone models do not capture variation
- Use “heuristic” rules to capture common confusions
- Eg, tones 2 and 3 merge before another tone 2 or 3
- Eg, tones 2 and 4 often misidentified as tone 0 in DTW but tone 0 would have been flagged by tone height and movement
Evaluation: Recognizer False \textit{rejects} and \textit{accepts}

Reference speakers and Students

- **Correct Tones**
 - Read Speech: R read aloud 6 words: \textit{cha2, dian4hua4, duo1shao3, gong1zuo4, jie2hun1, shi2jian1}, 83 tokens.
 - Simulated Use: R free word choice, 358 tokens
 - Shadowed Correct Speech: R and S shadowed 6 words, 160 tokens

- **Incorrect tones**
 Shadowed Incorrect Speech: R and S shadowed 6 words, 320 tokens
Evaluation: Usefulness and grade 1-10

- **SGC appl.**
 - 7.7
- **Synth. tones**
 - 7.2
- **Graphic displays**
- **Will you use SGC?**

Legend: Not useful/No - Useful - Very useful/Yes

* One subject couldn’t hear the tones clearly
† One subject preferred to practice with family members

Questionnaire to 14 students

- Tested RAD Tcl/Tk GUI with functional recognition
- Responses used to design User Interface
Evaluation: Usage data

Does SpeakGoodChinese improve tone pronunciation?

- Single Female student (13)
- Tried out SpeakGoodChinese in 7 sessions of a few hours
- In total she uttered 1531 words
- Each session started and ended with test runs without audio feedback
- Pretest and Posttest ≈ 30 words
- Practise ≈ 83-389 words
- Automatically determined error rate (*p < 0.002, X^2)
 - Overall: 28% (including practise)
 - Pretest: 39% *
 - Posttest: 24% *

- Real progress awaits human judgment
Conclusions

Computer Assisted Language Learning of Mandarin tones

- A Free, GPL, CALL applications based on Praat
- Real-time tone recognizer with an estimated 15% error rate
- Recognition can be improved upon
- The method is biased for acceptance of one- and two syllable words
- Besides tone, it can be extended to word pronunciation
- Students seem to like it
Conclusions

Computer Assisted Language Learning of Mandarin tones

- A Free, GPL, CALL applications based on Praat
- Real-time tone recognizer with an estimated 15% error rate
- Recognition can be improved upon
- The method is biased for acceptance of one- and two syllable words
- Besides tone, it can be extended to word pronunciation
- Students seem to like it
Conclusions

Computer Assisted Language Learning of Mandarin tones

- A Free, GPL, CALL applications based on Praat
- Real-time tone recognizer with an estimated 15% error rate
- Recognition can be improved upon
 - The method is biased for acceptance of one- and two syllable words
- Besides tone, it can be extended to word pronunciation
- Students seem to like it
Conclusions

Computer Assisted Language Learning of Mandarin tones

- A Free, GPL, CALL applications based on Praat
- Real-time tone recognizer with an estimated 15% error rate
- Recognition can be improved upon
- The method is biased for acceptance of one- and two syllable words
- Besides tone, it can be extended to word pronunciation
- Students seem to like it
Conclusions

Computer Assisted Language Learning of Mandarin tones

- A Free, GPL, CALL applications based on Praat
- Real-time tone recognizer with an estimated 15% error rate
- Recognition can be improved upon
- The method is biased for acceptance of one- and two syllable words
- Besides tone, it can be extended to word pronunciation
- Students seem to like it
Computer Assisted Language Learning of Mandarin tones

- A Free, GPL, CALL applications based on Praat
- Real-time tone recognizer with an estimated 15% error rate
- Recognition can be improved upon
- The method is biased for acceptance of one- and two syllable words
- Besides tone, it can be extended to word pronunciation
- Students seem to like it
http://www.SpeakGoodChinese.org/

Thank you very much
Any questions?

Acknowledgement

The SpeakGoodChinese project was made possible by grant 6046 from the Digital University